用户名: 密码: 验证码:
石墨烯基碳纳米材料的制备及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯,一种二维晶体结构的单碳原子层纳米材料,可称为“单层石墨片”,是碳家族中的新成员。因其集高比表面积、优异的导热导电性、优良的热稳定性及量子隧道效应等多种物理化学特性于一身,而受到人们的广泛关注,成为近十年来科学技术界争相研究的热点。碳纳米材料的性能主要取决于其本身的结构与形态,因而具有多样性特征,使得它们在储能、催化、传感器以及电子学、光学等领域展现出巨大的应用潜能。本论文的主要研究目标在于采用简单易行的物理化学法对石墨烯的结构和形貌进行处理,并系统地探讨改性后石墨烯基纳米材料的性能与结构的相互关系,研究它们在电化学电容器和锂离子电池方面的应用,取得了以下主要成果:
     (1)采用一种简单而新颖的限域微观爆炸法制备出高质量的石墨烯纳米卷。该方法成功地实现了二维石墨烯向准一维石墨烯基纳米碳材料的转变,同时提出了微小气泡在超声作用下能迅速膨胀而诱导氧化石墨烯片层脱落并卷曲的形成机理。通过表征方法和电化学测试手段考察了石墨烯纳米卷的形貌结构和超电容性能。结果表明,所制备的石墨烯纳米卷具有独特的卷曲构造、两端开口和内外边缘呈开放状等结构特点,使得它具有比单一石墨烯片更优异的抗团聚性能;由于石墨烯纳米卷可利用面积大而呈现出优异的电化学电容性能,单一石墨烯的比电容仅为110F g~(-1),而石墨烯纳米卷的电容高达162.2F g~(-1),由此表明仅仅改变石墨烯片层的微观形貌可使其电容性能提升50%。此外,经1000次循环后,石墨烯纳米卷表现出优异的循环稳定性能。由此可知,限域微观爆炸法是一种简易制备石墨烯纳米卷的可行方法,所制备的纳米卷是一种具有广泛应用前景的新型准一维石墨烯基纳米材料。
     (2)以水相Fe~(3+)离子为催化剂,采用限域微观爆炸法制备出边缘卷曲的石墨烯,与未卷曲部位构建了卷-片一体的碳纳米材料。通过透射电子显微电镜、N2吸脱附曲线和拉曼光谱研究了所制备材料的形貌和结构。结果表明,卷状结构分布在石墨烯上,形成了卷-片一体的碳纳米材料,其石墨烯的成卷率大约为30%,比表面积为251.2m2g~(-1),该值远大于单一石墨烯(78.2m2g~(-1))的比表面积。采用循环伏安、恒流充放电以及电化学阻抗谱等电化学方法测试了所制备材料的超电容性能。结果表明,在1mol L~(-1)的硫酸溶液中,1.0A g~(-1)的电流密度下,卷-片一体碳纳米材料的比电容为224F g~(-1),远大于单一石墨烯的137F g~(-1)和GS-MWCNTs-7-3的121F g~(-1),由此表明卷曲形貌和卷-片一体的结构为离子或电子提供了丰富的传输通道,从而表现出良好的电解质的离子或电子传输性能以及较低的等效串联电阻,使得卷-片一体的碳纳米材料具有良好的循环稳定性能和电化学电容特性。
     (3)采用强氧化-声化学切割法制备出径向长度为10-300nm、两端开口的多壁富勒烯管,并将其与石墨烯构建出复合纳米膜材料。采用扫描电子显微电镜、N2吸脱附曲线和X射线衍射光谱研究了复合膜的形貌和结构,结果表明,富勒烯管可视为一种大分子化合物用以修饰石墨烯形成多孔三维膜结构的纳米复合材料。采用循环伏安和电化学阻抗谱研究了复合膜的电化学活性,结果表明,富勒烯管的引进有效地抑制了石墨烯的团聚,促进了电子或离子在电极材料的传递速率,提高了碳纳米管管体积的利用率,因此复合膜材料呈现出很高的电化学活性。该结果为促进碳纳米管在储能方面的应用提供了有力的依据。
     (4)采用具有芳香烃大分子的中间相沥青为碳源,SBA~(-1)5型有序介孔硅为模板,通过模板碳化法制备出具有纳米石墨烯片孔壁结构的多孔碳材料,探讨了该材料的形成过程和研究了其锂离子电池负极性能。采用透射电子显微电镜、N2吸脱附曲线和X射线衍射光谱等研究了多孔碳的形貌和结构。结果表明,多孔碳材料具有二维有序且对称的六边形孔结构,孔壁由纳米石墨烯片层沿垂直于孔壁轴向定向堆积而成的。经50次循环充放电后,其i0和DLi值基本保持不变,甚至在高达3500mA g~(-1)电流密度下,其可逆比容量仍具有153.9mAh g~(-1),展现出突出的倍率性能和优异的循环稳定性能。这些优异的锂离子负极性能主要取决于多孔碳材料具有多孔性的结构和纳米石墨烯片的孔壁结构。
     (5)系统探讨了热处理温度对一步浸渍-模板碳化法制备的纳米石墨烯片堆积结构多孔碳材料的锂离子电池负极性能的影响。结果表明,在1200°C (C~(-1)200)的热处理温度下制备的多孔碳材料具有纳米石墨烯片状结构的孔壁,其可逆比容量为372mAh g~(-1);随着热处理温度的升高,达到1800°C (C~(-1)800)时,多孔碳的纳米石墨烯片状结构越清晰,锂离子电池的比容量逐渐降低,然而功率性能却与C~(-1)200相似。但是在2400°C (C-2400)的热处理温度下,多孔碳发生了重排,其孔隙壁表现为成束的无孔纳米纤维结构,表现出低的比能量-比功率性能。由此可知,热处理温度由于能影响多孔碳材料的纳米石墨烯片孔壁结构,进而能影响该材料的锂离子电池负极性能。
Graphene, a single layer of carbon atoms with two-dimensional crystal structures,is a new member of the carbon family. Graphene has attracted great attention for itsoutstanding physical and chemical properties such as high specific surface area,conductivity, thermal stability and quantum tunnel effect. In the past decade, it hasbecome a research focus. The performance of carbon nanomaterial usually depends onits structure and morphology, which show great application potential in energy storage,catalysis, sensors and electronics, optics, etc. The main