用户名: 密码: 验证码:
几类多孔材料储氢性能的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢能是一种理想的清洁能源,寻找合适的材料来存储足够的氢气满足实际需要是目前氢能利用的关键问题。本论文首先介绍了目前世界能源现状、氢能的优点及存储方法,回顾了多孔纳米材料的储氢研究进展,并总结了影响多孔材料氢气存储的因素。关于预测和模拟的理论基础,包括量子计算化学的发展历史、密度泛函理论和巨正则蒙特卡洛方法等,以及计算中用到的量子化学计算软件包,在论文中予以详细介绍。
     我们通过富勒烯嵌入和锂掺杂的组合方法改性IRMOF-10、-12和-14三种大孔径的金属有机骨架材料(MOF)。巨正则蒙特卡洛模拟预测了它们在近环境条件下,组合修饰的MOF结构可以获得良好的储氢质量密度和体积密度,从理论上实现了美国能源部制定的双重目标。第一性原理计算发现,锂原子在材料上失去部分电荷而引起的静电场对其周围的吸附的氢气具有极化效应,这将增强了氢气在材料中的结合能,最终引起氢气存储性能的提升。富勒烯掺杂的主要影响集中在两个方面——增加氢气体积存储量和提供锂原子掺杂的位置。材料的物理性质对氢气存储性能也有一定的影响,包括吸附焓、晶体密度、表面积、孔隙体积等。
     通过碳纳米管嵌入和锂掺杂相结合的组合方法,改性大孔径共价有机骨架材料COF-108,其氢气存储性能可以达到5.83wt%和32.4g/L,是一种非常良好的氢气存储材料。组合改性方法中,碳纳米管的主要作用是提供更多的锂掺杂位置,锂的主要作用是提高材料的氢气存储性能。我们嵌入不同直径的纳米管来探究氢气存储的最佳孔隙直径,分析孔隙与存储量的关系发现,最适合氢气存储的孔隙直径在4-5A之间,大约为氢气动力学直径的1.5倍。
     此外,我们还研究了二维多孔碳材料的改性及其储氢能力。密度泛函计算优化了氢气吸附在氮替代掺杂的多孔石墨烯(1Li-nN-PG)材料上的结构,发现单个锂原子周围能够稳定吸附至少3个氢气分子。差分电荷密度以及结合能确定了氢气的存储受到了锂原子和氮原子的双重影响;在硼掺杂的多孔石墨烯中,通过比较氢气吸附的几何结构、吸附能发现金属钙原子掺杂比锂掺杂对氢气储存更加有利,而GCMC模拟结果证实了这一点,4Li-2B-PG-H和4Ca-2B-PG-H中氢气的室温存储性能分别达到了6.4wt%和6.8wt%,它们均超过了U.S. DOE的目标;研究硼掺杂的石墨一炔发现,除了掺杂的硼、锂原子外,主体材料本身的基团——炔基对氢气的存储性能也有影响,而第一性原理计算、基于从头算的分子动力学模拟以及GCMC模拟均显示,锂修饰的BG是一种在室温下具有较高氢气存储性能的材料,在100bar下可高达7.41wt%。
Hydrogen is an ideal clean energy resource, and the key issue for hydrogen application is to develop a suitable material which can store enough hydrogen to satisify the practical requiement. In this dissertation, we first introduce the current energy situation and the advantages of hydrogen energy as well as its storage methods, and review the capacities of hydrogen storage in porous materials materials. Besides, the factors affecting the capacity of hydrogen storage in porous materials are summarized. With regard to the fundamental theory and methodology for the simulations and prediction in our work, the development of quantum chemistry, the basic concept of density functional theory (DFT), grand canonical ensemble monte carlo (GCMC) method and some employed software packages are described in detail.
     Three materials, inculding IRMOF-10,-12and-14, were modified by fullerene impregnating and lithium doping, and their H2uptakes near ambient temperature were calculated by GCMC method. It is found that the gravimetric density and volumetric density for H2storage in the modified structures exceed the2017targets set by U.S. Department of Energy (U.S. DOE) in theory. First-principles results show that the electrostatic field caused by the charge transfer from lithium atoms to materials, polarizes the adsorbed H2, which could enhance the binding of the hydrogen, resulting in high performance of hydrogen storage in materials. The main effects of the fullerene impregnation are two folds:increasing the volumetric density of hydrogen storage and providing additional sites for lithium doping. Further, the hydrogen storage are also dependent on the physical properties of materials, including adsorption enthalpy, crystal density, surface area, pore volume, etc.
     The covalent organic framework, COF-108, a crystal material with large free volume, is modified by single-walled nanotube inserting (SWNT) and metal doping. Our calculation results shown that the modified COF-108have the capacities of5.83wt%and32.4g/L at298K and100bar, which demonstrated that the modified COF-108is suitable for hydrogen storage. Focused on modification methods, the SWNTs play an important role in supplying more places for Li doping, and Li atoms dominate the H2uptakes. We explored the best pore size for hydrogen storage through choosing inserted SWNTs with different diameters. By analysizing the relationship between the pore size and hydrogen uptake, we found that the favorable pore size for hydrogen storage should be in the range of4-5A, about1.5times of the kinetic diameter of hydrogen molecule.
