用户名: 密码: 验证码:
硫基复合材料制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单质硫作为一种轻质、多电子反应正极活性材料,其理论比容量为1675mAh/g;以金属锂为负极、单质硫为正极所组成的锂硫电池的理论能量密度高达2600Wh/kg。此外,单质硫还具有资源丰富、成本低廉、安全性好和无环境污染等优点。因此,锂硫电池被视为下一代极具应用潜力的高比能二次电池体系。由于硫活性物质本身的电子和离子绝缘特性,以及硫电极在放电过程中形成的中间产物多硫化锂易溶解于有机电解液中,且放电最终产物硫化锂也是电子的不良导体等众多因素,导致锂硫电池循环寿命较差,且硫的活性物质利用率和倍率性能偏低,因而严重制约了锂硫电池的实用化进程。在本论文中,为了克服上述问题,采用将单质硫与导电炭黑进行复合,制备了一系列硫基复合材料。特别是,利用导电炭黑基体较强的导电性能、较高的比表面积和吸附特性,来提高硫基复合材料的导电性,以期抑制锂硫电池放电中间产物的溶解穿梭,从而提高硫活性物质的利用率,改善硫电极的循环性能以及倍率性能。
     首先,采用商业化导电炭黑Ketjenblack EC600JD作为基体,将单质硫和导电炭黑按一定的比例通过机械球磨和热处理的的方法,制备了硫/碳复合材料(S/C),然后采用原位化学氧化聚合的方法制备出具有核壳结构的聚苯胺包覆硫/碳多重复合材料(PANI@S/C)。研究结果表明,硫含量为43.7wt%的PANI@S/C多重复合材料表现出最佳的电化学性能。其中,结构分析显示,厚度为5-10nm的导电聚苯胺均匀包覆在S/C纳米颗粒的表面,活性物质硫则高度分散于导电炭黑基体的纳米孔中,从而形成具有核壳结构的复合材料。在1C充放电倍率下,该复合材料首周放电容量达1405.5mAh/g,循环100周以后容量保持在596mAh/g。即使在10C倍率下,该复合材料最高放电容量仍可达635mAh/g,并且经过180周循环后,容量保持率为60%。由于导电炭黑和聚苯胺的协同作用,显着提高了复合电极的电化学性能。同时,电极体系的电子导电性得到增强,且电极反应的穿梭效应得到有效抑制,从而使电极表现出优异的高倍率充放电性能、良好的循环稳定性和较高的活性物质利用率。
     为进一步提高复合材料中硫的负载量,本文又以商业化导电炭黑BP2000(CCB)为原料,采用KOH高温活化扩孔的方法,制备了具有高比表面积和高孔容的活化导电炭黑材料(A-CCB)。然后,通过两步热处理的方法制备了硫含量分别为64wt%和73wt%的硫/活化导电炭黑复合材料(S/A-CCB),以及硫含量为65wt%的硫/导电炭黑复合材料(S/CCB),并研究了它们的电化学性能。结构分析显示,导电炭黑经活化后其比表面积和孔体积显著增大。电化学测试表明,硫含量为64wt%的S/A-CCB复合材料表现出最佳的电化学性能。在160mA/g电流密度下,该复合材料首周放电容量为956.7mAh/g,循环100周后,容量保持在531.9mAh/g;当电流密度为800mA/g时,硫电极经过数周活化后其最高放电容量可达771.8mAh/g,表现出较好的倍率性能。在同等条件下,采用CCB作为导电基体或提高S/A-CCB复合材料中硫的负载量均导致硫电极较差的电化学性能。
     最后,考虑到硫化聚丙烯腈和硫/碳复合材料均可作为锂硫电池正极材料,以此可构筑多元复合材料。本论文仍以导电炭黑BP2000作为基体,首先采用溶解-沉淀法获得了硫/导电炭黑/聚丙烯腈的三元混合物,随后将混合物高温预煅烧,再将预煅烧产物经过不同时间的热处理制备得到三种硫/碳/硫化聚丙烯腈复合材料(S/C/sPAN)。同时,采用1M LiPF6(PC+EC+DEC, v/v/v=1:4:5)的碳酸酯类电解液和1M LiTFSI+0.2M LiNO3(DOL+TEGDME, v/v=1:1)的醚类电解液对这三种复合材料进行循环伏安和恒流充放电性能表征。研究结果表明,三种样品在这两种电解液中具有不同的电化学反应特性。经过对比,热处理7个小时得到的S/C/sPAN-7复合材料在碳酸酯类电解液中表现出最佳的电化学性能。以复合材料整体作为活性物质计算,在40mA/g电流密度下,该复合材料首周放电容量高达1103.4mAh/g,循环40周后,容量保持在350mAh/g。当电流密度增大到100mA/g时,复合材料经过200周循环后容量还保持在243.5mAh/g,容量保持率从第二周开始计算时高达77%。在300mA/g电流密度下,该复合材料也表现出优异的循环稳定性,并且充放电库仑效率接近100%。
     总之,本论文以商业化的导电炭黑为基体,设计合成了两类新颖的硫/碳/聚合物多重复合材料,并研究了它们的结构和电化学性能的关系。此外,以导电炭黑为原料,制备了具有高比表面积和高孔体积的活化导电炭黑材料,获得了电化学性能优异的硫基复合材料。本论文从稳定的商业化碳材料着手,为今后设计新型硫基复合材料和开发廉价实用的高比能锂硫电池提供了有力的实验依据和理论基础。
As a light-weight, multi-electrons reaction cathode active material, the elemental sulfur has a theoretical capacity of1675mAh/g. The theoretical energy density of lithium-sulfur battery, based on the metallic lithium as anode and elemental sulfur as cathode, can reach up to2600Wh/kg. Besides, the elemental sulfur has the advantages of natural abundance, low cost, safety and environmentally friendliness. Therefore, lithium-sulfur battery is considered as a promising high specific energy