用户名: 密码: 验证码:
新型微孔和介孔碳材料的合成及其催化、吸附性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔碳材料由于其特有的组成与结构、高的比表面积、有序的孔径分布及其高的热力学稳定和化学惰性,在催化、吸附分离、能量储存等领域具有很重要的应用前景。这也使得多孔碳材料的合成、表面修饰、功能化及应用成为了新的研究热点。本论文合成出一系列有序介孔碳材料、微孔碳材料以及碳基复合材料,并对其进行表面改性修饰,应用于丙烷脱氢、二氧化碳捕获以及染料脱色等领域。主要包括以下几个方面:
     1.以柠檬酸为一种环境友好的催化剂,在低温水热的条件下催化间苯二酚和甲醛的聚合得到了有序的介孔碳材料。所合成的碳材料具有较高的热稳定性,二维六方的孔道结构,孔径约为5.1nm,同时材料的比表面积可高达612–851m~2g~(-1)。本制备方法合成有序介孔碳材料可以在较宽的合成条件下得到,其中反应温度为50–80oC,甲醛和柠檬酸的比例≥3。在合成体系中引入柠檬酸,一方面它可以作为催化剂催化间苯二酚的聚合,另一方面,它还可以增强碳前躯体和表面活性剂之间的相互作用,从而进一步在产物中引入更多的微孔,从而利于CO_2的吸附。高温条件下(650–1000oC),在氨气流中对有序介孔碳材料进行氮化可以有效的引入碱性的含氮官能团,从而增强吸附剂和CO_2之间的相互作用,提高吸附量。氮掺杂的有序介孔碳材料表现出优异的CO_2吸附性能,1000oC氮化后的样品其吸附量在298K时可以达到3.46mmol/g。材料的结构特性和表面化学性质对其CO_2捕获性能起着非常重要的作用。
     2.以无金属负载的介孔碳材料为催化剂,考察了其丙烷脱氢制丙烯的催化性能。通过对几种不同结构的碳材料进行对比考察研究了碳材料本身的特性对丙烷直接脱氢制丙烯催化性能的影响。结果显示,不负载任何金属成分,有序介孔碳材料可以有效的催化丙烷直接脱氢,有传统的金属基催化剂相比,表现出很好的催化活性和反应稳定性。反应50h后,丙烷的转化率仍可达到12.1%,丙烯的选择性保持在95.1%。而纳米结构的碳纳米管和石墨碳材料的催化活性很差。介孔碳材料在丙烷氧化脱氢制丙烯的过程中也表现出很好的催化活性,反应50h后,丙烷的转化率仍有20.1%,但丙烯的选择性较低(25%),可能是由于在氧气存在的氛围下,产物丙烯的在大比表面积催化剂上的再吸附使其发生了进一步的裂解。将介孔碳材料用硝酸进行活化处理,可以明显的提高催化剂的丙烷直接脱氢制丙烯的催化性能。反应50h后,丙烷转化率和丙烯选择性分别为22.4%和86.6%。硝酸活化明显提高催化活性归因于在活化处理的过程中可以引入更多的作为活性中心的酮基/醌基官能团。
     3.采用六次甲基四胺为碳源和氮源通过一种简单的一步水热方法合成出含氮的聚合物和微孔碳材料。合成过程中不添加任何表面活性剂,合成方法具有很高的经济效益,而且可以很容易的进行工业化生产。所合成的碳材料为微孔材料,具有球形的形貌,比表面积可高达568936m~2g~(-1)。所合成的微孔碳材料具有较强的CO_2捕获能力,主要是由于材料中存在很多的含氮官能团和大量的微孔(<10)。在常压条件下,0oC时CO_2的吸附能力可达3.95.6mmol g~(-1),25oC时CO_2的捕获量为2.74.0mmol g~(-1)。另外,将高含氮量的密胺树脂引入到上述酚醛树脂的体系中,结合两种材料的优点,得到具有核壳结构的富氮微孔碳材料。700oC碳化后的样品的氮含量可高达7.92wt%,远高于不含密胺树脂的碳材料的氮含量(2.29wt%)。较多的碱性含氮官能团可以引入更多的化学吸附,提高材料的CO_2吸附性能。蜜胺树脂的引入可以将700oC碳化后的样品的CO_2吸附量由3.4mmol g~(-1)(25oC)提高到4.3mmol g~(-1)(25oC)。
     4.将天然凹凸棒土在不同浓度的盐酸溶液中或者在不同的温度焙烧进行活化处理。以活化前后的凹凸棒土为硬模板,结合有机-有机自组装的软模板方法,合成出具有多级孔结构的纤维状碳材料,并对盐酸处理的浓度和活化处理温度对最终碳材料的结构的影响进行了考察。所合成的碳材料具有较大的比表面积(310892m~2g~(-1))和较大的孔容(0.441.32cm3g~(-1))。考虑到所合成的碳材料具有多级的孔结构和较大的孔径尺寸,对其进行了溶菌酶吸附性能考察,结果显示,所得到的多级结构碳材料对溶菌酶的吸附量可达13.433.1μmol g~(-1)。另外,所合成的多级结构的碳材料在CO_2捕获中也表现出良好的性能,吸附量可达1.102.78mmol g~(-1)。
     5.将共吸附剂引入到二氧化钛的体系中,可以提高其脱色活性。以四氯化钛为无机源,间苯二酚甲醛树脂为碳前躯体,F127为表面活性剂通过无机-有机-有机三元自组装的方法合成出具有多级孔结构的碳-二氧化钛复合材料。其中碳的引入可以抑制二氧化钛晶粒的长大。碳的引入能够增大材料的比表面积,复合材料的比表面积可达156530m~2g~(-1),进而增强二氧化钛的吸附性能,复合材料对染料废水表现出很好的脱色性能。研究发现,复合材料对染料的脱色符合Langmuir吸附等温方程。在较低的染料浓度下,脱色过程符合一级反应动力学方程;较高的染料浓度时,脱色过程更接近准二级反应动力学方程。
Porous carbon materials are now attracting great research interests due to their high thermalstability, extremely large surface area large and chemical inertness. And has been widely used inareas of catalysis, adsorption, hydrogen storage and electrochemistry etc. In this thesis, a seriesof porous carbons and carbon-based nanocomposites with ordered mesoporous structure ormicroporous strucuture were fabricated. These carbons were also functonalized and applied ascatalysts for propane dehydrogenation, adsorbents for CO_2capture and dye decorlorizaiton.
     1. Supermalecular aggregate and assembly is an effective method for synthesis of mesoporouscarbon materials. Ordered mesoporous carbon materials (OMCs) were synthesized with the useof citric acid as an environmentally friendly catalyst to catalyze the polymerization ofresorcinol/formaldehyde resin. The obtained carbon materials with high thermal stability have a2-D hexagonal mesopore system with uniform pore size of~5.2nm and a high surface area of612~851m~2/g, which were available under a wide composition range of reaction system, withreaction temperature of50–80oC and the molar ratio of formaldehyde to citric acid≥3. Thepresence of citric acid in the synthesis system can enhance the hydrogen bonding betweentriblock copolymer and resol and further introduce more micropores to the final carbon material,which is favorable for CO_2adsorption. The nitridation of the OMCs in ammonia flow at thetemperature of650~(-1)000oC is demonstrated to be effective in introducing basic functionalitiesthat enhances the specific interaction of CO_2and adsorbent. The N-doped OMCs exhibitenhanced CO_2uptake with CO_2capture capacity of3.46mmol/g for1000oC-nitrided sample.Both textual and surface chemistry influenced the CO_2capture performance of the resultantmesoporous carbon adsorbents.
     2. Monolithic carbons with ordered mesopores were used as catalyst for dehydrogenation ofpropane to propylene, exhibiting high catalytic activity and stability. After50hours in steam, thepropane conversion of12.1%was observed with propylene selectivity of95.1%in the directdehydrogenation process, while the propane conversion of20.1%with propylene selectivity of25.8%in oxidative dehydrogenation process. It has been found that the surface basic groups controlthe catalytic turnover. Activated with HNO3could dramatically improve the catalytic activity of themesoporous carbon, exhibiting high selectivity and stability. The final propane conversion is22.4%with stable propylene selectivity of86.6%after50hours. HNO3activation introduces more basicoxygen groups than the pristine carbon, which is believed to be active site in the dehydrogenationprocess.
     3. Spherical nitrogen-containing polymer and microporous carbon materials have beensynthesized by using hexamethylenetetramine as nitrogen source and one of the carbonprecursors under solvothermal conditions, without using any surfactant and toxic reagent suchas formaldehyde. The synthesis strategy is cost-effective and can be easily scaled up forproduction. The microporous carbon spheres exhibit high surface areas of528936m~2g~(-1)withmicropore size of0.61.3nm. The synthesized microporous carbons show a good capacity tostore CO_2, which is mainly due to the presence of nitrogen-containing groups and a largeamount of narrow micropores (<1.0nm). At1atm, the equilibrium CO_2capture capacities ofobtained microporous carbons are in the range of3.95.6mmol g~(-1)at0oC and2.74.0mmolg~(-1)at25oC. Core-shell structured nitrogen-rich microporous carbon materials were alsoprepared by introducing the melamine-formaldehyde (MF) resin as co-carbon precursor. Thistype of carbon material contains a large amount of nitrogen-containing groups with the700oC-carbonized sample as high as7.92wt%and consequently basic sites, resulting in a fasteradsorption rate and a higher adsorption capacity (4.3mmol g~(-1)) for CO_2than pure carbonmaterials (3.4mmol g~(-1)) under the same conditions. The potential for large scale productionand facile regeneration makes this material useful for industrial applications.
     4. Mesoporous carbons with specific surface areas in the range of310–892m~2g~(-1), mesoporevolumes in the range of0.40–1.22cm3g~(-1)are prepared by using crude attapulgite, calcinedattapulgite and HCl-treated attapulgite as inorganic templates and resorcinol-formaldehyde resin asthe carbon source through impregnation method. The influences of the calcination temperature andHCl concentration on the pore structure of the resultant carbons are investigated. The results indicatethat the the calcination temperature and the HCl concentration are600oC and4M, respectively, andthe corresponding carbons have the maximum surface areas and mesopore volumes. Adsorption oflosyzyme on the mesoporous carbons in aqueous solution reveals that the equilibrium adsorptioncapacities (qe) are in the range of13.4–33.1μmolg~(-1). It was also found that the monolayeradsorption capacity increased with increasing the accessible specific surface area and the porevolume. The large mesopores and their hierarchical porous structure could facilitate the easydiffusion of protein molecules, and also be responsible for the excellent adsorption capability forproteins. Moreover, the obtained carbons exhibit high CO_2capture capacity of1.102.78mmol g~(-1).
     5. Hierarchical mesoporous carbon-titania nanocomposites with nanocrystal-glass frameworkshave been synthesized via the organic-inorganic-amphiphilic coassembly by using resol polymer as acarbon precursor prehydrolyzed TiCl4as an inorganic precursor, and triblock copolymer F127as atemplate. The carbon-titania nanocomposites with controllable texture properties and compositioncan be obtained in a wide range from0to85wt%TiO_2by adjusting the initial mass ratios. TheC-TiO_2nanocomposites exhibit high thermal stability up to700°C, high surface area of200–355 m~2g~(-1)and hierarchical pore size (5.2nm,6–18nm). Additionally, the nanocomposites show goodperformance in decolorizaiton of Rhodamine B due to the photocatalytic activity of the titaniananocrystals and the strong adsorptive capacity of the porous carbon.
引文
[1] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al. Pure Apply. Chem.,1985,57,603–608.
    [2] R.M. Barer, Syntheses and reactions of mordenite. J. Chem. Soc.,1948,10,2158–2163.
    [3] S.T. Wilson, B.M. Lok, E.M. Flanigen, U. S. Patent4,1982,310,440.
    [4] F.S. Xiao, S.L. Qiu, W.Q. Pang, New developments in microporous materials. Adv. Mater.1999,11,1091–1099.
    [5] K. Kunnii, K. Narahara, S. Yamanaka, Template-free synthesis of AlPO4-H1-H2and H3by microwaveheating. Micropor. Mesopor. Mater.,2002,52,159–167.
    [6] K. Miura, J. Hayashi, K. Hashimoto, Production of molecular sieving carbon through carbonization ofcoal modified by organic additives. Carbon,1991,29,653–660.
    [7] H. Nakagawa, K. Watanabe, Y. Harada, et al. Control of micropore formation in the carbonized ionexchange resin by utilizing pillar effect. Carbon,1999,37,1455–1461.
    [8] J.S. Bae, S.K. Bhatia, High-pressure adsorption of methane and carbon dioxide on coal. Energy Fuels,2006,20,2599–2601.
    [9] S. Himeno, T. Komatsu, S.J. Fujita, High-pressure adsorption equilibria of methane and carbondioxide on several activated carbons. Chem. Eng. Data,2005,50,369–376.
    [10] M.G. Plaza, S. García, F. Rubiera, et al. Post-combustion CO2capture with a commercial activatedcarbon: Comparison of different regeneration strategies. Chem. Eng. J.,2010,163,41–47.
    [11] T.C. Drage, J.M. Blackman, C. Pevida, et al. Evaluation of activated carbon adsorbents for CO2capture in gasification. Energy Fuels,2009,23,2790–2796.
    [12] T. Kyotani, T. Nagai, S. Inoue, et al. Formation of new type of porous carbon by carbonization inzeolite nanochannels. Chem. Mater.,1997,9,609–615.