     Furthermore, we studied the modified two-dimensional porous carbon materials (CMs) and their hydrogen storage properties. The H2adsorbed on nitrogen substituted porous graphene (1Li-nN-PG) were optimized by DFT calculations, and we found that at least three H2molecules can be adsorbed around each Li atom. The charge density difference plot and binding energy of H2verified that both the Li and N atoms are responsible for H2adsorption. In boron-substituted PG, by comparing the geometric structures and adsorption energies, we observed that the Ca doping is more effective than the Li doping to improve hydrogen storage, which is further confirmed by GCMC simulations. GCMC results show that in4Li-2B-PG-H and4ca-2B-PG-H, the hydrogen storage at room temperature are6.4wt%and6.8wt%, respectively, which are higher than the U.S. DOE target. The boron substituted graphyne (BG) was employed to store hydrogen at room temperature. The calculated results indicate that the boron, lithium, and alkynyl groups in graphyne all contribute to hydrogen uptake. In addition, multiscale simulations suggest that Li doped BG has a high capacity of hydrogen storage at298K,100bar which reaches7.41wt%.
引文
[1]王修智,程林.能量之源(能源卷).第1版.山东济南:山东科学技术出版社,2008.
    [2]翟秀静,刘奎仁,韩庆编.新能源技术.第2版.北京:化学工业出版社,2010.
    [3]毛宗强.氢能:21世纪的绿色能源.第1版.北京:化学工业出版社,2005.
    [4]DOE plan:http://wwwl.eere.energy.gov/hydrogenandfuelcells/storage/.
    [5]IEA project:http://ieahia.org/pdfs/StrategicPlan2009-2015.pdf.
    [6]D. P. Broom. Hydrogen storage materials.1st edition. London:Springer London, 2011.
    [7]J. L. C. Rowsell, O. M. Yaghi. Metal-organic frameworks:a new class of porous materials. Microporous and Mesoporous Materials.2004(73):3-14.
    [8]H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature.1999(402): 276-279.
    [9]M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O. M. Yaghi. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science.2002(295):469-472.
    [10]O. M. Yaghi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim. Reticular synthesis and the design of new materials. Nature.2003(423):705-714.
    [11]H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe,O. M. Yaghi. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature.2004(427):523-527.
    [12]H. X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi. Multiple functional groups of varying ratios in metal-organic frameworks. Science.2010(327):846-850.
    [13]H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, O. M. Yaghi. Ultrahigh porosity in metal-organic frameworks. Science.2010(329):424-428.
    [14]M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke, M. O'Keeffe, O. M. Yaghi. Modular chemistry:Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Accounts of Chemical Research. 2001(34):319-330.
    [15]S. L. James. Metal-organic frameworks. Chemical Society Reviews.2003(32): 276-288.
    [16]M. Dinca, A. F. Yu, J. R. Long. Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate:Syntheses, structures, and hydrogen storage properties. Journal of the American Chemical Society.2006(128):8904-8913.
    [17]J. L. C. Rowsell, O. M. Yaghi. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. Journal of the American Chemical Society. 2006(128):1304-1315.
    [18]J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp. Metal-organic framework materials as catalysts. Chemical Society Reviews.2009(38): 1450-1459.
    [19]R. J. Kuppler, D. J. Timmons, Q. R. Fang, J. R. Li, T. A. Makal, M. D. Young, D. Q. Yuan, D. Zhao, W. J. Zhuang, H. C. Zhou. Potential applications of metal-organic frameworks. Coordination Chemistry Reviews.2009(253):3042-3066.
    [20]D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O'keeffe, O. M. Yaghi. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chemical Society Reviews.2009(38):1257-1283.
    [21]Z. Q. Wang, S. M. Cohen. Postsynthetic modification of metal-organic frameworks. Chemical Society Reviews.2009(38):1315-1329.
    [22]B. L. Chen, S. C. Xiang, G D. Qian. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research.2010(43): 1115-1124.
    [23]O. K. Farha, J. T. Hupp. Rational design, synthesis, purification, and activation of metal-organic framework materials. Accounts of Chemical Research.2010(43):1166-1175.
    [24]S. T. Meek, J. A. Greathouse, M. D. Allendorf. Metal-organic frameworks:a rapidly growing class of versatile nanoporous materials. Advanced Materials.2011(23):249-267.
    [25]K. K. Tanabe, S. M. Cohen. Postsynthetic modification of metal-organic frameworks-a progress report. Chemical Society Reviews.2011(40):498-519.
    [26]D. Zhao, D. J. Timmons, D. Q. Yuan, H. C. Zhou. Tuning the topology and functionality of metal-organic frameworks by ligand design. Accounts of Chemical Research.2011(44):123-133.
    [27]H. C. Zhou, J. R. Long, O. M. Yaghi. Introduction to metal-organic frameworks. Chemical Reviews.2012(112):673-674.
    [28]Q. Yang, C. Zhong. Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. The Journal of Physical Chemistry B. 2006(110):17776-17783.
    [29]J.-R. Li, R. J. Kuppler, H.-C. Zhou. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews.2009(38):1477-1504.
    [30]D. Britt, H. Furukawa, B. Wang, T. G. Glover, O. M. Yaghi. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences.2009(106):20637-20640.
    [31]C.-D. Wu, A. Hu, L. Zhang, W. Lin. A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. Journal of the American Chemical Society.2005(127):8940-8941.
    [32]S. Achmann, G. Hagen, J. Kita, I. Malkowsky, C. Kiener, R. Moos. Metal-organic frameworks for sensing applications in the gas phase. Sensors.2009(9):1574-1589.