secondary battery system for the next generation. However, the pratical application of lithium-sulfur battery is seriously restricted by the following fundamental problems:(1) electrically and ironically insulated nature of elemental sulfur;(2) solubility of polysulfides produced during the discharge process of sulfur electrode into organic electrolytes;(3) poor electrical conductivity of final reduction product Li2S, et.al. These problems lead to serious decay of cycle life, low utilization of active material sulfur and poor rate performance for lithium-sulfur battery. In this work, sulfur was incorporated into conductive carbon black to prepare a series of sulfur-based composites in order to overcome the problems mentioned above. The introduction of conductive carbon black with excellent electrical conductivity, high specific surface area and good absorption capability is expected to improve the conductivity of sulfur-based composites, effectively suppress the dissolution and shuttle of intermediate products, thereby improving the utilization of sulfur active material and also improving cycle performance and rate performance of sulfur electrode.
     Firstly, commercial conductive carbon black Ketjenblack EC600JD was used as matrix to prepare sulfur/carbon composites by ball-milling sulfur and conductive carbon black in a certain proportion and a subsequent heat treatment. Then, polyaniline coated sulfur/carbon multi-composites(PANI@S/C) with unique core/shell structure were successfully prepared by an in-situ chemical oxidative polymerization method. It's demonstrated that the PANI@S/C composite with43.7wt%sulfur presents the optimum electrochemical performance. The conductive polyaniline with a thickness of ca.5-10nm, is uniformly coated onto the surface of the S/C composite to form a core/shell structure, while sulfur is highly dispersed in the nanopores of conductive carbon black matrix. The initial discharge capacity can reach up to1405.5mAh/g and a discharge capacity of596mAh/g can still be retained after100cycles at1C. Even at10C rate, a maximum discharge capacity of635mAh/g could be obtained for the composite, and the capacity retention is over60%after180cycles. The synergistic effect of the conductive carbon black and polyaniline can significantly improve the electrochemical performance of the composites electrode. Meanwhile, the electronic conductivity of the electrode system could be improved and the shuttle effect of the electrode actions suppressed, thus leading to excellent high rate charge/discharge performance, good cycle stability and relatively high utilization of sulfur.