    [13] J. Rodriguez-Miraso, T. Cordero, L.R. Radiovic, et al. Structural and textural properties of pyrolyticcarbon formed within a microporous zeolite template. Chem. Mater.,1998,10,550–558.
    [14] S.A. Johnson, E.S. Brigham, P.J. Olliver, et al. Effect of micropore topology on the structure andproperties of zeolite polymer replicas. Chem. Mater.,1997,9,2448–2458.
    [15] Z.X. Ma, T. Kyotani, A. Tomita, Preparation of a high surface area microporous carbon having thestructural regularity of Y zeolite. Chem. Commun.,2000,2365–2366.
    [16] Z.X. Ma, T. Kyotani, Z. Liu, et al. Very high surface area microporous carbon with athree-dimensional nano-array structure: synthesis and its molecular structure. Chem. Mater.,2001,13,4413–4415.
    [17] T. Kyotani, Z. Ma, A. Tomita, Template synthesis of novel porous carbons using various types ofzeolites. Carbon,2003,41,1451–1459.
    [18] P.-X. Hou, H. Orikasa, T. Yamazaki, et al. Synthesis of nitrogen-containing microporous carbon witha highly ordered structure and effect of nitrogen doping on H2O adsorption. Chem. Mater.,2005,17,5187–5193.
    [19] J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organicframeworks. Chem. Soc. Rev.,2009,38,1477–1504.
    [20] R. Banerjee, H. Furukawa, D. Britt, et al. Control of pore size and functionality in isoreticular zeoliticImidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem. Soc.,2009,131,3875–3877.
    [21] S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metalsubstitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc.,2008,130,10870–10871.
    [22] A. Demessence, D.M. D’Alessandro, M.L. Foo, et al. Strong CO2binding in a water-stable,triazolate-bridged metal organic framework functionalized with ethylenediamine. J. Am. Chem. Soc.,2009,131,8784–8785.
    [23] B.L. Chen, N.W. Ockwig, A.R. Millward, et al. Strategies for hydrogen storage in metal-organicframeworks. Angew. Chem. Int. Ed.,2005,44,4745–4749.
    [24] N.L. Rosi, J. Kim, M. Eddaoudi, et al. Rod packings and metal organic frameworks constructedfrom rod-shaped secondary building units. J. Am. Chem. Soc.,2005,127,1504–1518
    [25] H.K. Chae, D. Siberio-Pérez, Y. J. Kim, et al. A route to high surface area, porosity and inclusion oflarge molecules in crystals. Nature,2004,427,523–527.
    [26]徐如人,庞文琴等.分子筛与多孔材料化学.北京:科学出版社,2004:619–633.
    [27] J.S. Beck, J.C. Vartuli, W.J. Roth, et al. A New Family of Mesoporous Molecular Sieves Preparedwith Liquid Crystal Templates. J. Am. Chem. Soc.,1992,114,10834–10843.
    [28] A. Monnier, F. Schuth, Q.S. Hou, et al. Cooperative formation of inorganic-organic interfaces in thesynthesis of silicate mesostructures. Science,1993,261,1299–1303.
    [29] J.N. Israelachvili, D.J. Mitchell, B.W. Ninham. Theory of self-assembly of hydrocarbon amphiphilesinto micelles and bilayers. J. Chem.Soc.Faraday Trans.Ⅱ.1976,72,1525–1568.
    [30] D. Mitchell, B. W. Ninham. Micelles, vesicles and microemulsions. J. Chem. Soc. Faraday Trans.Ⅱ.,1981,77,601–629.
    [31] Y. Wan, Y.F. Shi, D.Y. Zhao, Designed Synthesis of Mesoporous Solids viaNonionic-Surfactant-Templating Approach. Chem. Commun.,2007,9,897–926.
    [32] D.Y. Zhao, J.L. Feng, Q.S. Huo, et al. Triblock copolymer syntheses of mesoporous silica withperiodic50to300angstrom pores. Science,1998,2,548–552.
    [33] D.Y. Zhao, Q.S. Huo, J.L. Feng, et al. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am.Chem. Soc.,1998,120,6024–6036.
    [34] J. Fan, C.Z. Yu, T. Gao, et al. Cubic mesoporous silica with large controllable entrance sizes andadvanced adsorption properties. Angew. Chem. Int. Ed.,2003,42,3146–3150.
    [35] J. Fan, C.Z. Yu, J. Lei, et al. Low-temperature strategy to synthesize highly ordered mesoporoussilicas with very large pores. J. Am Chem. Soc.2005,127,10794–10795.
    [36] S.D. Shen, A.E. Garcia-Bennett, Z. Liu, et al. Three-dimensional low symmetry mesoporous silicastructures templated from tetra-headgroup rigid bolaform quaternary ammonium surfactant. J. AmChem. Soc.,2005,127,6780–6787.
    [37] S. Jun, S.H. Joo, R. Ryoo, et al. Synthesis of mesoporous silicas of controlled pore wall thickness andtheir replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc.,2000,122,10712–10713.
    [38] R. Ryoo, S. H. Joo, M. Kruk, et al. Ordered mesoporous carbons, Adv. Mater.,2001,13,677–680.
    [39] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J. Phys. Chem. B,1999,103,7743–7746.
    [40] S.S. Kim, W.Z. Zhang, T.J. Pinnavaia, Ultrastable mesoporous silica vesicles. Science,1998,282,1302-1305.
    [41] S.S. Kim, T.R. Pauly, T.J. Pinnavaia, Non-ionic surfactant assembly of ordered, very large poremolecular sieve silicas from water soluble silicates. Chem.Commun.,2000,1661–1662.
    [42] F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.,2003,2136–2137.
    [43] T.W. Kim, F. Kleitz, B. Paul, et al. MCM-48-like large mesoporous silicas with tailored pore structure:Facile synthesis domain in a ternary triblock copolymer-butanol-water system. J. Am Chem. Soc.,2005,127,7601–7610.
    [44] D. Grosso, F. Cagnol, G. Soler-Illia, et al. Fundamentals of mesostructuring throughevaporation-induced self-assembly. Adv. Funct. Mater.,2004,14,309–322.
    [45] Q. Huo, D. Margolese, U. Ciesla, et al. Generalized synthesis of periodic surfactant/inorganiccomposite materials. Nature,1994,368,317–321.
    [46] D.M. Antonelli, J.Y. Ying, Synthesis of hexagonally packed mesoporous TiO2by a modified sol-gelmethod. Angew.Chem.Int.Ed. Engl.,1995,34,2014–2020.
    [47] D.M. Antonelli, J.Y. Ying, Synthesis of a stable hexagonally packed mesoporous niobium oxidemolecular sieve through a novel ligand-assisted templating mechanism. Angew. Chem. Int. Ed. Engl.,1996,35,426–430.
    [48] P. Yang, D. Zhao, D.I. Margolese, et al. Generalized syntheses of large-pore mesoporous metal oxideswith semicrystalline frameworks. Nature,1998,396,152–155.
    [49] B.Z. Tian, X.Y. Liu, B. Tu, et al. Self-adjusted synthesis of ordered stable mesoporous minerals byacid–base pairs. Nat. Mater.2003,2,159–163.
    [50] O.D. Velev, A.M. Lenhoff, Colloidal crystals as templates for porous materials. Current Opinion inColloid&Interface Sci.,2000,5,56–63.
    [51] X.Q. Chen, Z.S. Li, J.H. Ye, et al. Forced Impregnation Approach to Fabrication of Large-Area,Three-Dimensionally Ordered Macroporous Metal Oxides. Chem. Mater.,2010,22,3583–3585.
    [52] O. D. Velev, A. M. Lenhoff, Colloidal crystals as templates for porous materials. Curr. Opin. ColloidInterface Sci.,2000,5,56–62.
    [53] T.Y. Ma, Z.Y. Yuan, J.L. Cao. Eur. Hydrangea-like meso-/macroporous ZnO-CeO2binary oxidematerials: synthesis, photocatalysis and CO oxidation. J. Inorg. Chem.,2010,20,716–724.
    [54] W. Ogasawara, W. Shenton, S.A. Davis, et al. Template mineralization of ordered macroporouschitin-silica composites using a cuttlebone-derived organic matrix. Chem. Mater.,2000,12,2835–2837.
    [55] R. Seshadri, F.C. Meldrum, Bioskeletons as templates for ordered, macroporous structures. Adv.Mater.,2000,12,1149–1151.
    [56] Z.T. Liu, T.X. Fan, W. Zhang, et al. The synthesis of hierarchical porous iron oxide with woodtemplates. Microporous Mesoporous Materials,2005,85,82–88.
    [57] X.H. Sun, C.M. Zheng, M.Q. Qiao, et al. Bioinspired synthesis of hierarchical macro-mesoporoustitania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chem.Commun.,2009,31,4750–4752.
    [58] J.H. Knox, B. Kaur, G.R. Millward, Structure and performance of porous graphitic carbon in liquidchromatography. J. Chromatogr. A,1986,352,3–25.
    [59] J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater.,2006,18,2073–2094.
    [60] H.Tamai, T. Kakii, Y. Hirota, et al. Synthesis of extremely large mesoporous activated carbon and itsunique adsorption for giant molecules. Chem. Mater.,1996,8,454–462.
    [61] R.W. Pekala, F.M. Kong Resorcinol-formaldehyde aerogels and their carbonized derivatives.Polymer Preprints,1989,30,221–223.
    [62] T. Horikawa, J. Hayashi, K. Muroyama, Controllability of pore characteristics ofresorcinol-formaldehyde carbon aerogels. Carbon,2004,42,1625–1633.
    [63] S. Zhang, R. Fu, D. Wu, et al. Preparation and characterization of antibacterial silver-dispersedactivated carbon aerogels. Carbon,2004,42,3209–3216.
    [64] D. Wu, R. Fu, S. Zhang, et al. Preparation of low-density carbon aerogels by ambient pressure drying.Carbon,2004,42,2033-2039.
    [65] R. Zhang, Y. Lu, L. Zhan, et al. Momolithic carbon aerogels from sol-gel polymerization of phenolicresoles and methylloaded melamine. Carbon,2003,41,1660–1663.
    [66] R. Zhang, W. Li, K. Li, et al. Effect of concentration of reactants on porosity of hydrogels, organiccarbon aerogels. Micropor. Mesopor. Mater.,2004,72,167–173.
    [67] T. Horikawa, J. Hayashi, K. Muroyama, Size control and charaeterization of spherieal carbon aerogelparticles from resorcinol-formaldehyde resin. Carbon,2004,42,169–175.
    [68] S. J. Han, K. K. Sohn, T. Hyeon, Fabrication of new nanoporous carbons through silica templates andtheir spplication to the sdsorption of bulky dyes. Chem. Mater.,2000,12,3337–3341.
    [69] S.H. Joo, S.J. Choi, I. Oh, et al. Ordered Nanoporous arrays of carbon supporting high dispersions ofplatinum nanoparticles. Nature,2001,412,169–172.
    [70] J. Lee, S. Yoon, T. Hyeon, et al. Synthesis of a new mesoporous carbon and its application toelectrochemical double-layer capacitors. Chem. Commun.,1999,2177–2178.
    [71] A. Lu, A. Kiefer, W. Schmidt, et al. Synthesis of polyacrylonitrile-based ordered mesoporous carbonwith tunable pore structures. Chem. Mater.,2004,16,100–103.
    [72] C.M. Yang, C. Weidenthaler, B. Spliethoff, et al. Facile template synthesis of ordered mesoporouscarbon with polypyrrole as carbon precursor. Chem. Mater.,2005,17,355–358.
    [73] R. Ryoo, S.H. Joo, S. Jun, et al. Ordered mesoporous carbon molecular sieves by templated synthesis:structural varieties. Stud. Surf. Sci. Catal.,2001,135,150–158.
    [74] S.S. Kim, T.J. Pinnavaia, A low cost route to hexagonal mesostruetured carbon molecular sieves.Chem. Commun.,2001,2418–2419.
    [75] S. Che, K. Lund, T. Tatsumi, et al. Direct observation of3D mesoporous structure by scanningelectron microscopy (SEM): SBA-15silica and CMK-5carbon. Angew. Chem. Int. Ed.,2003,42,2182–2185.
    [76] M. Kruk, M. Jaroniec, T. W. Kim, et al. Synthesis and characterization of hexagonally ordered carbonnanopipes. Chem. Mater.,2003,15,2815–2823.
    [77] J. Lee, S. Yoon, S.M. Oh, et al. Development of a new mesoporous carbon using an HMSaluminosilicate template. Adv. Mater.,2000,12,359–362.
    [78] S.S. Kim, T.J. Pinnavaia, A low cost route to hexagonal mesostruetured carbon molecular sieves.Chem. Commun.,2001,2418–2419.
    [79] J.S. Lee, S.H. Joo, R. Ryoo, Synthesis of Mesoporous silicas of controlled pore wall thickness andtheir replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc.,2002,124,1156–1157.
    [80] F. Chen, X.J. Xu, S. Shen, et al. Microporosity of SBA-3mesoporous molecular sieves. Micropor.Mesopor. Mater.,2004,75,231–235.
    [81] B. Tian, S. Che, Z. Liu, et al. Novel approaches to synthesize self-supported ultrathin carbonnanowire arrays templated by MCM-41. Chem. Commun.,2003,2726–2727.
    [82] T.W. Kim, I.S. Park, R. Ryoo, A synthetic route to ordered mesoporous carbon materials withgraphitic pore walls. Angew. Chem. Int. Ed.,2003,42,4375–4379.