    [33]Z.-Z. Lu, R. Zhang, Y.-Z. Li, Z.-J. Guo, H.-G. Zheng. Solvatochromic behavior of a nanotubular metal-organic framework for sensing small molecules. Journal of the American Chemical Society.2011(133):4172-4174.
    [34]Y. Kinoshita, I. Matsubara, Y. Saito. The crystal structure of bis(glutaronitrilo)copper(i) nitrate. Bulletin of the Chemical Society of Japan.1959(32): 1216-1221.
    [35]M. Kondo, T. Yoshitomi, H. Matsuzaka, S. Kitagawa, K. Seki. Three-dimensional framework with channeling cavities for small molecules:{[M2(4,4'-bpy)3(NO3)4]·xH2O}n (M=Co, Ni, Zn). Angewandte Chemie International Edition in English.1997(36): 1725-1727.
    [36]N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi. Hydrogen storage in microporous metal-organic frameworks. Science.2003(300): 1127-1129.
    [37]J. L. C. Rowsell, A. R. Millward, K. S. Park, O. M. Yaghi. Hydrogen sorption in functionalized metal-organic frameworks. Journal of the American Chemical Society. 2004(126):5666-5667.
    [38]A. G Wong-Foy, A. J. Matzger, O. M. Yaghi. Exceptional H2 saturation uptake in microporous metal-organic frameworks. Journal of the American Chemical Society. 2006(128):3494-3495.
    [39]B. Panella, M. Hirscher, H. Putter, U. Muller. Hydrogen adsorption in metal-organic frameworks:Cu-MOFs and Zn-MOFs compared. Advanced Functional Materials. 2006(16):520-524.
    [40]S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society.2007(129):14176-14177.
    [41]M. P. Suh, H. J. Park, T. K. Prasad, D.-W. Lim. Hydrogen storage in metal-organic frameworks. Chemical Reviews.2012(112):782-835.
    [42]B. Panella, M. Hirscher. Hydrogen physisorption in metal-organic porous crystals. Advanced Materials.2005(17):538-541.
    [43]B. Kesanli, Y. Cui, M. R. Smith, E. W. Bittner, B. C. Bockrath, W. Lin. Highly interpenetrated metal-organic frameworks for hydrogen storage. Angewandte Chemie International Edition.2005(44):72-75.
    [44]K. Sumida, C. M. Brown, Z. R. Herm, S. Chavan, S. Bordiga, J. R. Long. Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)-a metal-organic framework with open Mg2+ adsorption sites. Chemical Communications.2011(47): 1157-1159.
    [45]M. Hirscher. Hydrogen storage by cryoadsorption in ultrahigh-porosity metal-organic frameworks. Angewandte Chemie International Edition.2011(50):581-582.
    [46]H. Frost, T. Duren, R. Q. Snurr. Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. The Journal of Physical Chemistry B.2006(110):9565-9570.
    [47]T. Duren, Y.-S. Bae, R. Q. Snurr. Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chemical Society Reviews. 2009(38):1237-1247.
    [48]J. L. C. Rowsell, J. Eckert, O. M. Yaghi. Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. Journal of the American Chemical Society.2005(127):14904-14910.
    [49]J. L. C. Rowsell, E. C. Spencer, J. Eckert, J. A. K. Howard, O. M. Yaghi. Gas adsorption sites in a large-pore metal-organic framework. Science.2005(309):1350-1354.
    [50]T. B. Lee, D. Kim, D. H. Jung, S. B. Choi, J. H. Yoon, J. Kim, K. Choi, S.-H. Choi. Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today.2007(120):330-335.
    [51]Q. Yang, C. Zhong. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. The Journal of Physical Chemistry B.2005(109): 11862-11864.
    [52]A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger, O. M. Yaghi. Porous, crystalline, covalent organic frameworks. Science.2005(310):1166-1170.
    [53]A. P. Cote, H. M. El-Kaderi, H. Furukawa, J. R. Hunt, O. M. Yaghi. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. Journal of the American Chemical Society.2007(129):12914-12915.
    [54]H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O'Keeffe, O. M. Yaghi. Designed synthesis of 3D covalent organic frameworks. Science. 2007(316):268-272.
    [55]G. Garberoglio. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir.2007(23):12154-12158.
    [56]G. Garberoglio, R. Vallauri. Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks. Microporous and Mesoporous Materials.2008(116): 540-547.
    [57]S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard. Covalent organic frameworks as exceptional hydrogen storage materials. Journal of the American Chemical Society. 2008(130):11580-11581.
    [58]J. R Hunt, C. J. Doonan, J. D. LeVangie, A. P. Cote, O. M. Yaghi. Reticular synthesis of covalent organic borosilicate frameworks. Journal of the American Chemical Society.2008(130):11872-11873.
    [59]E. Klontzas, E. Tylianakis, G. E. Froudakis. Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation. Journal of Physical Chemistry C.2008(112):9095-9098.
    [60]Y. W. Li, R. T. Yang. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover. AIChE Journal.2008(54):269-279.
    [61]M. Mastalerz. The next generation of shape-persistant zeolite analogues:covalent organic frameworks. Angewandte Chemie International Edition.2008(47):445-447.
    [62]R. W. Tilford, S. J. Mugavero, P. J. Pellechia, J. J. Lavigne. Tailoring microporosity in covalent organic frameworks. Advanced Materials 2008(20):2741-2746.
    [63]N. L. Campbell, R. Clowes, L. K. Ritchie, A. I. Cooper. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chemistry of Materials.2009(21): 204-206.