     In order to further improve the sulfur loading in the composites, commercial conductive carbon black BP2000(CCB) was used as raw material and KOH as pore-expanding agent to prepare activated conductive carbon black(A-CCB) material with high specific surface area and large pore volume by activating at high temperature. Then, sulfur/activated conductive carbon black(S/A-CCB) composites with64wt%and73wt%sulfur, and sulfur/conductive carbon black(S/CCB) composite with65wt%sulfur were further prepared by two-step heat treatment, and the electrochemical performance for the composites were comparatively investigated. It's demonstrated that the specific surface area and pore volume of commercial CCB were significantly improved after activation. The S/A-CCB composite with64wt%sulfur shows the optimum electrochemical performance.. The initial discharge capacity of S/A-CCB composite with64wt%sulfur is956.7mAh/g and can be maintained at531.9mAh/g after100cycles at the current density of160mA/g. The maximum discharge capacity of771.8mAh/g can still be obtained after several cycles'activation at the current density of800mA/g, indicating a satisfactory rate performance. However, the results show that the employment of CCB as conductive matrix or the increase of sulfur loading in S/A-CCB composite, under the same condition, would lead to a poorer electrochemical performance for sulfur electrode.
     Finally, considering that both sulfurized polyacrylonitrile and sulfur/carbon composites can be served as cathode materials for lithium-sulfur battery, to construct multi-composites, sulfur/carbon/polyacrylonitrile ternary mixtures were firstly obtained through dissolution-precipitation process by still using conductive carbon black BP2000as matrix. Then, the mixture were pre-calcinated and heat treated at different calcinating time to prepared three sulfur/carbon/sulfurized polyacrylonitrile composites(S/C/sPAN). The CVs and charge/discharge performance of the as-prapared composites were further characterized in1M LiPF6(PC+EC+DEC, v/v/v=1:4:5) carbonate-based electrolyte and1M LiTFSI+0.2M LiNO3(DOL+TEGDME, v/v=1:1)ether-based electrolyte, respectively. The results show that the three samples demonstrate different electrochemical response characterizations in the two electrolytes. By comparison, the S/C/sPAN-7composite with7h heat-treatment shows the optimum electrochemical performance in carbonate-based electrolyte. The initial discharge capacity of1103.4mAh/g can be obtained at the current density of40mA/g when calculated by the whole composite as active material, and the discharge capacity can be maintained at350mAh/g after40cycles. Moreover, the discharge capacity of243.5mAh/g can be maintained after200cycles when the current increased to100mA/g, and the capacity retention can reach up to77%from the second cycle. The composite can also show good cycle performance at300mA/g, together with ca.100%charge/discharge coulombic efficiency.
     In summary, in this paper, two novle sulfur/carbon/polymer multi-composites were designed and synthesized by employing commercial conductive carbon black as matrix. The relationship between the structures and electrochemical performance of the composites were then discussed. In addition, the activated conductive carbon material with high specific surface and pore volume was also prepared using conductive carbon black as raw material, and the sulfur-based composites with good electrochemical performance were obtained. Starting with stable and commercial carbon materials, we are confident that the work would provide forceful experimental and theoretical basis to design new sulfur-based materials and develop low cost and practical high specific energy lithium-sulfur battery in future.