    [83] C.H. Kim, D.K. Lee, T.J. Pinnavaia, Graphitic mesostructured carbon prepared from aromaticprecursors. Langmuir,2004,20,5157–5159.
    [84] S. Che, A.E. Garcia-Bennett, X. Liu, et al. Synthesis of large-pore Ia3d mesoporous silica and its tubelike Carbon Replica. Angew. Chem. Int. Ed.,2003,42,3930–3934.
    [85] F. Kleitz, S.H. Choi, R. Ryoo Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.,2003,2136–2137.
    [86] J. Fan, C. Yu, F. Gao, et al. Cubic mesoporous silica with large controllable entrance sizes andadvanced adsorption properties. Angew. Chem. Int. Ed.,2003,42,3146–3150.
    [87] T. W. Kim, R. Ryoo, K. P. Gierszal, et al. Characterization of mesoporous carbons synthesized withSBA-16silica template. J. Mater. Chem.,2005,15,1560–1571.
    [88] I. Moriguchi, A. Ozono, K. Mikuriya, et al. Micelle-templated mesophases of phenol-formaldehydepolymer. Chem. Lett.,1999,1171–1172.
    [89] K.T. Lee, S.M. Oh, Novel synthesis of porous carbons with tunable pore size by surfactant-templatedsol-gel process and carbonization. Chem. Commun.,2002,2722–2723.
    [90] C. Liang, K. Hong, G.A. Guiochon, et al. Synthesis of a large-scale highly ordered porous carbonfilm by self-assembly of block copolymers. Angew. Chem. Int. Ed.,2004,43,5785–5789.
    [91] S. Tanaka, N. Nishiyama, Y. Egashira, et al. Synthesis of ordered mesoporous carbons with channelstructure from an organic–organic nanocomposite. Chem. Commun.,2005,2125–2127.
    [92] C. Liu, L. Li, H. Song, et al. Facile synthesis of ordered mesoporous carbons fromF108/resorcinol-formaldehyde composites obtained in basic media. Chem. Commun.,2007,757–759.
    [93] C. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bondinginteraction. J. Am. Chem. Soc.,2006,128,5316–5317.
    [94] Y. Meng, D. Gu, F. Zhang, et al. Ordered mesoporous polymers and homologous carbon frameworks,amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed.,2005,44,7053–7059.
    [95] Y. Meng, D. Gu, F. Zhang, et al. A family of highly ordered mesoporous polymer resin and carbonstructures from organic-organic self-assembly. Chem. Mater.,2006,18,4447–4464.
    [96] Y. Huang, H.Q. Cai, T. Yu, et al. Formation of mesoporous carbon with a face-centered-cubic Fd3mstructure and bimodal architectural pores from the reverse amphiphilic triblock copolymerPPO-PEO-PPO. Angew. Chem. Int. Ed.,2007,46,1089–1093.
    [97] F. Zhang, Y. Meng, D. Gu, et al. A facile aqueous route to synthesize highly ordered mesoporouspolymers and carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc.,2005,127,13508–13509.
    [98] Y. Meng, D. Gu, F. Zhang, et al. An aqueous cooperative assembly route to synthesize orderedmesoporous carbons with controlled structures and morphology. Chem. Mater.,2006,18,5279–5288.
    [99] Y. Huang, J. Yang, H. Cai, et al. A curing agent method to synthesize ordered mesoporous carbonsfrom linear novolac phenolic resin polymers. J. Mater. Chem.,2009,19,6536–6541.
    [100] X.Q. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermalstability by self–assembly of resorcinol–formaldehyde and block copolymers under highly acidicconditions. Langmuir,2008,24,7500–7505.
    [101] Y. Huang, H.Q. Cai, D. Feng, et al. One step hydrothermalsynthesis of ordered mesostructuredcarbonaeeous monoliths with hierarehical porosities. Chem. Commun.,2008,2641–2643.
    [102] Y. Huang, H.Q. Cai, T. Yu, et al. Highly ordered mesoporous carbonaceous frameworks templatedfrom mixed amphiphilie triblock copolymer system of PEO-PPO-PEO and reverse PPO-PEO-PPO.Chem. Asian J.,2007,2,1282–1289.
    [103] J. Lee, K. Sohn, T. Hyeon, Fabrication of novel mesocellular carbon foams with uniform ultralargemesopores. J. Am. Chem. Soc.,2001,123,5146–5147.
    [104] Y. Oda, K. Fukuyama, K. Nishkawa, et al. Mesocellular foam carbons: aggregates of hollow carbonspheres with open and closed wall structures. Chem. Mater.,2004,16,3860–3866.
    [105] Z. Li, M. Jaroniec, Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. J.Am. Chem. Soc.,2001,123,9208–9209.
    [106] Z. Li, M. Jaroniec, Mesoporous carbons synthesized by imprinting ordered and disordered porousstructures of silica particles in mesophase pitch. J. Phys. Chem. B,2004,10,824–826.
    [107] Z. Lei, Y. Xiao, L. Dang, et al. Fabrication of ultra-large mesoporous carbon with tunable pore sizeby monodisperse silica particles derived from seed growth process. Micropor. Mesopor. Mater.,2006,96,127–134.
    [108] Y. Meng, T. Yu, Y. Wan, et al. Ordered mesoporous silicas and carbons with large accessible porestemplated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene. J. Am. Chem.Soc.,2007,129,1690–1697.
    [109] J. Zhang, Y. Deng, J. Wei, et al. Design of amphiphilic ABC triblock copolymer for templatingsynthesis of large-pore ordered mesoporous carbons with tunable pore wall thickness. Chem. Mater.,2009,21,3996–4000.
    [110] L. Liu, F.Y. Wang, G.S. Shao, et al. Synthesis of ultra-large mesoporous carbons from triblockcopolymers and phloroglucinol/formaldehyde polymer. Carbon,2010,48,2660–2664.
    [111] A.A. Zakhidov, R.H. Baughman, Z. Iqbal, et al. Carbon structures with three-dimensionalperiodicity at optical wavelengths. Science1998,282,897–901.
    [112] Z. Wang, F. Li, N.S. Ergang, et al. Effects of hierarchical architecture on electronic and mechanicalproperties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chem. Mater.,2006,18,5543–5553.
    [113] G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporouswalls templated by qggregates of polystyrene spheres and silica particles for use as catalyst supportsin direct methanol fuel cells. Adv. Mater.,2004,16,2057–2061.
    [114] Y. Deng, C. Liu, T. Yu, et al. Facile synthesis of hierarchically porous carbons from dual colloidalcrystal/block copolymer template approach. Chem. Mater.,2007,19,3271–3277.
    [115] Y. Wan, X.F. Qian, N.Q. Jia, et al. Direct triblock-copolymer-templating synthesis of highly orderedfluorinated mesoporous carbon. Chem. Mater.,2008,20,1012–1018.
    [116] X.Q. Wang, J.S. Lee, Q. Zhu, et al. Ammonia-treated ordered mesoporous carbons as catalyticmaterials for oxygen reduction reaction. Chem. Mater.,2010,22,2178–2180.
    [117] X.C. Zhao, A.Q. Wang, J.W. Yan, et al. Synthesis and electrochemical performance ofheteroatom-incorporated ordered mesoporous carbons. Chem. Mater.,2010,22,5463–5473.
    [118] Z.X. Wu, P.A. Webley, D.Y. Zhao, Comprehensive study of pore evolution, mesostructural stability,and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wetoxidation as a promising adsorbent. Langmuir,2010,26,10277–10286.
    [119]R. Xing, Y.M. Liu, Y. Wang, et al. Active solid acid catalysts prepared by sulfonation ofcarbonization-controlled mesoporous carbon materials. Microporous Mesoporous Mater.,2007,105,41–48.
    [120] R. Xing, N. Liu, Y.M. Liu, et al. Novel solid acid catalysts: sulfonic acid group-functionalizedmesostructured polymers. Adv. Funct. Mater.,2007,17,2455–2461.
    [121] L. Peng, A. Philippaerts, X. Ke, et al. Preparation of sulfonated ordered mesoporous carbon and itsuse for the esterification of fatty acids. Catal. Today,2010,150,140–146.
    [122] J. Janaun, N. Ellis, Role of silica template in the preparation of sulfonated mesoporous carboncatalysts. Appl. Catal. A: General,2011,394,25–31.
    [123] X.Q. Wang, R. Liu, M.M. Waje, et al. Sulfonated ordered mesoporous carbon as a stable and highlyactive protonic acid catalyst. Chem. Mater.2007,19,2395–2397.
    [124] R. Liu, X.Q. Wang, X. Zhao, et al. Sulfonated ordered mesoporous carbon for catalytic preparationof biodiesel. Carbon,2008,46,1664–1669.
    [125]Z.X. Wu, N. Hao, G.K. Xiao, et al. One-pot generation of mesoporous carbon supportednanocrystalline calcium oxides capable of efficient CO2capture over a wide range of temperatures.Phys. Chem. Chem. Phys.,2011,13,2495–2503.
    [126] Q. Li, J. Xu, Z.X. Wu, et al. Facile synthesis of highly stable and well-dispersed mesoporousZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Phys.Chem. Chem. Phys.,2010,12,10996–11003.
    [127] Y.P. Zhai, Y. Dou, X. Liu, et al. Soft-template synthesis of ordered mesoporous carbon/nanoparticlenickel composites with a high surface area. Carbon,2011,49,545–555.
    [128] L. She, J. Li, Y. Wan, et al. Synthesis of ordered mesoporous MgO/carbon composites by a one-potassembly of amphiphilic triblock copolymers. J. Mater. Chem.,2011,21,795–800.
    [129] X.F. Qian, Y. Wan, Y.L. Wen, et al. Synthesis of ordered mesoporous crystalline carbon-anatasecomposites with high titania contents. J. Colloid Interface Sci.,2008,328,367–373.
    [130] R. Liu, Y. Ren, Y. Shi, et al. Controlled synthesis of ordered mesoporous C-TiO2nanocompositeswith crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem. Mater.,2008,20,1140–1146.
    [131] F. Zhang, D. Gu, T. Yu, et al. Mesoporous carbon single-crystals from organic-organic self-assembly.J. Am. Chem. Soc.,2007,129,7746–7747.
    [132] D. Gu, H. Bongard, Y. Meng, et al. Growth of single-crystal mesoporous carbons with Im3msymmetry. Chem. Mater.,2010,22,4828–4833.
    [133] T. Kyotani, L.F. Tsai, A. Tomita, Preparation of ultrafine carbon tubes in nanochannels of an anodicaluminum oxide film. Chem. Mater.1996,8,2109–2113.
    [134] A.T. Rodriguez, M. Chen, Z. Chen, et al. Nanoporous carbon nanotubes synthesized throughconfined hydrogen-bonding self-assembly. J. Am. Chem. Soc.,2006,128,9276–9277.
    [135] M.B. Zheng, J.M. Cao, X.F. Ke, et al. One-step synthesis of new mesoporous carbon nanofibersthrough an easy template method. Carbon,2007,45,1111–1113.
    [136] S. Martin, C. Liang, G.W. Lynn, et al. Direct synthesis of mesoporous carbon microwires andnanowires. Chem. Mater.,2007,19,2383–2385.
    [137] K. Wang, G. Birjukovs, D. Erts, et al. Synthesis and characterisation of ordered arrays ofmesoporous carbon nanofibres. J. Mater. Chem.,2009,19,1331–1338.
    [138] Y. Yan, F. Zhang, Y. Meng, et al. One-Step Synthesis of ordered mesoporous carbonaceous spheresby an aerosol-assisted self-assembly. Chem. Commun.,2007,2867–2869.
    [139] Q. Li, R.R. Jiang, Y.Q. Dou, et al. Synthesis of mesoporous carbon spheres with a hierarchical porestructure for the electrochemical double-layer capacitor. Carbon,2011,49,1248–1257.
    [140] Y. Fang, D. Gu, Y. Zou, et al. A low-concentration hydrothermal synthesis of biocompatibleordered mesoporous carbon nanospheres with tunable and uniform size. Angew. Chem. Int. Ed.,2010,49,7987–7991.
    [141] S.B. Yoon, K. Sohn, J.Y. Kim, et al. Fabrication of carbon capsules with hollow macroporouscore/mesoporous shell structures. Adv. Mater.,2002,14,19–21.
    [142] Y.S. Hu, P. Adelhelm, B.M. Smarsly, et al. Synthesis of hierarchically porous carbon monoliths withhighly ordered microstructure and their application in rechargeable lithium batteries with high-ratecapacity. Adv. Funct. Mater.,2007,17,1873–1878.
    [143] S. Ramirez, D. Ferreira, V. Gottbery, et al. Adding a micropore framework to a parent activatedcarbon by carbon deposition from methane or ethylene. Carbon,2003,41,2653–2655.
    [144] Z. Shi, Y. Feng, L. Xu, et al. Facile synthesis of carbon monolith with bimodal mesopores. Mater.Chem. Phys.,2006,97,472–475.
    [145] L. Wang, S. Lin, K. Lin, et al. A facile synthesis of highly ordered mesoporous carbon monolithwith mechanically stable mesostructure and superior conductivity from SBA-15powder. Micropor.Mesopor. Mater.,2005,85,136–139.
    [146] L. Wang, Y. Zhao, K. Lin, et al. Carbon with high thermal conductivity, prepared fromribbon-shaped mesosphase pitch-based fibers. Carbon,2006,44,1298–1301.