targets of this paper are asfollows:(1) Graphene is modified by physicochemical methods to obtaingraphene-based nanomaterials with more excellent performances;(2) the internalconnection of structures and electrochemical properties and the electrochemicalapplications (supercapacitors and lithium ion batteries) of graphene-basednanomaterials are systematically researched, which could lay the foundation ofpractical application of graphene nanomaterials. Main research contents are as follows:
     (1) High-quality graphene scrolls (GSS) are designed using a facile and novelmicroexplosion method under an ultrasonic reaction between MnO2and H2O2. Themethodology successfully realizes the transformation from2-dimensional (2D)material to nearly1D material. The scrolled mechanism is proposed and theircapacitance properties are investigated in this work. Compared with the specificcapacity of110F g~(-1)for graphene sheets, a remarkable capacity of162.2F g~(-1)isobtained at the current density of1.0A g~(-1)in6M KOH aqueous solution due to theirunique scrolled conformation, porous structure, open ends/edges and adjustableinterlayer distance. The capacity value is increased by about50%only because of thetopological change of graphene sheets. Meanwhile, GSS exhibit excellent long-termcycling stability along with96.8%retained after1000cycles at1.0A g~(-1). All datassuggest that this study could offer an insightful approach for the preparation anddevelopment of GSS. These encouraging results indicate that GSS based on thetopological structure of graphene sheets are a kind of promising material forsupercapacitors.
     (2) Partial scrolled graphene are designed by a simple microexplosion techniqueusing a mild ionic catalyst-Fe~(3+), and assemble sroll-sheet conjoined nanomaterials(GS-GSS) based on graphene (GS) with unscrolled parts for enhanced supercapacitor properties. The morphology and structure of GS-GSS are characterized bytransmmision electron microscope, N2adsorption/desorption, Raman spectra andenergy dispersive spectrometer. The results demonstrate that the scrolled structurepresents on the edges of GS form GS-GSS and the scroll rate of nanomaterials is about30%. Electrochemical dates show that the specific capacitance of GS-GSS (224F g~(-1)at1.0A g~(-1)in1M H2SO4) is much higher than that of GS (137F g~(-1)) andGS-MWCNTs-7-3(121F g~(-1)), the capacity value is increased by about100%onlybecause of the difference of tubular structure (scroll has the open ends and edges,while the carbon nanotubes are closed). Therefore, the GS-GSS are promisinggraphene-based materials for supercapacitors. What's more, it is expected for GS-GSSnanomaterials to replace the traditional GS-MWCNTs nanocomposites for potentialapplications in future.