引文
[1]程新群.化学电源.北京:化学工业出版社,2008:1
    [2]Armand M, Touzain P. Graphite intercalation compounds as cathode materials. Materials Science and Engineering,1977,31:319-329
    [3]Mizusshima K, Jones P C, Goodenough J B, et al. LixCoO2 (0    [4]Chio N S, Chen Z H, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed.,2012,51:9994-10024
    [5]Ellis B L, Town K, Nazar L F. New composite materials for lithium-ion batteries. Electrochimica Acta,2012,84:145-154
    [6]Lee K T, Jeong S, Cho J. Roles of surface chemistry on cafety and electrochemistry in lithium ion batteries. Acc. Chem. Res.,2012, DOI:10.1021ar200224h
    [7]Sun Y K, Han J M, Myung S T, et al. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem.Commun..,2006,8:821-826
    [8]Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater.,2000,12:3788-3791
    [9]Cheng H M, Wang F M, Chu J P, et al. Enhanced cycleabity in lithium ion batteries:resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes. J. Phys. Chem. C.,2012, 116:7629-7637
    [10]Lu Y C, Mansour A N, Yabuuchi N, et al. Probing the origin of enhanced stability of "AlPO4" nanoparticle coated LiCoO2 during cycling to high voltages combined XRD and XPS studies. Chem. Mater.,2009,21:4408-4424
    [11]Delmas C, Saadoune I. Electrochemical and physical properties of the LixNi1-yCoyO2 phases. Solid State Ionics,1992,53-56, Part 1 (0):370-375
    [12]Stoyanova R, Zhecheva E, Zarkova L. Effect of Mn-substitution for Co on the crystal structure and acid delithiation of LiMnyCo1-yO2 solid solutions. Solid State Ionics,1994,73: 233-240
    [13]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc.,1997,144-148
    [14]Park K S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochem.Commun.,2003,5:839-842
    [15]Arnold G, Garche J, Hemmer R, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources.,2003,119: 247-251
    [16]Yang S F, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun.,2001,3:505-508.
    [17]Recham N, Dupont L, Courty M, et al. Ionothermal Synthesis of tailor-made LiFePO4 powders for Li-ion battery applications. Chem. Mater.,2009,21:1096-1107
    [18]Croce F, Epifanio A D, Hassoun J, et al. A Novel concept for the synthesis of an improved LiFePO4 lithium battery cathode, Electrochem. Solid State Lett.,2002,5:A47-A50
    [19]Anh Vu, Andreas Stein. Multi-constituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater.,2011,23: 3237-3245
    [20]Konarova M, Taniguchi I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J. Power Source.,2010,195:3661-3667
    [21]Wang J J, Yang J L, Zhang Y, et al. Interaction of carbon coating on LiFePO4:A local visualization study of the influence of impurity phases. Adv. Fun. Mater.,2013,23:806-814
    [22]Sung W O, Myung S T, Seung M O, et al. Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries. Adv. Mater.,2010,43:4842-4845
    [23]Chung S Y, Bloking J T, Chiang Y M. Electronical conductive phosphor-olivines as lithium storage electrodes. Nat Mater.,2002,2:123-128
    [24]Murugan A V, Muraliganth T, Ferreira P J, Manthiram A. Dimensionally Modulated, Single-Crystalline LiMPO4 (M= Mn, Fe, Co, and Ni) with Nano-Thumblike Shapes for High-Power Energy Storage. Inorg. Chem.,2009,48,946-952.
    [25]Zhou Y K, Wang J, Hu Y Y, et al. A porous LiFePO4 and carbon nanotube composite. Chem. Commun.,2010,46,7151-7153
    [26]Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci.,2010,3:174-189
    [27]Ryu H S, Ahn H J, Kim K W, et al. Discharge process of Li/PVDF/S cells at room temperature. J. Power Sources.,2006,153:360
    [28]Hauck G, Stackelberg M V, Leybold Polarograph Bey,1956,4:81.
    [29]Herbert J U D. US Patent,3043896,1962
    [30]Merritt M V, Sawyer D T. Electrochemical reduction of elemental sulfur in aprotic solvents. Inorganic Chemistry,1970,9:211-215
    [31]Martin R P, Doub W H, Roberts J L, et al. Electrochemical reduction of sulfur in aprotic solvents. Inorganic Chemistry,1973,12:1921-1925
    [32]Coleman J R, Bates M W, in "Power Sources 2," Proc.6th Int. Symp., Brighton, England, 1968, D. H. Collins, Editor, p.289, Pergamon Press, New York,1968
    [33]Rao M L. US Patent.1968,3,413,154
    [34]Collins D H. Editor, Pergamon Press, New York,1968:289
    [35]Wang J L, Yang J, Xie J Y, et al. Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem. Commun.,2002,4:499-502.