    [147] A. Lu, J. H. Smatt, M. Lindén, Combined surface and volume templating of highly porous nanocastcarbon monoliths. Adv. Funct. Mater.,2005,15,865–871.
    [148] Z. Wang, F. Li, N.S. Ergang, et al. Effects of hierarchical architecture on electronic and mechanicalproperties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chem. Mater.,2006,18,5543–5553.
    [149] A. Taguchi, J.H. Smatt, M. Liden, Carbon monoliths possessing a hierarchical, fully interconnectedporosity. Adv. Mater.,2003,15,1209–1211.
    [150] M. Jaroniec, J. Choma, J. Gorka, et al. Colloidal silica templating synthesis of carbonaceousmonoliths assuring formation of uniform spherical mesopores and incorporation of inorganicnanoparticles. Chem. Mater.,2008,20,1069–1075.
    [151] H. Yang, Q. Shi, X. Liu, et al. Synthesis of ordered mesoporous carbon monoliths with bicontinuouscubic pore structure of Ia3d symmetry. Chem. Commun.,2002,2842–2843.
    [152] X. Wang, K. N. Bozhilov, P. Feng, Facile preparation of hierarchically porous carbon monolithswith well-ordered mesostructures. Chem. Mater.,2006,18,6373–6381.
    [153] Y. Xia, R. Mokaya, Ordered mesoporous carbon monoliths: CVD nanocasting and hydrogen storageproperties. J. Phys. Chem. C,2007,111,10035–10039.
    [154] W. Li, A. Lu, F. Schuth, Preparation of monolithic carbon aerogels and investigation of their poreinterconnectivity by a nanocasting pathway. Chem. Mater.,2005,17,3620–3626.
    [155] K.T. Lee, J.C. Lytle, N.S. Ergang, et al. Synthesis and rate performance of monolithic macroporouscarbon electrodes for lithium-ion secondary batteries. Adv. Funct. Mater.,2005,15,547–556.
    [156] B.Z. Tian, X.Y. Liu, L.A. Solovyov, et al. Facile synthesis and characterization of novel mesoporousand mesorelief oxides with gyroidal structures. J. Am. Chem. Soc.,2004,126,865–875.
    [157] Y. Huang, H.Q. Cai, D. Feng, et al. One step hydrothermal synthesis of ordered mesostructuredcarbonaeeous monoliths with hierarehical porosities. Chem. Commun.,2008,2641–2643.
    [158] A. Arenillas, K.M. Smith, T.C. Drage, et al. CO2capture using some fly ash-derived carbonmaterials. Fuel2005,84,2204–2210.
    [159] M.G. Plaza, C. Pevida, A. Arenillas, et al. CO2capture by adsorption with nitrogen enrichedcarbonsFuel,2007,86,2204–2212.
    [160] T.C. Drage, A. Arenillas, K.M. Smith, et al. Preparation of carbon dioxide adsorbents from thechemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel,2007,86,22–31.
    [161] G.P. Hao, W.C. Li, D. Qian, et al. Rapid synthesis of nitrogen-doped porous carbon monolith forCO2capture. Adv. Mater.,2010,22,853–857
    [162] B. Stohr, H.P. Boehm, R. Schlogl, Enhancement of the catalytic activity of activated carbons inoxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of asuperoxide species as a possible intermediate. Carbon1991,29,707–714.
    [163] H.P. Boehm, G. Mair, T. Stoehr, et al. Carbon as a catalyst in oxidation reactions and hydrogenhalide elimination reactions. Fuel1984,63,1061–1067.
    [164] C. Pevida, M.G. Plaza, B. Arias, et al. Surface modification of activated carbons for CO2capture.Appl. Surf. Sci.,2008,254,7165–7172.
    [165] M.G. Plaza, F. Rubiera, J.J. Pis, et al. Ammoxidation of carbon materials for CO2capture. Appl.Surf. Sci.,2010,256,6843–6849.
    [166] G. Chandrasekar, W.J. Son, W.S. Ahn, Synthesis of mesoporous materials SBA-15and CMK-3from fly ash and their application for CO2adsorption. J. Porous Mater.,2009,16,545–551.
    [167] K.S. Xia, Q.M Gao, C.D. Wu, et al. Activation, characterization and hydrogen storage properties ofthe mesoporous carbon CMK-3. Carbon,2007,45,1989–1996.
    [168] H.L. Wang, Q.M. Gao, J. Hu, High hydrogen storagecapacity of porous carbons prepared by usingactivatedcarbon. J. Am. Chem. Soc.,2009,131,7016–7022.
    [169] Y. Xia, G.S. Walker, D. M. Grant, et al. Hydrogen storage in high surface area carbons:Experimental demonstration of the effects of nitrogen doping. J. Am. Chem. Soc.2009,131,16493–16499.
    [170] H.S. Zhou, S.M. Zhu, I. Honma, et al. Methane gas storage in self-ordered mesoporous carbon(CMK-3). Chem. Phys. Lett.,2004,396,252–255.
    [171] F. Adib, A. Bagreev, T.J. Bandosz, Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons. Langmuir,2000,16,1980–1986.
    [172] I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, et al. Removal of SOx and Noxover activated carbon fibers. Carbon,2000,38,227–239.
    [173] A. Bagreev, A. Menendez, I. Dukhno, et al. Bituminous coal-based activated carbons modified withnitrogen as adsorbents of hydrogen sulfide. Carbon,2004,42,469–476.
    [174] A. Vinu, M. Miyahara, T. Mori, et al. Carbon nanocage: a large-pore cage-type mesoporous carbonmaterial as an adsorbent for biomolecules. J. Porous Mater.,2006,13,379–383.
    [175] K. Ariga. A. Vinu, M. Miyahara, et al. One-pot separation of tea components through selectiveadsorption on pore engineering nanocarbon. J. Am. Chem. Soc.,2007,129,11022–11023.
    [176] A. Vinu, K.Z. Hossain, G.S. Kumar, et al. Adsorption of L-histidine over mesoporous carbonmolecular sieves. Carbon,2006,44,530–536.
    [177] A. Vinu, K.Z. Hossian, P. Srinivasu, et al. Carboxy-mesoporous carbon and its excellent adsorptioncapability for proteins. J. Mater. Chem.,2007,17,1819–1825.
    [178] J.T. Li, B.L. Li, H.C. Wang, et al. A wormhole-structured mesoporous carbon with superioradsorption of dyes. Carbon,2011,49,1912–1918.
    [179] X. Zhuang,Y. Wan, C.M. Feng, et al. Highly Efficient Adsorption of Bulky Dye Molecules inWastewater on Ordered Mesoporous Carbons. Chem. Mater.,2009,21,706–716.
    [180] L.M. Guo, L.X. Zhang, J.M. Zhang, et al. Hollow mesoporous carbon spheres-an excellent bilirubinadsorbent. Chem. Commun.,2009,6071–6073.
    [181] P. Valle-Vigón, M. Sevilla, A.B. Fuertes. Synthesis of uniform mesoporous carbon capsules bycarbonization of organosilica nanospheres. Chem. Mater.,2010,22,2526–2533.
    [182] A. Vinu, C. Streb, V. Murugesan, et al. Adsorption of cytochrome C on new mesoporous carbonmolecular sieves. J. Phys. Chem. B2003,107,8297–8299.
    [183] B.Z. Fang, J.H. Kim, C. Lee, et al. Hollow macroporous core/mesoporous shell carbon with atailored structure as a cathode electrocatalyst support for proton exchange membrane fuel cells. J.Phys. Chem. C,2008,112,639–645.
    [184] Z.Y. Wang, F. Li, N.S. Ergang, et al. Effects of hierarchical architecture on electronic andmechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites.Chem. Mater.,2006,18,5543–5553.
    [185] D. Carriazo, F. Picó, M.C. Gutiérrez, et al. Block-copolymer assisted synthesis of hierarchicalcarbon monoliths suitable as supercapacitor electrodes. J. Mater. Chem.,2010,20,773–780.
    [186] J.H. Jang, S. Han, T. Hyeon, et al. Electrochemical capacitor performance of hydrous rutheniumoxide/mesoporous carbon composite electrodes. J. Power Sources.,2003,123,79–85.
    [187] R.L. Liu, Y.F. Shi, Y. Wan, et al. Triconstituent co-assembly to ordered mesostructuredpolymer silica and carbon silica nanocomposites and large-pore mesoporous carbons with highsurface areas. J. Am. Chem. Soc.,2006,128,11652–11662.
    [188] A.S. Yu, R. Frech, Mesoporous tin oxides as lithium intercalation anode materials. J. Power Sources,2002,104,97–100.
    [189] J. Fan, T. Wang, C.Z. Yu, et al. Ordered nanostructured tin-based oxides/carbon composite asthenegative-electrode material for lithium-ion batteries. Adv. Mater.,2004,16,1432–1438.
    [190] G.S. Chai, I.S. Shin, J.S. Yu, Synthesis of ordered, uniform, macroporous carbons with mesoporouswalls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supportsin direct methanol fuel cells. Adv Mater,2004,16,2057–2061.
    [191] H.J. Liu, X.M. Wang, W.J. Cui, et al. Highly ordered mesoporous carbon nanofiber arrays from acrab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem,2010,20,4223–4230.
    [192] A. Kay, M. Gr tzel, Assessment of the dye-sensitized solar cell, renewable and sustainable energyreviews. Solar Energy Materials and Solar Cells,1996,44,99–117.
    [193] K.X. Li, Z.X. Yu, Y.H. Luo, et al. Recent progress of counter electrodes in nanocrystallinedye-sensitized solar cells. J. Mater.Sci. Tech.,2007,23,577–582.
    [194] T.N. Murakami, S. Ito, Q. Wang, et al. Highly efficient dye-sensitized solar cell based on carbonblack count electrodes. J. Electro. Soc.,2006,153, A2255–A2261.
    [195] Z. Huang, X.Z. Liu, K.X. Li, et al. Application of carbon materials as counter electrodes ofdye-sensitized solar cells. Electro. Commun.,2007,9,596–598.
    [196] J.K. Chen, K.X. Li, Y.H. Luo, et al. A flexible carbon counter electrode for dye-sensitized solarcells. Carbon,2009,47,2704–2708.
    [197] B.Z. Fang, S.Q. Fan, J.H. Kim, et al. Incorporating hierarchical nanostructured carbon counterelectrode into metal-free organic dye-sensitized solar cells. Langmuir,2010,26,11238–11243.
    [198] C. Luo, S. Wang, H.C. Liu, Cellulose conversion to polyols catalyzed by reversibly-formed acidsand supported ruthenium clusters in hot water. Angew. Chem. Int. Ed.,2007,46,7636–7639.
    [199] N. Ji, T. Zhang, M.Y. Zheng, et al. Direct catalytic conversion of cellulose into ethylene glycolusing nickel-promoted tungsten carbide catalysts. Angew. Chem. Int. Ed.,2008,47,8510–8513.
    [200] N. Ji, T. Zhang, M.Y. Zheng, et al. Catalytic conversion of cellulose into ethylene glycol oversupported carbide catalysts. Catal. Today,2009,147,77–85.
    [201] M.Y. Zheng, A.Q. Wang, N. Ji, et al. Transition metal–tungsten bimetallic catalysts for theconversion of cellulose into ethylene glycol. ChemSusChem,2010,3,63–66.
    [202] Y.H. Zhang, A.Q. Wang, T. Zhang, A new3D mesoporous carbon replicated from commercialsilica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem. Commun.,2010,46,862–864.
    [203] L.F. Wang, J. Zhang, D.S. Su, et al. Simple preparation of honeycomb-like macrostructured andmicroporous carbons with high performance in oxidative dehydrogenation of ethylbenzene. Chem.Mater.,2007,19,2894–2897.
    [204] D.S. Su, J.J. Delgado, X. Li, et al. Highly ordered mesoporous carbon as catalyst for oxidativedehydrogenation of ethylbenzene to styrene. Chem. Asian J.,2009,4,1108–1113.
    [1] G.S. Chai, S.B. Yoon, J.H. Kim, et al. Spherical carbon capsules with hollow macroporous core andmesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell.Chem. Commun.,2004,2766–2767.
    [2] F.B. Su, J.H. Zeng, X.Y. Bao, et al. Preparation and characterization of highly ordered graphiticmesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater.,2005,17,3960–3967.
    [3] Y. Wang, F. Su, J.Y. Lee, et al. Crystalline carbon hollow spheres, crystalline carbon-SnO2hollowspheres, and crystalline SnO2hollow spheres: synthesis and performance in reversible Li-ionstorage. Chem. Mater.,2006,18,1347–1353.
    [4] H. Kabbour, T.F. Baumann, J.H. Satcher Jr, et al. Toward new candidates for hydrogen storage:high-surface-area carbon aerogels. Chem. Mater.,2006,18,6085–6087.
    [5] S. Jun, S.H. Joo, R. Ryoo, et al. Synthesis of new, nanoporous carbon with hexagonally orderedmesostructure. J. Am. Chem. Soc.,2000,122,10712–10713.
    [6] R. Ryoo, S.H. Joo, M. Kruk, et al. Ordered mesoporous carbons. Adv. Mater.,2001,13,677–681.
    [7] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J. Phys. Chem. B,1999,103,7743–7746.
    [8] C.D. Liang, K. Hong, G.A. Guiochon, et al. Synthesis of a large-scale highly ordered porous carbonfilm by self-assembly of block copolymers. Angew. Chem. Int. Ed.,2004,43,5785–5789.
    [9] S. Tanaka, N. Nishiyama, Y. Egashira, et al. Synthesis of ordered mesoporous carbons with channelstructure from an organic–organic composites. Chem. Commun.,2005,2125–2127.