    [64]H. Furukawa, O. M. Yaghi. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. Journal of the American Chemical Society.2009(131):8875-8883.
    [65]S. S. Han, J. L. Mendoza-Cortes, W. A. Goddard. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chemical Society Reviews.2009(38):1460-1476.
    [66]F. J. Uribe-Romo, J. R Hunt, H. Furukawa, C. Klock, M. O'Keeffe, O. M. Yaghi. A crystalline imine-linked 3-D porous covalent organic framework. Journal of the American Chemical Society.2009(131):4570-4571.
    [67]Q. Y. Yang, C. L. Zhong. Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. Langmuir.2009(25): 2302-2308.
    [68]C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi. Exceptional ammonia uptake by a covalent organic framework. Nature Chemistry.2010(2): 235-238.
    [69]E. L. Spitler, W. R. Dichtel. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chemistry.2010(2):672-677.
    [70]M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel, T. Bein. A covalent organic framework with 4 nm open pores. Chemical Communications 2011(47):1707-1709.
    [71]P. Srepusharawoot, R H. Scheicher, C. M. Araujo, A. Blomqvist, U. Pinsook, R. Ahuja. Ab initio study of molecular hydrogen adsorption in covalent organic framework-1. Journal of Physical Chemistry C.2009(113):8498-8504.
    [72]B. Assfour, G Seifert. Adsorption of hydrogen in covalent organic frameworks: comparison of simulations and experiments. Microporous and Mesoporous Materials. 2010(133):59-65.
    [73]B. Assfour, G Seifert. Hydrogen adsorption sites and energies in 2D and 3D covalent organic frameworks. Chemical Physics Letters.2010(489):86-91.
    [74]E. Tylianakis, E. Klontzas, G E. Froudakis. Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. Nanoscale.2011(3):856-869.
    [75]S. Keskin. Adsorption, diffusion, and separation of CH4/H2 mixtures in covalent organic frameworks:molecular simulations and theoretical predictions. Journal of Physical Chemistry C.2012(116):1772-1779.
    [76]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. C60: Buckminsterfullerene. Nature.1985(318):162-163.
    [77]S. Iijima. Helical microtubules of graphitic carbon. Nature.1991(354):56-58.
    [78]S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993(363):603-605.
    [79]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science. 2004(306):666-669.
    [80]Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide:synthesis, properties, and applications. Advanced Materials.2010(22): 3906-3924.
    [81]K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Ultrahigh electron mobility in suspended graphene. Solid State Communications. 2008(146):351-355.
    [82]S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters.2008(100):016602.
    [83]A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Letters.2008(8): 902-907.
    [84]W. W. Cai, Y. W. Zhu, X. S. Li, R. D. Piner, R. S. Ruoff. Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Applied Physics Letters. 2009(95):123115.
    [85]X. S. Li, Y. W. Zhu, W. W. Cai, M. Borysiak, B. Y. Han, D. Chen, R. D. Piner, L. Colombo, R. S. Ruoff. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters.2009(9):4359-4363.
    [86]A. Vakil, N. Engheta. Transformation optics using graphene. Science.2011(332): 1291-1294.
    [87]S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, A. A. Balandin. Dimensional crossover of thermal transport in few-layer graphene. Nature Materials. 2010(9):555-558.
    [88]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen. Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C.2009(113): 13103-13107.
    [89]S.-M. Paek, E. Yoo, I. Honma. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letters.2008(9):72-75.
    [90]A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim. The electronic properties of graphene. Reviews of Modern Physics.2009(81):109-162.
    [91]Y. Zhang, Y.-W. Tan, H. L. Stormer, P. Kim. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature.2005(438):201-204.
    [92]H. B. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, A. F. Morpurgo. Bipolar supercurrent in graphene. Nature.2007(446):56-59.
    [93]L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li. Preparation, structure, and electrochemical properties of reduced graphene sheet films. Advanced Functional Materials.2009(19):2782-2789.
    [94]Y. Ohno, K. Maehashi, Y. Yamashiro, K. Matsumoto. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters.2009(9): 3318-3322.
    [95]N. Mohanty, V. Berry. Graphene-based single-bacterium resolution biodevice and DNA transistor:interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters.2008(8):4469-4476.
    [96]S. Park, R. S. Ruoff. Chemical methods for the production of graphenes. Nat Nano. 2009(4):217-224.
    [97]E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Letters.2008(8):2277-2282.
    [98]D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao. Li storage properties of disordered graphene nanosheets. Chemistry of Materials.2009(21):3136-3142.
    [99]M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Graphene-based ultracapacitors. Nano Letters.2008(8):3498-3502.
    [100]B. Seger, P. V. Kamat. Electrocatalytically active graphene-platinum nanocomposites:role of 2-D carbon support in PEM fuel cells. The Journal of Physical Chemistry C.2009(113):7990-7995.
    [101]C. Xu, X. Wang, J. Zhu. Graphene-metal particle nanocomposites. The Journal of Physical Chemistry C.2008(112):19841-19845.
    [102]G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, M. Chhowalla. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Applied Physics Letters.2008(92):233305.
    [103]J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans. Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters.2008(92): 263302.
    [104]G Srinivas, Y. Zhu, R, Piner, N. Skipper, M. Ellerby, R. Ruoff. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity. Carbon.2010(48): 630-635.