    [36]郑伟.二次锂电池单质硫复合正极材料的制备及电化学性能研究[D].哈尔滨:哈尔滨工业大学,2006
    [37]Zheng W, Liu Y W, Hua X G, et al. Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries. Electrochimica Acta,2006,51: 1330-1335
    [38]Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur-acetyleneblack composites as cathode materials. Electrochimica Acta,2009,54: 3708-3713
    [39]Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J. Phys. Chem.C.,2009,113:4712-4716
    [40]Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci.,2010,3: 1531-1537
    [41]Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater.,2009,8:500-506
    [42]He G, Ji X L, Nazar L F. High "C" rate Li-S cathodes:sulfur imbibed bimodal porous carbons. Energy Environ. Sci.,2011,4:2878-2883
    [43]Schuster J, He G, Benjamin M, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem. Int. Ed.,2012,51:3591-3595
    [44]Chen S R, Zhai Y P, Xu G L, et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochimica Acta,2011,56: 9549-9555
    [45]Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed.,2011,50:5904-5908
    [46]Wang Y X, Huang L, Sun L C, et al. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. J. Mater. Chem.,2012,22:4744-4750
    [47]Li S, Xie M, Liu J B, et al. Layer structured sulfur/expanded graphite composite as cathode for lithium battery. Electrochem. Solid State Lett.,2011,14:A105-A107
    [48]Yuan L X, Yuan H P, Qiu X P, et al. Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries. J. Power Sources.,2009,189:1141-1146
    [49]Chen J J, Jia X, She Q J, et al. The preparation of nano-sulfur/MWCNTs and its electrochemical performance. Electrochimica Acta,2010,55:8062-8066
    [50]Susanne D, Markus H, Holger A, et al. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem. Commun.,2012,48:4097-4099
    [51]Chen J J, Zhang Q, Shi Y N, et al. A hierarchical architecture S/MWCNT nanomicrosphere with largepores for lithium sulfur batteries. Phys. Chem. Chem. Phys.,2012,14:5376-5382
    [52]Zhou G M, Wang D W, Li F, et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci.',2012,5: 8901-8906
    [53]Guo J C, Xu Y H, Wang C S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium_sulfur batteries. Nano Lett.,2011,11:4288-4294
    [54]Zheng G Y, Yang Y, Cha J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett.,2011,11:4462-4467
    [55]Elazari R, Salitra G, Garsuch A, et al. Sulfur-impregnated activated carbon fiber cloth as a binder-free cathode for rechargeable Li-S batteries. Adv. Mater.,2011,23:5641-5644
    [56]Ji L W, Rao M M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci.,2011,4:5053-5059
    [57]RaoM M, Song X Y, Liao H G, Cairns E J. Carbon nanofiber-sulfur composite cathode materials with different binders forsecondary Li/S cells. Electrochimica Acta,2012,65: 228-233
    [58]Choucair M, Thordarson P, Stride J A. Gram-scale production of grapheme based on solvothermal synthesis and sonication. Nat. Nanotechnol.,2009,4:30-36
    [59]Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials. Nature, 2006,442:282-286.