    [10] Y. Meng, D. Gu, F.Q. Zhang, et al. Ordered mesoporous polymers and homologous carbonframeworks, amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed.,2005,44,7053–7058.
    [11] F.Q. Zhang, Y. Meng, D. Gu, et al. A facile aqueous route to synthesize highly ordered mesoporouspolymers and carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc.,2005,127,13508–13509.
    [12] Y. Meng, D. Gu, F.Q. Zhang, et al. A family of highly ordered mesoporous polymer resin and carbonstructures from organic-organic self-assembly. Chem. Mater.,2006,18,4447–4464.
    [13] F.Q. Zhang, Y. Meng, D. Gu, et al. An aqueous cooperative assembly route to synthesize orderedmesoporous carbons with controlled structures and morphology. Chem. Mater.,2006,18,5279-5288.
    [14] C.D. Liang, S. Dai, Synthesis of mesoporous carbon materials via enhanced hydrogen-bondinginteraction. J. Am. Chem. Soc.,2006,128,5316–5317.
    [15] C. Liu, L. Li, H. Song, et al. Facile synthesis of ordered mesoporous carbons fromF108/resorcinol-formaldehyde composites obtained in basic media. Chem. Commun.,2007,757–759.
    [16] L. Liu, F.Y. Wang, G.S. Shao, et al. A low-temperature autoclaving route to synthesize monolithiccarbon materials with an ordered mesostructure. Carbon,2010,48,2089–2099.
    [17] X.Q. Wang, C.D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermalstability by self–assembly of resorcinol–formaldehyde and block copolymers under highly acidicconditions. Langmuir,2008,24,7500–7505.
    [18] A.H. Lu, B. Spliethoff, F. Schüth, Aqueous synthesis of ordered mesoporous carbon viaself-assembly catalyzed by amino acid. Chem. Mater.,2008,20,5314–5219.
    [19] R. W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater.Sci.,1989,24,3221–3227.
    [20] D.Y. Zhao, Q.S. Huo, J.L. Feng, et al. Nonionic triblock and star diblock copolymer and oligomericsurfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am.Chem. Soc.,1998,120,6024–6036.
    [21] P. Gao, A. Wang, X. Wang and T. Zhang, Synthesis of highly ordered Ir-containing mesoporouscarbon materials by organic-organic self-assembly. Chem. Mater.,2008,20,1881–1888.
    [22] L. Liu, F.Y. Wang, G.S. Shao, et al. Synthesis of ultra-large mesoporous carbons from triblockcopolymers and phloroglucinol/formaldehyde polymer. Carbon,2010,48,2660–2664.
    [23] B. St hr, H.P. Boehm, R. Schl gl, Enhancement of the catalytic activity of activated carbons inoxidation reactions by thermal-treatment with ammonia or hydrogen-cyanide and observation of asuperoxide species as a possible intermediate. Carbon,1991,29,707–720.
    [24] C.L. Mangun, K.R. Benak, J. Economy, et al. Surface chemistry, pore sizes and adsorption propertiesof activated carbon fibers and precursors treated with ammonia. Carbon,2001,39,1809–1820.
    [25] C. Pevida, M.G. Plaza, B. Arias, et al. Surface modification of activated carbons for CO2capture.Appl. Surf. Sci.,2008,254,7165–7172.
    [26] Y.J. Kim, M.I.I. Kim, C.H. Yun, et al. Comparative study of carbon dioxide and nitrogenatmospheric effects on the chemical structure changes during pyrolysis of phenol–formaldehydespheres. Colloid Interface Sci.,2004,274,555–562.
    [27] K.A. Trick, T.E. Saliba, The pyrolysis of carbon/phenolic composites is a critical step in themanufacture of high temperature. Carbon,1995,33,1509–1515.
    [28] G. Socrates, in Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Wiley,Chichester,3rd edn.,2004, Ch.9, pp.107.
    [29] P.H. Matter, E. Wang, U.S. Ozkan, Preparation of nanostructured nitrogen-containing carboncatalysts for the oxygen reduction reaction from SiO2-and MgO-supported metal particles. J. Catal.,2006,243,395–403.
    [30] P.H. Matter, E. Wang, M. Arias, et al. Oxygen reduction reaction activity and surface properties ofnanostructured nitrogen-containing carbon. J. Mol. Catal. A: Chem.,2007,264,73–81.
    [31] C.L. Mangun, K.R. Benak, J. Economy, et al. Surface chemistry, pore sizes and adsorption propertiesof activated carbon fibers and precursors treated with ammonia. Carbon,2001,39,1809–1820.
    [32] J.R. Pels, F. Kapteijn, J.A. Moulijn, et al. Evolution of nitrogen functionalities in carbonaceousmaterials during pyrolysis. Carbon,1995,33,1641–1653.
    [33] R. E. Morris and P. S. Wheatley, Gas storage in nanoporous materials. Angew. Chem. Int. Ed.,2008,47,4966-4981.
    [34] C. Azar, K. Lindgren, E. Larson, et al. Carbon capture and storage from fossil fuels andbiomass-costs and potential role in stabilizing the atmosphere. Climatic Change,2006,74,47–79.
    [35] J.S. Lee, J.H. Kim, J.T. Kim, et al. Adsorption equilibria of CO2on zeolite13X and zeoliteX/activated carbon composite. J. Chem. Eng. Data,2002,47,1237–1242.
    [36] S. Cavenati, C.A. Grande, A.E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen onzeolite13X at High Pressures. J. Chem. Eng. Data,2004,49,1095–1101.
    [37] R. Serna-Guerrero, E. Dána, A. Sayari, New Insights into the Interactions of CO2withAmine-Functionalized Silica. Ind. Eng. Chem. Res.,2008,47,9406–9412.
    [38] T.Y. Ma, X.Z. Lin, X.J. Zhang, et al. High surface area titanium phosphonate materials withhierarchical porosity for multi-phase adsorption. New J. Chem.,2010,34,1209–1216.
    [39] J.M. Martin-Martinez, R. Torregrosa-Macia, M.C. Mittelmeijer-Hazeleger, Mechanisms ofadsorption of CO2in the micropores of activated anthracite. Fuel,1995,74,111–115.
    [40] A. Vishnyakov, P.I. Ravikovitch, A.V. Neimark, Molecular level models for CO2sorption innanopores. Langmuir,1999,15,8736–8742.
    [41] M. Heuchel, G.M. Davies, E. Buss, et al. Adsorption of carbon dioxide and methane and theirmixtures on an activated carbon: simulation and experiment. Langmuir,1999,15,8695–8705.
    [42] M.M. Maroto-Valer, Z. Tang, Y. Zhang, CO2capture by activated and impregnated anthracites. FuelProcess Technol.,2005,86,1487–1502.
    [43] G. Chandrasekar, W. J. Son and W. S. Ahn. Synthesis of mesoporous materials SBA-15and CMK-3from fly ash and their application for CO2adsorption. J. Porous Mater.,2009,16,545–551.
    [44] H.P. Boehm, G. Mair, T. Stohr, et al. Carbon as a catalyst in oxidation reactions and hydrogen halideelimination reactions. Fuel,1984,63,1061–1063.
    [45] M.D.Soutullo, C.I. Odom, B.F. Wicker, et al. Reversible CO2capture by unexpected plastic-, resin-,and gel-like ionic soft materials discovered during the combi-click generation of a TSIL library.Chem. Mater.,2007,19,3581–3583.
    [46] F. Adib, A. Bagreev, T.J. Bandosz, Adsorption/oxidation of hydrogen sulfide on nitrogen modifiedactivated carbons. Langmuir,2000,16,1980–1986.
    [47] J.R. Pels, F. Kapteijn, J.A. Moulijn, Q. Zhu, et al. Evolution of nitrogen functionalities incarbonaceous materials during pyrolysis. Carbon,1995,33,1641–1653.
    [48] A. Bagreev, J.A. Menendez, I. Dukhno, et al. Bituminous coal-based activated carbons modified withnitrogen as adsorbents of hydrogen sulfide. Carbon,2004,42,469–476.
    [49] M.G. Plaza, C. Pevida, B. Arias,et al. Development of low-cost biomass-based adsorbents forpostcombustion CO2capture. Fuel,2009,88,2442–2447.
    [50] T.C. Drage, A. Arenillas, K.M. Smith, et al. Preparation of carbon dioxide adsorbents from thechemical activation of urea–formaldehyde and melamine–formaldehyde resins. Fuel,2007,86,22–31.
    [51] C. Pevida, T.C. Drage, C.E. Snape. Silica-templated melamine–formaldehyde resin derivedadsorbents for CO2capture. Carbon,2008,46,1464–1474.
    [52] G.P. Hao, W.C. Li, D. Qian, A. H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith forCO2capture. Adv. Mater.,2010,22,853–857.
    [1] T. Hutson Jr., W.C. McCarthy, in: R.A. Meyersn (Ed.), Handbook of Petroleum Refining Processes,Vol.3, McGraw–Hill, London,1986, pp.3.36–3.47.
    [2] P.R. Pujado, B.V. Vora, Make C3-C4olefins selectivity. Hydrocarbon Process.1990,69,65–70.
    [3] E. Rombi, M.G. Cutrufello, V. Solinas, et al. Effects of potassium addition on the acidity andreducibility of chromia/alumina dehydrogenation catalysts. Appl. Catal. A: Gen.2003,251,255–266.
    [4] D. Rodriguez, J. Sanchez, G. Arteaga, Effect of tin and potassium addition on the nature of platinumsupported on silica. J. Mol. Catal. A: Chem.2005,228,309–317.
    [5] R.X. Li, N.B. Wong, K.C. Tin, The effect of lanthanum in dehydrogenation of propane on Pt-Snbimetallic catalaiysts.Catal. Lett.1998,50,219–223.
    [6] S.R. de Miguel, E.L. Jablonski, A.A. Castro, et al. Highly selective and stable multimetallic catalystsfor propane dehydrogenation. J. Chem. Tech. Biotech.2000,75,596–600.
    [7] A. Piras, A. Trovarelli, G. Dolcetti, Remarkable stabilization of transition alumina operated by ceriaunder reducing and redox conditions. Appl. Catal. B: Environ.2000,28,77–81.
    [8] L.H. Huang, B.L. Xu, L.L.Yang, et al. Propane dehydrogenation over the PtSn catalyst supported onalumina-modified SBA-15. Catal. Commun.2008,9,2593–2597.
    [9] M.S. Kumar, D. Chen, A. Holmen, et al. Dehydrogenation of propane over Pt-SBA-15andPt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catal. Today.,2009,142,17–23.
    [10] G. Del Angel, A. Bonilla, Y. Pen, et al. Effect of lanthanum on the catalytic properties ofPtSn/γ-Al2O3bimetallic catalysts prepared by successive impregnation and controlled surfacereaction. J. Catal.,2003,219,63–73.
    [11] A. Trovarelli, Catalytic Properties of ceria and CeO2-containing Materials. Catal. Rev. Sci. Eng.,1996,38,439–520.
    [12] C.L.Yu, Q.J. Ge, H.Y. Xu, et al. Effects of Ce addition on the Pt-Sn/g-Al2O3catalyst for propanedehydrogenation to propylene. Appl. Catal A: Gen.,2006,315,58–67.
    [13] M.F.R. Pereira, J.J.M. Orfao, J.L. Figueiredo, Effects of Ce addition on the Pt–Sn/γ-Al2O3catalystfor propane dehydrogenation to propylene. Appl. Catal. A: Gen.,1999,184,153–160.
    [14] M.F.R. Pereira, J.J.M. Orfao, J.L. Figueiredo, Oxidative dehydrogenation of ethylbenzene onactivated carbon catalysts.2. Kinetic modelling. Appl. Catal. A: Gen.,2000,196,43–54.
    [15] J.J. Delgado, D.S. Su, G. Rebmann, et al. Immobilized carbon nanofibers as industrial catalyst forODH reactions. J. Catal.,2006,244,126–129.
    [16] J. Zhang, X. Liu, R. Blume, et al. Surface-modified carbon nanotubes catalyze oxidativedehydrogenation of n-butane. Science,2008,322,73–78.
    [17] J. Zhang, D.S. Su, A.H. Zhang, et al. Nanocarbon as robust catalyst: mechanistic insight intocarbon-mediated catalysis. Angew. Chem. Int. Ed.,2007,46,7319–7323.
    [18] B. Frank, J. Zhang, R. Blume, et al. Heteroatoms increase the selectivity in oxidativedehydrogenation reactions on nanocarbons. Angew. Chem. Int. Ed.,2009,48,6913–6917.
    [19] G. Mestl, N.I. Maksimova, N. Keller, et al. Carbon nanofilaments in heterogeneous catalysis: anindustrial application for new carbon materials? Angew. Chem. Int. Ed.,2001,40,2066–2068.
    [20] D.S. Su, N.I. Maksimova, G. Mestl, et al. Oxidative dehydrogenation of ethylbenzene to styrene overultra-dispersed diamond and onion-like carbon. Carbon,2007,45,2145–2151.
    [21] Z.J. Liu, Z.Y. Yuan, W.Z. Zhou, et al. Co/carbon-nanotube monometallic system: the effects ofoxidation by nitric acid. Phys. Chem. Chem. Phys.,2001,3,2518–2521.
    [22] H.P. Lin, S.T. Wong, C.Y. Mou, et al. Extensive void defects in mesoporous aluminosilicate MCM-41.J. Phys. Chem. B,2000,104,8967–8975.