    [105]M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, R. Fasel. Porous graphenes:two-dimensional polymer synthesis with atomic precision. Chemical Communications.2009:6919-6921.
    [106]A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, C. N. R. Rao. Uptake of H2 and CO2 by graphene. The Journal of Physical Chemistry C. 2008(112):15704-15707.
    [107]J. H. Cho, S. J. Yang, K. Lee, C. R. Park. Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. International Journal of Hydrogen Energy.2011(36):12286-12295.
    [108]L. Wang, N. R. Stuckert, R. T. Yang. Unique hydrogen adsorption properties of graphene. AIChE Journal.2011(57):2902-2908.
    [109]Z. M. Ao, F. M. Peeters. High-capacity hydrogen storage in Al-adsorbed graphene. Physical Review B.2010(81):205406.
    [110]M. Zhou, Y. Lu, C. Zhang, Y. P. Feng. Strain effects on hydrogen storage capability of metal-decorated graphene:A first-principles study. Applied Physics Letters.2010(97): 103109-103103.
    [111]Y. Li, Z. Zhou, P. Shen, Z. Chen. Two-dimensional polyphenylene:experimentally available porous graphene as a hydrogen purification membrane. Chemical Communications.2010(46):3672-3674.
    [112]A. Du, Z. Zhu, S. C. Smith. Multifunctional porous graphene for nanoelectronics and hydrogen storage:new properties revealed by first principle calculations. Journal of the American Chemical Society.2010(132):2876-2877.
    [113]C. Uthaisar, V. Barone. Edge effects on the characteristics of li diffusion in graphene. Nano Letters.2010(10):2838-2842.
    [114]L.-J. Zhou, Z. F. Hou, L.-M. Wu. First-principles study of lithium adsorption and diffusion on graphene with point defects. The Journal of Physical Chemistry C.2012(116): 21780-21787.
    [115]K. T. Chan, J. B. Neaton, M. L. Cohen. First-principles study of metal adatom adsorption on graphene. Physical Review B.2008(77):235430.
    [116]G Li, Y. Li, H. Liu, Y. Guo, Y. Li, D. Zhu. Architecture of graphdiyne nanoscale films. Chemical Communications.2010(46):3256-3258.
    [117]R. H. Baughman, H. Eckhardt, M. Kertesz. Structure-property predictions for new planar forms of carbon:layered phases containing sp2 and sp atoms. The Journal of Chemical Physics.1987(87):6687-6699.
    [118]M. M. Haley, M. L. Bell, J. J. English, C. A. Johnson, T. J. R. Weakley. Versatile synthetic route to and DSC analysis of dehydrobenzoannulenes:crystal structure of a heretofore inaccessible [20] annulene derivative. Journal of the American Chemical Society.1997(119):2956-2957.
    [119]M. M. Haley, S. C. Brand, J. J. Pak. Carbon networks based on dehydrobenzoannulenes:synthesis of graphdiyne substructures. Angewandte Chemie International Edition in English.1997(36):836-838.
    [120]M. Sonoda, A. Inaba, K. Itahashi, Y. Tobe. Synthesis of differentially substituted hexaethynylbenzenes based on tandem sonogashira and negishi cross-coupling reactions. Organic Letters.2001(3):2419-2421.
    [121]W. B. Wan, M. M. Haley. Carbon networks based on dehydrobenzoannulenes.4. synthesis of "star" and "trefoil" graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. The Journal of Organic Chemistry.2001(66):3893-3901.
    [122]X. Wang, Z. Zeng, H. Ahn, G. Wang. First-principles study on the enhancement of lithium storage capacity in boron doped graphene. Applied Physics Letters.2009(95): 183103-183103.
    [123]H. Zhang, M. Zhao, X. He, Z. Wang, X. Zhang, X. Liu. High Mobility and high storage capacity of lithium in sp-sp2 hybridized carbon network:the case of graphyne. The Journal of Physical Chemistry C.2011(115):8845-8850.
    [124]K. Srinivasu, S. K. Ghosh. Graphyne and graphdiyne:promising materials for nanoelectronics and energy storage applications. Journal of Physical Chemistry C. 2012(116):5951-5956.
    [125]D. Kleppner, R. Jackiw. One hundred years of quantum physics. Science. 2000(289):893-898.
    [126]W. Heitler, F. London. Wechselwirkung neutraler atome und homoopolare bindung nach der quantenmechanik. Zeitschrift fur Physik.1927(44):455-472.
    [127]L. Pauling. The shared-electron chemical bond. Proceedings of the National Academy of Sciences of the United States of America.1928(14):359-362.
    [128]R. S. Mulliken. Bonding power of electrons and theory of valence. Chemical Reviews.1931(9):347-388.
    [129]H. Bethe. Termaufspaltung in Kristallen. Annalen der Physik.1929(395):133-208.
    [130]A. B. F. Duncan, J. A. Pople. The structure of some simple molecules with lone pair electrons. Transactions of the Faraday Society.1953(49):217-224.
    [131]R. Pariser, R. G Parr. A semi-empirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. Ⅰ. The Journal of Chemical Physics. 1953(21):466-471.
    [132]D. R. Hartree. The wave mechanics of an atom with a non-coulomb central field. part i. theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society.1928(24):89-110.
    [133]J. C. Slater. The normal state of helium. Physical Review.1928(32):349-360.
    [134]C. C. J. Roothaan. New developments in molecular orbital theory. Reviews of Modern Physics.1951(23):69-89.
    [135]P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Physical Review.1964(136): B864-B871.