    [60]Latorre S M, Atienzar P, Abellan G, et al. The synthesis of a hybrid grapheme-nickel manganese mixed oxide and its performance in lithium-ion batteries. Carbon,2012,50: 518-525
    [61]Huang X, Qi X Y, Boey F, et al. Graphene-based composites synthesis, characterization, properties, and applications. Small,2011,14:1876-1902
    [62]Wang J Z, Lu L, Choucair M, et al. Sulfur-graphene composite for rechargeable lithium batteries. J. Power Sources.,2011,196:7030-7034
    [63]Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium_sulfur battery cathode material with high capacity and cycling stability. Nano. Lett., 2011,11:2644-2647
    [64]Cao Yc L, Li X L, Aksay I A, et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries. Phys. Chem. Chem. Phys.,2011,13, 7660-7665
    [65]Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc.,2011,133:18522-18525
    [66]Li N W, Zheng M B, Lu H L, et al. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating. Chem. Commun.,2012,48:4106-4108
    [67]Wang J, Chen J, Konstantinov K, et al. Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries. Electrochimica Acta,2006,51:4634-4638
    [68]Sun M M, Zhang S C, Jiang T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode materials for rechargeable lithium batteries. Electrochem. Commun.,2008,10: 1819-1822
    [69]Liang X, Liu Y, Wen Z Y, et al. A nano-structured and highly ordered polypyrrole-sulfur cathode for lithium-sulfur batteries. J. Power Sources.,2011,196:6951-6955
    [70]Fu Y Z, Manthiram A. Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries. J. Phys. Chem. C.,2012,116:8910-8915
    [71]Fu Y Z, Manthiram A. Core-shell structured sulfur-polypyrrole composite cathodes for lithium sulfur batteries. RSC Advances,2012,2:5927-5929
    [72]马萍,张宝宏,巩桂英,徐宇虹.聚苯胺/硫复合材料作锂二次电池正极的研究.功能材料与器件学报,2007,3:437442
    [73]Xiao L F, Cao Y L, Xiao J, et al. A soft approach to encapsulate sulfur:polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater.,2012,24:1176-1181
    [74]Wu F, Wu S X, Chen R J, et al. Sulfur-polythiophene composite cathode materials or rechargeable lithium batteries. Electrochem. Solid State Lette.,2010,13, A29-A31
    [75]Wu F, Chen J Z, Chen R J, et al. Sulfur/polythiophene with a core/shell structure:synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J. Phys. Chem. C.,2011,115:6057-6063
    [76]Yang Y, Yu G H, Cha J J, et al. Improving the performance of lithiumjsulfur batteries by conductive polymer coating. ACS Nano,2011,11:9187-9193
    [77]Wu F, Chen J, Li L, et al. Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode. J. Phys. Chem. C.,2011,115:24411-24417
    [78]Liang X, Wen Z Y, Liu Y, et al. A composite of sulfur and polypyrrole-multi walled carbon combinatorial nanotube as cathode for Li/S battery. J. Power Sources.,2012,206:409-413
    [79]Wang W, Li G C, Wang Q, et al. Sulfur-polypyrrole/graphene multi-composites as cathodefor lithium-sulfur battery. J. Electrochem.Soc.,2013,160:A805-A810
    [80]赵鹏,王莉,李建军等.锂硫电池正极材料:硫化聚丙烯腈.新材料产业,2012,8:68-70
    [81]Wang J L, Yang J, Wan C R, et al. sulfur composite cathode material for rechargeable lithium batteries. Adv. Funct. Mater.,2003,13:487-492
    [82]Yin L C, Wang J L, Yang J, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathodematerial for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem.,2011,21:6807-6810
    [83]Yin L C, Wang J L, Lin F J, et al. Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathodematerial for high-rate rechargeable Li-S batteries. Energy Environ. Sci., 2012,5:6966-6972
    [84]Wang L, He X M, Li J J, et al. Charge/discharge characteristics of sulfurized polyacrylonitrile composite withdifferent sulfur content in carbonate based electrolyte for lithium batteries. Electrochimica Acta,2012,72:114-119