    [23] Y. Xia, R. Makaya, Synthesis of ordered mesoporous varbon and nitrogen-doped carbon materialswith graphitic pore walls via a simple chemical vapor deposition method. Adv. Mater.,2004,16,1553–1558.
    [24] M. Chen, J. Xu, Y. Cao, et al. Dehydrogenation of propane over In2O3–Al2O3mixed oxide in thepresence of carbon dioxide. J. Catal.,2010,272,101–108.
    [25] M. Chen, J. Xu, Y.M. Liu, et al. Supported indium oxide as novel efficient catalysts fordehydrogenation of propane with carbon dioxide. Appl. Catal. A: Gen.,2010,377,35–41.
    [26] M. Chen, J.L. Wu, Y.M. Liu, et al. Dehydrogenation of propane in the presence of N2O overIn2O3―Al2O3mixed oxide catalysts. Catal. Commun.,2011,12,1063–1066.
    [27] S.B Zhang, Y.M. Zhou, Y.W. Zhang, et al. Effect of K Addition on Catalytic Performance ofPtSn/ZSM-5Catalyst for Propane Dehydrogenation. Catal. Lett.,2010,135,76–82
    [28] Z.Y. Duan, Y.M. Zhou, Y.W. Zhang, et al. Effect of Sodium Addition to PtSn/AlSBA-15on theCatalytic Properties in Propane Dehydrogenation. Catal. Lett.2011,141,120–127.
    [29] M.S. Kumar, D..Chen, J.C. Walmsley, et al. Dehydrogenation of propane over Pt-SBA-15: effect ofPt particle size. Catal. Commun.,2008,9,747–750.
    [30] B.K. Vu, M.B. Song, I. Y. Ahn, et al. Propane dehydrogenation over Pt–Sn/Rare-earth-doped Al2O3:Influence of La, Ce, or Y on the formation and stability of Pt–Sn alloys. Catal. Today,2011,164,214–220.
    [31] J.M. McNamara, S.D. Jackson, D. Lennon, Butane Dehydrogenation over Pt/Alumina: Activation,Deactivation and the Generation of Selectivity. Catal. Today,2003,81,583–587.
    [32] J.N.J. van Lingen, O.L.J. Gijzeman, B.M. Weckhuysen, et al. On the umbrella model for supportedvanadium oxide catalysts. J. Catal.,2006,239,34–41.
    [33] M.L. Ferreira, M. Volpe, On the nature of highly dispersed vanadium oxide catalysts: effect of thesupport on the structure of VOxspecies. J. Mol. Catal. A Chem.,2000,164,281–290.
    [34] M.S. Kane, L.C. Kao, R. K. Mariwala, et al. The effect of porosity of carbogenic molecular sievecatalysts on ethylbenzene oxidative dehydrogenation. Ind. Eng. Chem. Res.,1996,35,3319–3331.
    [35] M.F.R. Pereira, J.J.M. órf o, J.L. Figueiredo, Oxidative dehydrogenation of ethylbenzene onactivated carbon catalysts. Appl. Catal. A,2001,218,307–318.
    [36] D.S. Su, J.J. Delgado, X. Liu, et al. Highly ordered mesoporous carbon as catalyst for oxidativedehydrogenation of ethylbenzene to styrene. Chem. Asian J.,2009,4,1108–1113.
    [37] U. Zielke, K.J. Huttinger, W.P. Hoffman, Surface-oxidized carbon Fibers: I. surface structure andchemistry. Carbon,1996,34,983–998.
    [38] B. Marchon, J. Carrazza, H. Heinemann, et al. TPD and XPS studies of O2, CO2, and H2O adsorptionon clean polycrystalline graphite. Carbon,1988,26,507–514.
    [39] Y. Xie, P.M.A. Sherwood, X-ray photoelectron-spectroscopic studies of carbon fiber surfaces.11.Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples. Chem. Mater.,1990,2,293–299.
    [40] H.F. Gorgulho, J.P. Mesquita, F. Gon alves, et al. Characterization of the surface chemistry of carbonmaterials by potentiometric titrations and temperature-programmed desorption. Carbon,2008,46,1544–1555.
    [41] J.L. Figueiredo, M.F.R. Pereira, The role of surface chemistry in catalysis with carbons. Catal.Today,2010,150,2–7.
    [42] L.E. Cadús, L.A. Arrua, O.F. Gorriz, et al. Action of activated coke as a catalyst: oxydehydrogenationof ethylbenzene to styrene. Ind. Eng. Chem. Res.,1988,27,2241–2246.
    [43] J. Zhang, D.S. Su, R. Blume, et al. Surface chemistry and catalytic reactivity of a nanodiamond in thesteam-free dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed.,2010,49,8640–8644.
    [44] J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. órf o, Modification of the surface chemistryof activated carbons. Carbon,1999,37,1379–1389.
    [45] X. Liu, B. Frank, W. Zhang, et al. Carbon-catalyzed oxidative dehydrogenation of n-butane: selectivesite formation during sp3-to-sp2lattice rearrangement. Angew. Chem. Int. Ed.,2011,50,3318–3322.
    [46] Y.W. Zhang, Y.M. Zhou, K.Z. Yang, et al. Effect of hydrothermal treatment on catalytic properties ofPtSnNa/ZSM-5catalyst for propane dehydrogenation. Microporous Mesoporous Mater.,2006,96,245–254.
    [1] C. Song, Global challenges and strategies for control, conversion and utilization of CO2for sustainabledevelopment involving energy, catalysis, adsorption and chemical processing. Catal. Today2006,115,2–32.
    [2] K.M.K. Yu, I. Curcic, J. Gabriel, et al. Recent advances in CO2capture and utilization minireview.ChemSusChem,2008,1,893–899.
    [3] Z. Liang, B. Fadhel, C.J. Schneider, et al. Adsorption of CO2on mesocellular siliceous foamiteratively functionalized with dendrimers. Adsorption2009,15,429–437.
    [4] V. Zelenak, D. Halamova, L. Gaberova, et al. Amine-modified SBA-12mesoporous silica for carbondioxide capture: effect of amine basicity on sorption properties. Micropor. Mesopor. Mater.2008,116,358–364.
    [5] S. Choi, J.H. Drese, C.W. Jones, Adsorbent materials for carbon dioxide capture from largeanthropogenic point sources. ChemSusChem2009,2,796–854.
    [6] N. Hedin, L. Chen, A. Laaksonen, Sorbents for CO2capture from flue gas—aspects from materials andtheoretical chemistry. Nanoscale2010,2,1819–1841.
    [7] Y.J. Choi, J.H. Choi, K.M. Choi, et al. Covalent organic frameworks for extremely high reversible CO2uptake capacity: a theoretical approach. J. Mater. Chem.2011,21,1073–1078.
    [8] H. Furukawa, N. Ko, Y.B. Go, et al. Ultrahigh porosity in metal-organic frameworks. Science2010,329,424–428.
    [9] R. Serna-Guerrero, E. Dána, A. Sayari, New insights into the interactions of CO2withamine-functionalized silica. Ind. Eng. Chem. Res.2008,47,9406–9412.
    [10] T.Y. Ma, X.Z. Lin, X.J. Zhang, et al. High surface area titanium phosphonate materials withhierarchical porosity for multi-phase adsorption. New J. Chem.,2010,34,1209–1206.
    [11] H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porouscovalent organic frameworks for clean energy applications. J. Am. Chem. Soc.2009,131,8875–8883.
    [12] J. An, S.J. Geib, N.L. Rosi, High and selective CO2uptake in a cobalt adeninate metal organicframework exhibiting pyrimidine-and amino-decorated pores. J. Am. Chem. Soc.2010,132,38–39.
    [13] J.H. Choi, K.M. Choi, H.J. Jeon, et al. Acetylene gas mediated conjugated microporous polymers(ACMPs): first use of acetylene gas as a building unit. Macromolecules2010,43,5508–5511.
    [14] J.-S. Bae, S.K. Bhatia, High-pressure adsorption of methane and carbon dioxide on coal. EnergyFuels,2006,20,2599–2607.
    [15] S. Himeno, T. Komatsu, S.J. Fujita, High-pressure adsorption equilibria of methane and carbondioxide on several sctivated carbons. J. Chem. Eng. Data2005,50,369–376.
    [16] M.G. Plaza, S. García, F. Rubiera, et al. Post-combustion CO2capture with a commercial activatedcarbon: comparison of different regeneration strategies. Chem. Eng. J.2010,163,41–47.
    [17] T.C. Drage, J.M. Blackman, C. Pevida, et al. Evaluation of activated carbon adsorbents for CO2capture in gasification. Energy Fuels2009,23,2790–2796.
    [18] D.M. D’Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials. Angew.Chem. Int. Ed.2010,49,6058–6082.
    [19] S. Xiang, W. Zhou, Z. Zhang, et al. Open metal sites within isostructural metal-organic frameworksfor differential recognition of acetylene and extraordinarily high acetylene storage at roomtemperature. Angew. Chem., Int. Ed.2010,49,4615–4618.
    [20] J.B. Lin, J.P. Zhang, X.M. Chen, Nonclassical active site for enhanced gas sorption in porouscoordination polymer. J. Am. Chem. Soc.2010,132,6654–6656.
    [21] O.K. Farha, C.D. Malliakas, M.G. Kanatzidis, et al. Control over catenation in metal organicframeworks via rational design of the organic building block. J. Am. Chem. Soc.2010,132,950–952.
    [22] L. Ma, A. Jin, Z. Xie, W. Lin, Freeze drying significantly increases permanent porosity and hydrogenuptake in4,4-connected metal-organic frameworks. Angew. Chem., Int. Ed.2009,48,9905–9908.
    [23] J.M. Martin-Martinez, R. Torregrosa-Macia, M.C. Mittelmeijer-Hazeleger, Mechanisms of adsorptionof CO2in the micropores of activated anthracite. Fuel,1995,74,111–114.
    [24] A. Vishnyakov, P.I. Ravikovitch, A.V. Neimark, Molecular level models for CO2sorption innanopores. Langmuir,1999,15,8736–8742.
    [25] M. Heuchel, G.M. Davies, E. Buss, et al. Adsorption of carbon dioxide and methane and theirmixtures on an activated carbon: simulation and experiment. Langmuir,1999,15,8695–8705.
    [26] C.F. Martín, M.G. Plaza, J.J. Pis, et al. On the limits of CO2capture capacity of carbons. Sep. Purif.Technol.2010,74,225–229.
    [27] M.G. Plaza, F. Rubiera, J.J. Pis, et al. Ammoxidation of carbon materials for CO2capture. Appl. Surf.Sci.2010,256,6843–6849.
    [28] C. Pevida, M.G. Plaza, B. Arias, et al. Surface modification of activated carbons for CO2capture.Appl. Surf. Sci.2008,254,7165–7172.
    [29] J. Przepiórski, M. Skrodzewic, A.W. Morawski, High temperature ammonia treatment of activatedcarbon for enhancement of CO2adsorption. Appl. Surf. Sci.2004,225,235–242.
    [30] G. Chandrasekar, W.J. Son, W.S. Ahn, Synthesis of mesoporous materials SBA-15and CMK-3fromfly ash and their application for CO2adsorption. J. Porous Mater.2009,16,545–551.
    [31] M.G. Plaza, C. Pevida, A. Arenillas, et al. CO2capture by adsorption with nitrogen enriched carbons.Fuel2007,86,2204–2212.
    [32] M.R. Lohe, M. Rose, S. Kaskel, Metal-organic framework (MOF) aerogels with high micro-andmacroporosity. Chem. Commun.2009,6056–6058.
    [33] A.E. Kadib, R. Chimenton, A. Sachse, et al. Functionalized inorganic monolithic microreactors forhigh productivity in fine chemicals catalytic synthesis. Angew. Chem., Int. Ed.2009,48,4969–4972.
    [34] A.H. Lu, A. Kiefer, W. Schmidt, et al. Synthesis of polyacrylonitrile-based ordered mesoporouscarbon with tunable pore structures. Chem. Mater.2004,16,100–103.
    [35] C. Pevida, T.C. Drage, C.E. Snape, Silica-templated melamine–formaldehyde resin derivedadsorbents for CO2capture. Carbon2008,46,1464–1474.
    [36] L. Zhao, Z. Bacsik, N. Hedin, et al. Carbon dioxide capture on amine-rich carbonaceous materialsderived from glucose. ChemSusChem2010,3,840–845.
    [37] V. Chandra, S. U. Yu, S. H. Kim, et al. Highly selective CO2capture on N-doped carbon produced bychemical activation of polypyrrole functionalized graphene sheets. Chem. Commun.2012,48,735–737.
    [38] G.P. Hao, W.C. Li, D. Qian, et al. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2capture. Adv. Mater.2010,22,853–857.
    [39] G.P. Hao, W.C. Li, D. Qian, et al. Structurally designed synthesis of mechanically stablepoly(benzoxazine-co-resol)-based porous carbon monoliths and their application ashigh-performance CO2capture sorbents. J. Am. Chem. Soc.2011,133,11378–11388.
    [40] H. Jiang, T. Zhao, C.Z. Li, J. Ma, Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakesfor high-performance supercapacitors. J. Mater. Chem.2011,21,3818–3823.
    [41] J.Y. Gong, S.Z. Li, D.E. Zhang, et al. High quality self-assembly magnetite (Fe3O4) chain-likecore-shell nanowires with luminescence synthesized by a facile one-pot hydrothermal process. Chem.Commun.2010,46,3514–3516.