    [136]W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review.1965(140):A1133-A1138.
    [137]M. Born, R. Oppenheimer. Zur quantentheorie der molekeln. Annalen der Physik. 1927(389):457-484.
    [138]C. M(?)ller, M. S. Plesset. Note on an approximation treatment for many-electron systems. Physical Review.1934(46):618-622.
    [139]L. H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society.1927(23):542-548.
    [140]E. Fermi. Eine statistische methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. Zeitschrift fur Physik.1928(48):73-79.
    [141]R. G Parr, S. K. Ghosh. Thomas-Fermi theory for atomic systems. Proceedings of the National Academy of Sciences of the United States of America.1986(83):3577-3579.
    [142]C. F. v. Weizsacker. Zur Theorie der Kernmassen. Zeitschrift fur Physik.1935(96): 431-458.
    [143]P. A. M. Dirac. The quantum theory of the electron. Proceedings of the Royal Society of London. Series A.1928(117):610-624.
    [144]R. Stowasser, R. Hoffmann. What do the kohn-sham orbitals and eigenvalues mean? Journal of the American Chemical Society.1999(121):3414-3420.
    [145]S. H. Vosko, L. Wilk, M. Nusair. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis. Canadian Journal of Physics.1980(58):1200-1211.
    [146]J. P. Perdew, Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B.1992(45):13244-13249.
    [147]R. M. Martin. Electronic structure:basic theory and practical methods. Cambridge university press,2004.
    [148]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A.1988(38):3098-3100.
    [149]C. Adamo, V. Barone. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:The mPW and mPWIPW models. The Journal of chemical physics.1998(108):664-675.
    [150]J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Physical review letters.1996(77):3865-3868.
    [151]J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B.1986(33):8822-8824.
    [152]C. Lee, W. Yang, R. G Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B.1988(37):785-789.
    [153]T. Asada, K. Terakura. Cohesive properties of iron obtained by use of the generalized gradient approximation. Physical Review B.1992(46):13599-13602.
    [154]L.-F. Yuan, J. Yang, Q. Li, Q.-S. Zhu. First-principles investigation for M(CO)n/Ag(110) (M=Fe, Co, Ni, Cu, Zn, and Ag; n=1,2) systems:Geometries, STM images, and vibrational frequencies. Physical Review B.2001(65):035415.
    [155]L.-F. Yuan, J. Yang, K. Deng, Q.-S. Zhu. A first-principles study on the structural and electronic properties of C36 molecules. The Journal of Physical Chemistry A. 2000(104):6666-6671.
    [156]W. Koch, M. C. Holthausen, M. C. Holthausen. A chemist's guide to density functional theory. Wiley-Vch Weinheim,2001.
    [157]M. Ernzerhof, G E. Scuseria. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. The Journal of Chemical Physics.1999(110):5029.
    [158]X. Xu, W. A. Goddard. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proceedings of the National Academy of Sciences of the United States of America. 2004(101):2673-2677.
    [159]汪志诚.热力学·统计物理.第3版.北京:高等教育出版社,2003.
    [160]K. M. Thomas. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications:comparison with other nanoporous materials. Dalton Transactions.2009:1487-1505.
    [161]R. B. Getman, Y. S. Bae, C. E. Wilmer, R. Q. Snurr. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chemical Reviews.2012(112):703-723.
    [162]J. Sculley, D. Q. Yuan, H. C. Zhou. The current status of hydrogen storage in metal-organic frameworks-updated. Energy & Environmental Science.2011(4): 2721-2735.
    [163]S. Q. Ma, H. C. Zhou. Gas storage in porous metal-organic frameworks for clean energy applications. Chemical Communications.2010(46):44-53.
    [164]Y. H. Hu, L. Zhang. Hydrogen storage in metal-organic frameworks. Advanced Materials.2010(22):E117-E130.
    [165]L. J. Murray, M. Dinca, J. R. Long. Hydrogen storage in metal-organic frameworks. Chemical Society Reviews.2009(38):1294-1314.
    [166]L. F. Wang, R. T. Yang. New sorbents for hydrogen storage by hydrogen spillover-a review. Energy & Environmental Science.2008(1):268-279.
    [167]J. L. C. Rowsell, O. M. Yaghi. Strategies for hydrogen storage in metal-organic frameworks. Angewandte Chemie International Edition.2005(44):4670-4679.
    [168]L. Pan, M. B. Sander, X. Huang, J. Li, M. Smith, E. Bittner, B. Bockrath, J. K. Johnson. Microporous metal organic materials:promising candidates as sorbents for hydrogen storage. Journal of the American Chemical Society.2004(126):1308-1309.
    [169]Y. Li, R. T. Yang. Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. Journal of the American Chemical Society.2006(128):8136-8137.
    [170]X. Lin, J. Jia, X. Zhao, K. M. Thomas, A. J. Blake, G S. Walker, N. R. Champness, P. Hubberstey, M. Schroder. High H2 adsorption by coordination-framework materials. Angewandte Chemie International Edition.2006(45):7358-7364.
    [171]A. Dailly, J. J. Vajo, C. C. Ahn. Saturation of hydrogen sorption in zn benzenedicarboxylate and Zn naphthalenedicarboxylate. The Journal of Physical Chemistry B.2006(110):1099-1101.
    [172]Y. Li, R. T. Yang. Gas adsorption and storage in metal-organic framework MOF-177. Langmuir.2007(23):12937-12944.