    [85]Wang L, He X M, Li J J, et al. Analysis of the synthesis process of sulphur-poly(acrylonitrile)-based cathodematerials for lithium batteries. J. Mater. Chem., 2012,22:22077-22081
    [86]Seh Z We, Li W Y, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun.,2013, DOI: 10.1038/ncomms2327
    [87]Zhou Y N, Wu C L, Zhang H, et al. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries. Electrochimica Acta,2007,52:3130-3136
    [88]Yang Z C, Guo J C, Das S K, et al. In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries. J. Mater. Chem. A.,2013,1:1433-1440
    [89]Chang D R, Lee S H, Kim S W, Kim H T. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether andl,3-dioxolane for lithium-sulfur battery. J. Power Sources.,2002,112: 452-460
    [90]Kim S, Jung Y J, Lim H S.. The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes. Electrochimica Acta.,2004,50: 889-892
    [91]Choi J W, Kim J K, Cheruvally G, et al. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochimica Acta.,2007,52:2075-2082
    [92]Choi J W, Cheruvally G, Kim D S, et al. Rechargeable lithium/sulfur battery with liquid electrolytes containingtoluene as additive. J. Power Sources.,2008,183:441-445
    [93]Mikhaylik Y V. US Patent 7354680,2008
    [94]Aurbach D, Pollak E, Elazari R, et al, J. Electrochem. Soc.,2009,156:A694-A696
    [95]Liang X, Wen Z Y, Liu Y, et al. Improved cycling performances of lithium sulfur batteries with LiNO3-modifiedelectrolyte. J. Power Sources.,2011,196:9839-9843
    [96]Zhang S S. Role of LiNO3 in rechargeable lithium/sulfur battery. Electrochimica Acta,2012, 70:344-348
    [97]Celine B, Lepretre J C, Sebastien P, Alloin F. Revisiting TEGDME/DIOX binary electrolytes for lithium/sulfur batteries:importance of solvation ability and additives. J. Electrochem Soc., 2013,160:A430-A436
    [98]Suo L M, Hu Y S, Li, et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun.,2013, DOI:10.1038/ncomms2513
    [99]Rauh R D, Shuker F S, Marston J M, Brummer S B, Formation of lithium polysulfides in aprotic media, J. Inorg. Nucl. Chem.,1977,39:1761-1766.
    [100]Gao J, Lowe M A, Kiya Y, et al. Effects of liquid electrolytes on the charge-discharge performance of rechargeable lithium/sulfur batteries:electrochemical and in-situ X-ray absorption spectroscopic studies. J. Phys. Chem. C.,2011,115:25132-25137
    [101]Barchasz C, Lepretre J C, Patoux S, Alloin F. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries. Electrochimica Acta,2013,89:737-743
    [102]Kim S, Jung Y J, Park S J. Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J. Power Sources., 2005,152:272-277
    [103]Yuan L X, Feng J K, Ai X P, et al. Improved discharge ability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun.,2006,8:610-614
    [104]Wang J., Chew S Y, Zhao Z W, et al. Sulfur-mesoporous carbon composites in conjunction with anovel ionic liquid electrolyte for lithium rechargeable batteries. Carbon, 2008,46:229-235
    [105]Shin J H, Cairns E J. N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI-poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J. Power Sources.,2008,177:537-545
    [106]Wang L N, Byon H R. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-basedorganic electrolyte for high performance lithiumesulfur batteries. J. Power Sources.,2013,236:207-21
    [1]陆立明.热分析应用基础.东华大学出版社,2010,10
    [2]朱和国,王恒志.材料科学研究与测试方法.东南大学出版社,2008,3
    [3]新民,解挺.材料分析测试方法.国防工业出版社,2005,7
    [4]章晓中.电子显微分析.清华大学出版社,2006,12
    [5]查全性.电极过程动力学.科学出版社,2002
    [1]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001,414:359-367
    [2]Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Li-O2 and Li-S batteries with high energy storage. Nat Mater.,2012,11,19-29
    [3]Gao X P, Yang H X. Multi-electron reaction materials for high energy density batteries. Energy Environ. Sci.,2010,3:174-189