    [42] A.H. Lu, G.P. Hao, Q. Sun, Can carbon spheres be created through the st ber method? Angew. Chem.Int. Ed.2011,50,9023–9025.
    [43] R.W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater.Sci.1989,24,3221–3227.
    [44] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al. Curvature and parametric sensitivity in models foradsorption in micropores. Pure Appl. Chem.1985,57,603–619.
    [45] Z.Y. Yuan, T.Z. Ren, A. Vantomme, et al. Facile and generalized preparation of hierarchicallymesoporous-macroporous binary metal oxide materials. Chem. Mater.2004,16,5096–5106.
    [46] V.V. Strelko, V.S. Kuts, P.A. Thrower, On the mechanism of possible influence of heteroatoms ofnitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electrontransfer reactionsCarbon,2000,38,1499–1524.
    [47] H.P. Boehm, G. Mair, T. Stohr, et al. Determination of aromatic and aliphatic CH groups in coal byFTIR studies of coal extracts. Fuel1984,63,1060–1061.
    [48] C.L. Mangun, K.R. Benak, J. Economy, et al., Surface chemistry, pore sizes and adsorption propertiesof activated carbon fibers and precursors treated with ammonia. Carbon2001,39,1809–1820.
    [49] B. Su, X.S. Zhao, L. Lv, et al. Synthesis and characterization of microporous carbons templated byammonium-form zeolite Y. Carbon2004,42,2821–2831.
    [50] P.X. Hou, H. Orikasa, T. Yamazaki, et al. Synthesis of nitrogen-containing microporous carbon with ahighly ordered structure and effect of nitrogen doping on H2O adsorption. Chem. Mater.2005,17,5187–5193.
    [51] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts,3rd ed. Wiley:New York,2004.
    [52] A.P. Katsoulidis, M.G. Kanatzidis, Phloroglucinol based microporous polymeric organic frameworkswith OH functional groups and high CO2capture capacity. Chem. Mater.2011,23,1818–1824.
    [53] Y.J. Kim, M.I.I. Kim, C.H. Yun, et al. Comparative study of carbon dioxide and nitrogen atmosphericeffects on the chemical structure changes during pyrolysis of phenol–formaldehyde spheres. J.Colloid Interface Sci.2004,274,555–562.
    [54] K.A. Trick, T.E. Saliba, Mechanisms of the pyrolysis of phenolic resin in a carbon/phenoliccomposite. Carbon1995,33,1509–1515.
    [55] M. Lasperas T. Llorett, L. Chaves, et al. Heterogeneous Catalysis and Fine Chemicals IV [Eds: H. U.Blaser, A. Baiker, R. Prins], Elsevier Science, Amsterdam,1997.
    [56] J.R. Pels, F. Kapteijn, J.A. Moulijn, et al. Evolution of nitrogen functionalities in carbonaceousmaterials during pyrolysis. Carbon1995,33,1641–1653.
    [57] R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched microporous activatedcarbon from high volatile bituminous coal. Fuel2009,88,1871–1877.
    [58] Q. Yang, C. Zhong, J. Chen, Computational study of CO2storage in metal organic frameworks. J.Phys. Chem. C2008,112,1562–1569.
    [59] R. Banerjee, H. Furukawa, D. Britt, et al. Control of pore size and functionality in isoreticularzeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J. Am. Chem.Soc.2009,131,3875–3877.
    [60] B. Wang, A.P. C té, H. Furukawa, et al. Colossal cages in zeolitic imidazolate frameworks asselective carbon dioxide reservoirs. Nature2008,453,207–211.
    [61] D. Saha, S. Deng, Adsorption equilibrium and kinetics of CO2, CH4, N2O and NH3on orderedmesoporous carbon. J. Colloid Interface Sci.2010,345,402–409.
    [62] L. Liu, Q.F. Deng, T.Y. Ma, et al. Ordered mesoporous carbons: citric acid-catalyzed synthesis,nitrogen doping and CO2capture. J. Mater. Chem.2011,21,16001–16009.
    [63] F. Rodríguez-Reinoso, A. Linares-Solano, Chemistry and Physics of Carbon, Marcel Dekker: NewYork,1989,21,11–27.
    [64] D.N. Dybtsev, H. Chun, S.H. Yoon, et al. Microporous manganese formate: a simple metal organicporous material with high framework stability and highly selective gas sorption properties. J. Am.Chem. Soc.2004,126,32–33.
    [65] Y.M. Jeon, G.S. Armatas, J. Heo, et al. Amorphous infinite coordination polymer microparticles: anew class of selective hydrogen storage materials. Adv. Mater.2008,20,2105–2110.
    [66] Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-likecarbon materials. J. Am. Chem. Soc.2007,129,1673–1679.
    [67] K.D. Vogiatzis, A. Mavrandonakis, W. Klopper, et al. Ab initio study of the interactions between CO2and N-containing organic heterocycles. ChemPhysChem2009,10,374–383.
    [68] B. Arstad, R. Blom, O. Swang, CO2absorption in aqueous solutions of alkanolamines: mechanisticinsight from quantum chemical calculations. J. Phys. Chem. A2007,111,1222–1228.
    [69] M. Sevilla, A.B. Fuertes, Sustainable porous carbons with a superior performance for CO2capture.Energy Environ. Sci.2011,4,1765–1761.
    [70] N. Hiyoshi, K. Yogo, T. Yashima, Adsorption characteristics of carbon dioxide on organicallyfunctionalized SBA-15. Microporous Mesoporous Mater.2005,84,357–365.
    [71] M. M. Dubinin, Chemistry and Physics of Carbon. Marcel Dekker, New York,1966.
    [72] F. Stoeckli, Ballerini, L. Evolution of microporosity during activation of carbon. Fuel1991,70,557–559.
    [73] M. Okano, Y. Ogata, Molecular weight distribution in the polymerization of melamine andformaldehyde using a functional group approach. J. Am. Chem. Soc.1952,74,5728.
    [74] M. Gordon, A. Halliwell, T. Wilson, Kinetics of the addition stage in the melamine–formaldehydereaction. Appl. Polym. Sci.1967,10,1153.
    [75] B. Tomita, J. Polym. Sci., Polym. Chem. Ed.1977,15,2347.
    [76] A. Kumar, V. Katiyar, Modeling and experimental investigation of melamine-formaldehydepolymerization. Macromolecules,1990,23,3729.
    [77] M. Dawbarn, J.R. Ebdon, S.J. Hewitt, et al. Examination of some melamine-formaldehyde adductsby13C nuclear magnetic resonance. Polymer,1978,19,1309–1312.
    [78] B.Tomita, H. J. Ono, Polym. Sci., Polym. Chem. Ed.1979,17,3205–3215.
    [79] M.L. Scheepers, P.J. Adrianensens, J.M. Gelan, et al. Demonstration of methylene-ether bridgeformation in melamine-formaldehyde resins. J. Polym. Sci. Polym. Chem. A1995,33,915–920.
    [80] K.B. Sato, Chem. Soc. Jpn.1968,41,7.
    [81] A. Berge, Adv. Org. Coat. Sci. Technol.1979,1,23.
    [82] C. Gao, S. Moya, H. Lichtenfeld, et al. The decomposition process of melamine formaldehyde cores:the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol. Mater. Eng.2001,286,355–361.
    [83] D. Lin-Vin, N.B. Colthup, W.G. Fatelley, et al. The handbook of Infrared and Raman characteriaticfrequencies of organic molecules. Academic Press Inc., San Diego, CA,1991, p.299.
    [84] I.H. Anderson, M. Cawley, W. Steedman, Melamine-formaldehyde resins II.—Thermal degradationof model compounds and resins. Br. Polym. J.1971,3,86–92
    [85] A. Derylo-Marczewska, J. Goworek, S. Pikus, et al. Characterization of melamine–formaldehyderesins by XPS, SAXS, and sorption techniques. Langmuir,2002,18,7538–7543.
    [86] G. Coullerez, D. Léonard, S. Lundmark, et al. XPS and TOF–SIMS study of freeze-dried andthermally cured melamine–formaldehyde resins of different molar ratios. Surf. Int. Anal.2000,29,431–433.
    [87] D. Feng, Z. Zhou, M. Bo, An investigation of the thermal degradation of melamine phosphonite byXPS and thermal analysis techniques. Polym. Degrad Stabil.1995,50,65–70.
    [88] L. Costa, G. Camino, Thermal behaviour of melamine. J. Therm. Anal. Calorim.1988,34,423–429.
    [89] J.R. Pels, F. Kapteijn, J.A. Moulijn, et al.. Evolution of nitrogen functionalities in carbonaceousmaterials during pyrolysis. Carbon,1995,33,1641–1653.
    [90] E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano, The role of different nitrogenfunctional groups on the removal of SO2from flue gases by N-doped activated carbon powders andfibres. Carbon,2003,41,1925–1932.
    [91] J. Lahaye, G. Nanse, A. Bagreev, et al. Porous structure and surface chemistry of nitrogen containingcarbons from polymers. Carbon,1999,37,585–590.
    [92] A. Arenillas, K.M. Smith, T.C. Drage, C.E. Snape CO2capture using some fly ash-derived carbonmaterials. Fuel,2005,84,2204–2210.
    [93] A.N. Buckley Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectronspectroscopy. Fuel Process Technol.1994,38,165–179.
    [1] D. Lee, J. Lee, J. Kim, et al. Simple Fabrication of a highly sensitive and fast glucose biosensor usingenzymes immobilized in mesocellular carbon foam. Adv. Mater.,2005,17,28282833.
    [2] M. Hartmann. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem. Mater.2005,17,45774593.
    [3] H.S. Zhou, S.M. Zhu, M. Hibino, et al. Lithium storage in mesoporous carbon (CMK-3) with highreversibal specific energy capacity and good cycling performance. Adv. Mater.,2003,15,21072111.
    [4] S.J. Han, K.K. Sohn, T. Hyeon, Fabrication of new nanoporous carbons through silica templates andtheir application to the adsorption of bulky dyes. Chem. Mater.,2000,12,33373341.
    [5] G.S. Chai, S.B. Yoon, J.S. Yu, et al. Ordered porous carbons with tunable pore sizes as catalystsupports in direct methanol fuel cell. J. Phys. Chem. B,2004,108,70747079.
    [6] G.S. Chai, S.B. Yoon, J.H. Kim, et al. Spherical carbon capsules with hollow macroporous core andmesoporous shell structures as a highly efficient catalyst support in the direct methanol fuel cell.Chem. Commun.,2004,27662767.
    [7] F.B. Su, J.H. Zeng, X.Y. Bao, et al. Preparation and characterization of highly ordered graphiticmesoporous carbon as a Pt catalyst support for direct methanol fuel cells. Chem. Mater.,2005,17,39603967.
    [8] Y. Wang, F. Su, J.Y. Lee, et al. Crystalline carbon hollow spheres, crystalline carbon SnO2hollowspheres, and crystalline SnO2hollow spheres: synthesis and performance in reversible Li-ionstorage. Chem. Mater.,2006,18,13471353.
    [9] H. Kabbour, T.F. Baumann, J.H. Satcher Jr, et al. Toward new candidates for hydrogenstorage: high-surface-area carbon aerogels. Chem. Mater.,2006,18,60856087.
    [10] T. Hyeon, S. Han, Y.E. Sung, et al. High-performance direct methanol fuel cell electrodes usingsolid-phase-synthesized carbon nanocoils. Angew. Chem., Int. Ed.,2003,42,43524356.
    [11] S.J. Han, K.K. Sohn, T. Hyeon, Fabrication of new nanoporous carbons through silica templates andtheir application to the adsorption of bulky dyes. Chem. Mater.,2000,12,33373341.
    [12] J. W. Lee, S.J. Han, T. Hyeon, Synthesis of new nanoporous carbon materials using nanostructuredsilica materials as templates. J. Mater. Chem.,2004,14,478486.
    [13] A.H. Lu, W. Schmidt, B. Spliethoff, et al. Synthesis of ordered mesoporous carbon materials withbimodal pore system and large pore volume. Adv. Mater.,2003,15,16021606.
    [10] R. Ryoo, S.H. Joo, M. Kruk, et al. Ordered mesoporous carbons. Adv. Mater.2001,13,677681.
    [14] R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation. J. Phys. Chem. B,1999,103,77437746.
    [15] F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica: synthesis and replication toplatinum nanowires, carbon nanorods and carbon nanotubes. Chem. Commun.,2003,21362137.
    [16] Y. Meng, D. Gu, F.Q. Zhang, et al. Ordered mesoporous polymers and homologous carbonframeworks, amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed.,2005,44,70537059.
    [17] F.Q. Zhang, Y. Meng, D. Gu, et al. A facile aqueous route to synthesize highly ordered mesoporouspolymers and carbon frameworks with Ia3d bicontinuous cubic structure. J. Am. Chem. Soc.,2005,127,1350813509.
    [18] Y. Meng, D. Gu, F.Q. Zhang, et al. A family of highly ordered mesoporous polymer resin and carbonstructures from organic-organic self-assembly. Chem. Mater.,2006,18,44474464.
    [19] T. Kyotani, N. Sonobe, A. Tomita, Formation of highly orientated graphite from polyacrylonitrile byusing a two-dimensional space between montnorillonite lamellae. Nature,1988,28,331333.
    [20] N. Sonobe, T. Kyotani, A. Tomita, Carbonization of polyfurfuryl alcohol and polyvinyl acetatebetween the lamellae of montmorillonite. Carbon,1990,28,483488.