    [173]R. C. Lochan, M. Head-Gordon. Computational studies of molecular hydrogen binding affinities:The role of dispersion forces, electrostatics, and orbital interactions. Physical Chemistry Chemical Physics.2006(8):1357-1370.
    [174]A. Mavrandonakis, E. Tylianakis, A. K. Stubos, G. E. Froudakis. Why Li doping in MOFs enhances H2 storage capacity? A multi-scale theoretical study. Journal of Physical Chemistry C.2008(112):7290-7294.
    [175]K. L. Mulfort, J. T. Hupp. Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. Inorganic Chemistry.2008(47):7936-7938.
    [176]K. L. Mulfort, T. M. Wilson, M. R. Wasielewski, J. T. Hupp. Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. Langmuir.2009(25):503-508.
    [177]A. Li, R. F. Lu, Y. Wang, X. Wang, K. L. Han, W. Q. Deng. Lithium-doped conjugated microporous polymers for reversible hydrogen storage. Angewandte Chemie International Edition.2010(49):3330-3333.
    [178]S. S. Han, W. Q. Deng, W. A. Goddard. Improved designs of metal-organic frameworks for hydrogen storage. Angewandte Chemie International Edition.2007(46): 6289-6292.
    [179]A. W. Thornton, K. M. Nairn, J. M. Hill, A. J. Hill, M. R. Hill. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage. Journal of the American Chemical Society.2009(131):10662-10669.
    [180]P. M. Morse. Diatomic molecules according to the wave mechanics. Ⅱ. vibrational levels. Physical Review.1929(34):57-64.
    [181]Stephen L. Mayo, Barry D. Olafson, W. A. Goddard. DREIDING:a generic force field for molecular simulations. Journal of Physical Chemistry.1990(94):8897-8909.
    [182]S. S. Han, W. A. Goddard. Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. Journal of the American Chemical Society.2007(129): 8422-8423.
    [183]A. Blomqvist, C. M. Araujo, P. Srepusharawoot, R. Ahuja. Li-decorated metal-organic framework 5:A route to achieving a suitable hydrogen storage medium. Proceedings of the National Academy of Sciences of the United States of America. 2007(104):20173-20176.
    [184]U. Zimmermann, N. Malinowski, A. Burkhardt, T. P. Martin. Metal-coated fullerenes. Carbon.1995(33):995-1006.
    [185]L. Cristofolini, M. Ricco, R. De Renzi. NMR and high-resolution x-ray diffraction evidence for an alkali-metal fulleride with large interstitial clusters:Li12C60. Physical Review B.1999(59):8343-8346.
    [186]Q. Sun, P. Jena, Q. Wang, M. Marquez. First-principles study of hydrogen storage on Li12C60. Journal of the American Chemical Society.2006(128):9741-9745.
    [187]D. Ostling, A. Rosen. Electronic structure and optical properties of bare and coated C60 molecules. Chemical Physics Letters.1996(256):109-118.
    [188]K. Doll, N. M. Harrison, V. R Saunders. A density functional study of lithium bulk and surfaces. Journal of Physics:Condensed Matter.1999(11):5007-5019.
    [189]B. L. Chen, N. W. Ockwig, A. R. Millward, D. S. Contreras, O. M. Yaghi. High H2 adsorption in a microporous metal-organic framework with open metal sites. Angewandte Chemie International Edition.2005(44):4745-4749.
    [190]I. Narita, T. Oku. Molecular dynamics calculation of H2 gas storage in C60 and B36N36 clusters. Diamond and Related Materials.2002(11):945-948.
    [191]R. B. Getman, J. H. Miller, K. Wang, R. Q. Snurr. Metal alkoxide functionalization in metal-organic frameworks for enhanced ambient-temperature hydrogen storage. Journal of Physical Chemistry C.2011(115):2066-2075.
    [192]S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W. Wang. Construction of covalent organic framework for catalysis:Pd/COF-LZU1 in suzuki-miyaura coupling reaction. Journal of the American Chemical Society.2011(133): 19816-19822.
    [193]D. P. Cao, J. H. Lan, W. C. Wang, B. Smit. Lithium-doped 3D covalent organic frameworks:high-capacity hydrogen storage materials. Angewandte Chemie International Edition.2009(48):4730-4733.
    [194]P. Ryan, L. J. Broadbelt, R. Q. Snurr. Is catenation beneficial for hydrogen storage in metal-organic frameworks? Chemical Communications.2008:4132-4134.
    [195]T. B. Lee, D. H. Jung, D. Kim, J. Kim, K. Choi, S. H. Choi. Molecular dynamics simulation study on the hydrogen adsorption and diffusion in non-interpenetrating and interpenetrating IRMOFs. Catalysis Today.2009(146):216-222.
    [196]Z. H. Xiang, Z. Hu, D. P. Cao, W. T. Yang, J. M. Lu, B. Y. Han, W. C. Wang. Metal-organic frameworks with incorporated carbon nanotubes:improving carbon dioxide and methane storage capacities by lithium doping. Angewandte Chemie International Edition.2011(50):491-494.
    [197]F. Li, J. J. Zhao, B. Johansson, L. X. Sun. Improving hydrogen storage properties of covalent organic frameworks by substitutional doping. International Journal of Hydrogen Energy.2010(35):266-271.
    [198]D. J. Collins, H. C. Zhou. Hydrogen storage in metal-organic frameworks. Journal of Materials Chemistry.2007(17):3154-3160.