    [4]Scrosati B, Hassoun J, Sun Y K. Lithium-ion batteries. A look into the future. Energy Environ.. Sci.,2011,4:3287-3295
    [5]Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell. J. Power Sources., 1983,9,281-287
    [6]Akridge J R, Mikhaylik Y V, White N. Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics,2004,175:243-245
    [7]Jung Y J, Kim S, New approaches to improve cycle life characteristics of lithium-sulfur cells. Electrochem. Commun.,2007,9:249-254
    [8]Yin L C, Wang J L, Yang J, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathodematerial for high-rate rechargeable lithium/sulfur batteries. J. Mater. Chem., 2011,21:6807-6810
    [9]Rouquerol J, Avnir D, Fairbridge C W, et al. Recommendations for the characterization of porous solids. Pure Appl. Chem.,1994,66:1739-1758
    [10]古可隆,顾瑞生,张天健等.多孔碳材料微结构和电性能的研究.林产化学与工业,1999,19(2):27-30
    [11]Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur-acetyleneblack composites as cathode materials. Electrochimica Acta,2009,54: 3708-3713
    [12]Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performancc of sulfur/highly porous carbon composites. J. Phys. Chem. C.,2009,113:4712-4716
    [13]Chen S R, Zhai Y P, Xu G L, et al. Ordered mesoporous carbon/sulfur nanocomposite of high performances as cathode for lithium-sulfur battery. Electrochimica Acta,2011,56: 9549-9555
    [14]Quillard S, Louarn G, Lefrant S, MacDiarmid A G. Vibrational analysis of polyaniline:A comparative study of leucoemeraldine, emeraldine, and pernigraniline bases. Phys. Rev. B: Condens. Matter.1994,50:12496-12508
    [15]Sengupta P P, Barik S, Adhikari B. Polyaniline as a gas-sensor material. Mater. Manuf. Processes.,2006,21:263-270
    [16]Lai C, Li G R, Dou Y Y, Gao X P. Mesoporous polyaniline or polypyrrole/anatase TiO2 nanocomposite as anode materials for lithium-ion batteries. Electrochimica Acta,2010,55: 4567-4572
    [17]Li X L, Cao Y L, Qi W, et al. Optimization of mesoporous carbon structures for lithium-sulfur battery applications. J. Mater. Chem.,2011,21:16603-16610
    [18]Ji X L, Evers S, Black R, Nazar L F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun.,2011, doi:10.1038/ncomms1293
    [19]Yang Y, Yu G H, Cha J J, et al. Improving the performance of lithium_sulfur batteries by conductive polymer coating. ACS Nano,2011,11:9187-9193
    [20]Ji L W, Rao M M, Aloni S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci.,2011,4:5053-5059
    [21]Wang J, Chew S Y, Zhao Z W, et al. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon,2008,46: 229-235
    [1]Su F B, Poh C K, Tian Z Q, et al. Electrochemical Behavior of Pt Nanoparticles Supported on Meso-and Microporous Carbons for Fuel Cells. Energy Fuels,2010,24:3727-3732
    [2]Zhang B, Lai C, Zhou Z, et al. Preparation and electrochemical properties of sulfur-acetyleneblack composites as cathode materials. Electrochima Acta,2009,54: 3708-3713
    [3]Shim J, Striebel K A and Cairns E J. The lithium/sulfur rechargeable cell effects of electrode composition and solvent on cell performance. J. Electrochem. Soc.,2002,149: A1321-A1325
    [4]Canasa N A, Wolf S, Wanger N, et al. In-situ X-ray diffraction studies of lithium-sulfur batteries.2013,226:313-319
    [5]Lai C, Gao X P, Zhang B, et al. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J. Phys. Chem. C.,2009,113:4712-4716
    [6]Zhang B, Qin X, Li G R, et al. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci.,2010,3: 1531-1537
    [1]杨裕生,王维坤,苑克国等.锂电池正极材料有机多硫化物的展望.电池,2002,32:1-5
    [2]赵海鹏,何向明,姜长印等.聚丙烯腈的热解特性及在锂离子电池中的应用.高分子科学与工程,2007,23:11-15
    [3]王久林.二次锂电池用含硫正极材料的制备及电化学性能研究[D].上海:上海微系统与信息技术研究所,2002.
    [4]Yin L C, Wang J L, Yu X L, et al. Dual-mode sulfur-based cathode materials for rechargeable Li-S batteries. Chem. Commun.,2012,48:7868-7870

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700