    [21] T. Kyotani, H. Yamada, N. Sonobe, et al. Heat treatment of polyfurfuryl alcool prepared betweentaeniolite lamellae. Carbon,1994,32,627635.
    [22] T.J. Bandosz, J. Jagie o, K. Putyera, et al. Sieving properties of carbons obtained by templatecarbonization of polyfurfuryl alcohol within mineral matrixes. Langmuir,1995,11,39643969.
    [23] T.J. Bandosz, J. Jagie o, K. Putyera, et al. Pore structure of carbon mineral nanocomposites andderived carbons obtained by template carbonization. Chem. Mater.1996,8,20232029.
    [24] A. Bakandritsos, T. Steriotis, D. Petridis, High surface area montmorillonite carbon composites andderived carbons. Chem. Mater.2004,16,15511559.
    [25] D. Nguyen-Thanh, T.J. Bandosz, Metal-loaded carbonaceous adsorbents templated from porous clayheterostructures. Micropor. Mesopor. Mater.2006,92,4752.
    [26] B. Sakintuna, Y. Yürüm, Preparation and characterization of mesoporous carbons using a Turkishnatural zeolitic template/furfuryl alcohol system. Micropor. Mesopor. Mater.2006,93,304312.
    [27] G.Y. Liu, F.Y. Kang, B.H. Li, et al. Characterization of the porous carbon prepared by using halloysiteas template and its application to EDLC. J. Phys. Chem. Solids,2006,67,11861189.
    [28] F. Gonzalez, C. Pesquera, C. Blanco, et al. Structural and textural evolution under thermal treatmentof natural and acid-activated Al-rich and Mg-rich palygorskites. Appl. Clay Sci.1990,5,2326.
    [29] W.J. Wang, A. Li, J.P. Zhang, et al. Effect of acid activation and thermal treatment of attapulgite onwater absorbency of poly (acrylic acid)/attapulgite superabsorbent composite. Polym. Compos.2007,28,397404.
    [30] Y.X. Liu, W.W. Dai, T. Wang, Y. Tao, J. Central South Uni. Technol.(Chinese)2006,13,451456.
    [31] T.H. Chen, X.C. Xu, A.H. Lu, et al. Geochemical study of rare earth elements on four attapulgite claydeposits in Jiangsu and Anhui Provinces. J. Rare Earths2003,21,478483.
    [32]王红艳,张艳,周守勇等,硫酸改性凹凸棒土粘土的性能表征及吸附铅离子的工艺研究。淮阴师范学院学报:自然科学版,2005,4,4750.
    [33] Y. Cai, J. Xuea, D.A. Polya, A fourier transform infrared spectroscopic study of Mg-rich, Mg-poorand acid leached palygorskites. Spectrochimica Acta Part A,2007,66,282288.
    [34] M.S. Barrios, L.V.F. Gonzales, M.A.V. Rodriguze, et al. Acid activation of a palygorskite with HCldevelopment of physic-chemical, textual and surface properties. App. Clay Sci.1995,10,247258.
    [35]周杰,刘宁,李云.凹凸棒石粘土显微结构特征。硅酸盐通报,1999,6,5458.
    [36] W. Hirsiger, M. Mgller-Vonmoos, Thermal analysis of palygorskite. Thermochim. Acta.1975,13,223230.
    [37]陈天虎,王健,庆承松,等.热处理对凹凸棒石结构、形貌和表面性质的影响.硅酸盐学报,2006,34,14061410.
    [38] S.X. Liu, J. Sun, Z.H. Huang, Carbon spheres/activated carbon composite materials with high Cr(VI)adsorption capacity prepared by a hydrothermal method. J. Hazard. Mater.2010,173,377–383.
    [39] M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocompositematerials. Chem. Mater.,2001,13,31693183.
    [40] D.P. Kharakoz, A.P. Sarvazyan, Hydrational and intrinsic compressibilities of globular proteins.Biopolymers.,1993,33,1126.
    [41] K.P. Wilson, B.A. Malcolm, B.W. Matthews, Structural and thermodynamic analysis of compensatingmutations within the core of chicken egg white lysozyme. J. Biol. Chem.,1992,267,1084210849.
    [42] C. H. Lei, Y.S. Shin, J. Liu, et al. Entrapping enzyme in a functionalized nanoporous support. J. Am.Chem. Soc.,2002,124,1124211243.
    [43] S.Z. Qiao, H. Djojoputro, Q. Hu,et al. Synthesis and lysozyme adsorption of rod-like large-poreperiodic mesoporous organosilica. Prog. Solid. State. Chem.2006,34,24956.
    [44] A.Vinu, M. Miyahara, K. Ariga, Biomaterial immobilization in nanoporous carbon molecular sieves:influence of solution pH, pore volume, and pore diameter. J Phys Chem B2005,109,64366441.
    [45] T.Y. Ma, X.J. Zhang, Z.Y. Yuan, Hierarchical meso-/macroporous aluminum phosphate hybridmaterials as multifunctional adsorbents. J. Phys. Chem. C,2009,113,1285412862.
    [46] A. Vinu,; M. Miyahara and K. Ariga, Biomaterial immobilization in nanoporous carbon molecularsieves: influence of solution pH, pore volume, and pore diameter. J. Phys. Chem. B,2005,109,64366441.
    [47] A. Vinu, M. Miyahara, V. Sivamurugan, et al. Large pore cage type mesoporous carbon, carbonnanocage: s superior adsorbent for biomaterials. J. Mater. Chem.,2005,15,51225127.
    [1] L.S. Zhong, J.S. Hu, H.P. Liang, et al. Self-assembled3D flowerlike iron oxide nanostructures andtheir application in water treatment. Adv. Mater.2006,18,2426–2431.
    [2] S.U. M.Khan, M. Al-Shahry, W.B. InglerJr., Efficient photochemical water splitting by a chemicallymodified n~TiO2, Science,2002,297,2243–2245.
    [3] S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Decomposition of bisphenol A in water usingcomposite–zeolite. sheets prepared by a papermaking technique. Environ. Sci. Technol.2003,37,1048–1051.
    [4] S. Horikoshi, A. Saitou, H. Hidaka, Environmental remediation by an integrated microwave/UVillumination method. Environ. Sci. Technol.2003,37,5813–5822.
    [5] S. Sakthivel, H. Kisch, Daylight Photocatalysis by Carbon-modified titanium dioxide. Angew. Chem.Int. Ed.2003,42,4908–4911.
    [6] H. Hagiwara, N. Ono, T. Inoue, et al. Dye-sensitizer effects on a Pt/KTa(Zr)O3catalyst for thephotocatalytic splitting of water. Angew. Chem. Int. Ed.2006,45,1420–1422.
    [7] W. Ma, C. Yang, X. Gong, et al. Thermally Stable, Efficient polymer solar cells with nanoscalecontrol of the interpenetrating network morphology. Adv. Funct. Mater.2005,15,1617–1622.
    [8] S. Shanmugam, A. Gabashvili, D.S. Jacob, et al. Synthesis and characterization of TiO2@C core shellcomposite nanoparticles and evaluation of their photocatalytic activities. Chem. Mater.2006,18,2275–2782.
    [9] L. Guirado, M. Sanehez, M.E. Rineon, Interaction of acetone molecules withcarbon-nanotube-Supported TiO2nanoparticles: possible applications as room temperature molecularsensitive coatings. J. Phys. Chem. C.,2007,111,57–65.
    [10] X.H. Xia, Z.J. Jia, Y. Yu, et al. Preparation of multi-walled carbon nanotube supported TiO2and itsphotocatalytic activity in reduction of CO2with H2O. Carbon,2007,45,717–721.
    [11]W.D. Wang, P. Serp, P. Kalek, et al. Photocatalytic degradation of phenol on MWNT and titaniacomposite catalysts prepared by a modified sol-gel method. Appl. Catal. B: Environmental,2005,56,305–312.
    [12]M. Chen, F. Zhang, W. Oh, et al. Synthesis, charaeterization, and photocatalytic analysis ofCNT/TiO2composites derived from MWCNTs and titanium sources. New Carbon Mater.,2009,24,159–166.
    [13] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites: effect of metalparticle size on the fermi level equilibration. J. Am. Chem. Soc.2004,126,4943–4950.
    [14] D.Y. Zhang, D. Yang, H.J. Zhang, et al. Synthesis and photocatalytic properties of hollowmicroparticles of titania and titania/carbon composites templated by sephadex G-100. Chem. Mater.2006,18,3477–3485.
    [15] Z.B. Lei, Y. Xiao, L.Q. Dang, et al. Nickel-catalyzed fabrication of SiO2, TiO2/graphitized carbon,and the resultant graphitized carbon with periodically macroporous structure. Chem. Mater.2007,19,477–484.
    [16] H.P. Boehm, E. Diehl, W. Heck, et al. Angew. Chem. Int. Ed. Engl.1964,76,742–751.
    [17] V.K. Gupta, A. Mittal, R. Jain, et al. Adsorption of safranin-T from wastewater using wastematerials--activated carbon and activated rice husks. J. Colloid Interf. Sci.,2006,303,80–86.
    [18] Y.S. Al-Degs, M.I. El-Barghouthi, A.A Issa, et al. Sorption of Zn(II), Pb(II), and Co(II) using naturalsorbents:Equilibrium and kinetic studies. Water Research,2006,40,2645–2658.
    [19] H.P. Klug, L.E. Alexander, X-ay Diffraction Procedure for Polycrystalline and Amorphous Materials,2nded. Wiley: New York,1974.
    [20] D. Chen, Z. Jiang, J. Geng, et al. Carbon and nitrogen co-doped TiO2with enhanced visible-lightphotocatalytic activity. Ind. Eng. Chem. Res.,2007,46,2741-2746.
    [21] W.J. Ren, Z.H. Ai, F.L. Jia, et al. Low temperature preparation and visible light photocatalyticactivity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B: Environ.,2007,69,138–144.
    [22] M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocompositematerials. Chem. Mater.,2001,13,3169–3183.
    [23] K.S.W. Sing, D.H. Evett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska,Reporting physisorption data for gas/solid systems with special reference to the determination ofsurface area and porosity. Pure Appl. Chem.,1985,57,603–619.
    [24] T.Z. Ren, Z.Y. Yuan, B.L. Su, Surfactant-assisted preparation of hollow microspheres of mesoporousTiO2. Chem. Phys. Lett.,2003,374,170–175.
    [25] Z.Y. Yuan, T.Z. Ren, A. Azioune, et al. Self-assembly of hierarchically mesoporous-macroporousphosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chem. Mater.,2006,18,1753–1767.
    [26] L. Ramqvist, K. Hamrin, G. Johansson, et al. Charge transfer in transition metal carbides and relatedcompounds studied by ESCA. J. Phys. Chem. Solids,1969,30,1835–1847.
    [27] Y.Z. Li, D.S. Hwang, N.H. Lee, et al. Synthesis and characterization of carbon-doped titania as anartificial solar light sensitive photocatalyst. Chem. Phys. Lett.,2005,404,25–29.
    [28] X.Y. Du, Y. Wang, Y.Y. Mu, et al. A new highly selective H2sensor based on TiO2/PtO-Pt dual-layerfilms. Chem. Mater.,2002,14,3953–3957.
    [29]H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO2powders as a visible-light sensitivephotocatalyst. Chem. Lett.,2003,32,772–773.
    [30] Q. Xiao, J. Zhang, C. Xiao, et al. Solar photocatalytic degradation of methylene blue in carbon-dopedTiO2nanoparticles suspension. Solar Energy,2008,82,706–713.
    [31] K. Nagaveni, M.S. Hegde, N. Ravishankar, et al. Synthesis and structure of nanocrystalline TiO2withlower band gap showing high photocatalytic activity. Langmuir,2004,20,2900–2907.
    [32] P.M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2studied by optical, FTIR and X-rayphotoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films,2000,358,122–130.
    [33] P.H. Matter, E. Wang, U.S. Ozkan, Preparation of nanostructured nitrogen-containing carboncatalysts for the oxygen reduction reaction from SiO2-and MgO-supported metal particles. J. Catal.,2006,243,395–399.
    [34] P.H. Matter, E. Wang, M. Arias, et al. Oxygen reduction reaction activity and surface properties ofnanostructured nitrogen-containing carbon. J. Mol. Catal. A: Chem.,2007,264,73–77.
    [35] J. Yang, H.Z. Bai, X.C. Tan, et al. IR and XPS investigation of visible-lightphotocatalysis-nitrogen-carbon-doped TiO2film. Appl. Surf. Sci.,2006,253,1988-1994.
    [36] Z.Y. Wang, N.S. Ergang, M.A. Al-Daous, et al. Synthesis and characterization of three-dimensionallyordered macroporous carbon/titania nanoparticle composites. Chem. Mater.2005,17,6805–6813.
    [37] Simaratanamongkol, P. Thiravetyan, Decolorization of melanoidin by activated carbon obtained frombagasse bottom ash. J. Food Eng.,2010,96,14–17.
    [38] C.H. Huang, D. Gu, D.Y. Zhao, et al. Direct synthesis of controllable microstructures of thermallystable and ordered mesoporous crystalline titanium oxides and carbide/carbon composites. Chem.Mater.2010,22,1760–1767.
    [39] D. Gu, Y. Lu, B.C. Yang, et al. Facile preparation of micro–mesoporous carbon-doped TiO2photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun.,2008,2453–2455.
    [40] S. Azizian.Kinetic models of adsorption:a theoretical analysis. J. Colloid Interf. Sci.,2004,276,47–52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700