    [199]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, P. Avouris.100-GHz transistors from wafer-scale epitaxial graphene. Science.2010(327): 662-662.
    [200]M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature.2011(474):64-67.
    [201]A. K. Geim, K. S. Novoselov. The rise of graphene. Nature Materials.2007(6): 183-191.
    [202]X. Yang, M. S. Xu, W. M. Qiu, X. Q. Chen, M. Deng, J. L. Zhang, H. Iwai, E. Watanabe, H. Z. Chen. Graphene uniformly decorated with gold nanodots:in situ synthesis, enhanced dispersibility and applications. Journal of Materials Chemistry.2011(21): 8096-8103.
    [203]C. Cazorla, S. A. Shevlin, Z. X. Guo. First-principles study of the stability of calcium-decorated carbon nanostructures. Physical Review B.2010(82).
    [204]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature.2009(457):706-710.
    [205]Y. W. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff. Carbon-based supercapacitors produced by activation of graphene. Science.2011(332): 1537-1541.
    [206]M. F. El-Kady, V. Strong, S. Dubin, R. B. Kaner. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science. 2012(335):1326-1330.
    [207]K. L. Mulfort, J. T. Hupp. Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. Journal of the American Chemical Society.2007(129):9604-9605.
    [208]K. Srinivasu, S. K. Ghosh. Tuning the metal binding energy and hydrogen storage in alkali metal decorated MOF-5 through boron doping:a theoretical investigation. Journal of Physical Chemistry C.2011(115):16984-16991.
    [209]X. L. Zou, G Zhou, W. H. Duan, K. Choi, J. Ihm. A chemical modification strategy for hydrogen storage in covalent organic frameworks. Journal of Physical Chemistry C. 2010(114):13402-13407.
    [210]Y. Zhao, Y.-H. Kim, A. C. Dillon, M. J. Heben, S. B. Zhang. Hydrogen storage in novel organometallic buckyballs. Physical Review Letters.2005(94):155504.
    [211]H. Lee, J. Ihm, M. L. Cohen, S. G. Louie. Calcium-decorated carbon nanotubes for high-capacity hydrogen storage:First-principles calculations. Physical Review B.2009(80): 115412.
    [212]G. Kim, S.-H. Jhi, N. Park, S. G Louie, M. L. Cohen. Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Physical Review B.2008(78): 085408.
    [213]H. Lee, J. Ihm, M. L. Cohen, S. G. Louie. Calcium-decorated graphene-based nanostructures for hydrogen storage. Nano Letters.2010(10):793-798.
    [214]L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, C. N. R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Advanced Materials 2009(21):4726-4730.
    [215]D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G Yu. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters.2009(9): 1752-1758.
    [216]X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai. N-doping of graphene through electrothermal reactions with ammonia. Science.2009(324): 768-771.
    [217]P. Reunchan, S.-H. Jhi. Metal-dispersed porous graphene for hydrogen storage. Applied Physics Letters.2011(98):093103.
    [218]Y. Ding, Y. Wang, S. Shi, W. Tang. Electronic structures of porous graphene, BN, and BC2N sheets with one- and two-hydrogen passivations from first principles. The Journal of Physical Chemistry C.2011(115):5334-5343.
    [219]P. Pyykko, M. Atsumi. Molecular single-bond covalent radii for elements 1-118. Chemistry-A European Journal.2009(15):186-197.
    [220]P. Dalach, H. Frost, R. Q. Snurr, D. E. Ellis. Enhanced hydrogen uptake and the electronic structure of lithium-doped metal-organic frameworks. Journal of Physical Chemistry C.2008(112):9278-9284.
    [221]E. Klontzas, A. Mavrandonakis, E. Tylianakis, G. E. Froudakis. Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. Nano Letters.2008(8):1572-1576.
    [222]D. W. Rao, R. F. Lu, C. Y. Xiao, E. J. Kan, K. M. Deng. Lithium-doped MOF impregnated with lithium-coated fullerenes:A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chemical Communications 2011(47): 7698-7700.
    [223]E. Klontzas, E. Tylianakis, G. E. Froudakis. Hydrogen storage in lithitim-functionalized 3-D covalent-organic framework materials. Journal of Physical Chemistry C.2009(113):21253-21257.
    [224]C. Kittel. Introduction to Solid State Physics.8th edition. New York:John Wiely & Sons, INC.,2005.
    [225]P. H. T. Philipsen, E. J. Baerends. Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids. Physical Review B.2000(61):1773-1778.
    [226]C. Li, J. B. Li, F. M. Wu, S. S. Li, J. B. Xia, L. W. Wang. High capacity hydrogen storage in ca decorated graphyne:a first-principles study. Journal of Physical Chemistry C. 2011(115):23221-23225.
    [227]J. Zhou, K. Lv, Q. Wang, X. S. Chen, Q. Sun, P. Jena. Electronic structures and bonding of graphyne sheet and its BN analog. The Journal of Chemical Physics.2011(134): 174701-174705.
    [228]N. Narita, S. Nagai, S. Suzuki, K. Nakao. Optimized geometries and electronic structures of graphyne and its family. Physical Review B.1998(58):11009-11014.
    [229]J. Schrier. Fluorinated and nanoporous graphene materials as sorbents for gas separations. ACS Applied Materials & Interfaces.2011 (3):4451-4458.
    [230]P. Trucano, R. Chen. Structure of graphite by neutron diffraction. Nature. 1975(258):136-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700