     (3) In this study, for increasing the utilization of closed pore volumes of carbonnanotubes (CNTs) in conventional graphene-CNTs composites, multi-wall fullerenenanopipes (MWFNs) are adopted to replace the pristine, nearly endless and highlytangled CNTs. The CNTs are tailored into MWFNs with10-300nm lengths and openends, and a nanocomposite film of well-dispersed MWFNs as macromolecules ongraphene (GS) is prepared by a facile wet-chemical route. The morphology of theresulting materials is characterized by scanning electron microscope (SEM) and theirelectrochemical activities are investigated, suggesting that the MWFNs asmacromolecules could uniformly modify and distribute on the surface of graphene andform a film structure with graphene. The introduction of MWFNs could effectivelyenhance the utilization of closed pore volumes of nanopipes, inhibit the stacking ofgraphene and facilitate the transportation of the electrolyte ion and electron in theelectrode. Such the GS/MWFNs nanocomposites obtain ultrahigh electrochemicalactivities. These results indicate that the unique MWFNs would stimulate thedevelopment of several energy-efficient technologies.
     (4) An ordered mesoporous carbon (OMC) with controllable molecule crystal andplatelet graphitic pore walls, which is directionally grown on the internal pore walls ofSBA~(-1)5or anchors at liquid/silica interfaces by molecule engineering, has beeninvestigated as lithium ion anodes. It is found that the OMC exhibits high kinetics, rateand cycling performance. The i0and DLiare almost constant after50cycles. OMCshows a high reversible specific capacity of153.9mAh g~(-1)at the current density ashigh as3500mA g~(-1). The excellent electrochemical performance could be attributed tothe presence of the porosity and platelet graphitic pore walls.
     (5) Mesoporous carbons (MCs) with nanosheet-like walls have been prepared aselectrodes for lithium-ion batteries by a simple one-step infiltrating method under theaction of capillary flow. The influence of heat treatment temperature on the surfacetopography, pore/phase structure and anode performances of as-prepared materials hasbeen investigated. The results reveal that melted liquid-crystal polycyclic aromatichydrocarbons could be anchored on liquid/silica interfaces by molecule engineering.After carbonization, the nanosheets are formed as the pore walls of MCs and areperpendicular to the long axis of pores. The anode properties demonstrate that C~(-1)200displays higher reversible capacitance than those treated in higher temperature. Therate performances of C~(-1)200and C~(-1)800are similar and more excellent than that ofC-2400. These improved lithium ion anode properties could be attributed to thenanosheet-like walls of MCs which can be influenced by the heat treatmenttemperature.
引文
[1]王中林.纳米材料表征.北京:化学工业出版社,2005.
    [2]张力德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001:2-36.
    [3] Kroto H W, Heath J R, O'Brien S C, et al. C60: buckminsterfullerene. Nature.1985,318(6):162-163.
    [4] Iijima S. Helical microtubules of graphitic carbon. Nature.1991,354(1):56-58.
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomicallythin carbon films. Science.2004,306(5696):666-669.
    [6] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosityand inclusion of large molecules in crystals. Nature.2004,427(6974):523-527.
    [7] Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity ofsingle-layer graphene. Nano Letters.2008,8(3):902-907.
    [8] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene. Science.2008,321(5887):385-388.
    [9] Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantumhall effect and berry's phase in graphene. Nature.2005,438(1):201-204.
    [10] Terronesa M, Botello-Méndezb A R, Campos-Delgadoc J, et al. Graphene andgraphite nanoribbons: morphology, properties, synthesis, defects andapplications. Nano Today.2010,5(1):351-372.
    [11] Novoselov K S, Geim A K. The rise of graphene. Nature Materials.2007,6(1):183-191.
    [12] Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide. Carbon.2007,45(7):1558-1565.
    [13] Enoki T, Kobayashi Y, Fukui K I. Electronic structures of graphene edges andnanographene. International Reviews in Physical Chemistry.2007,26(4):609-645.
    [14] Hummer W, Offeman R. Preparation of graphite oxide. Journal of the AmericanChemical Society.1958,80(6):1339.
    [15] Brodie B C. Sur le poids atomique du graphite. Ann Chim Phys.1860,59(3):466-472.
    [16] Staudenmaier L. Verfahren zur darstellung der graphits ure. Ber Dtsch ChemGes.1898,31(1):1481-1487.
    [17] Nakajima T, Matsuo Y. Formation process and structure of graphite oxide.Carbon.1994,32(3):469-475.
    [18] Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions ofgraphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly(sodium4-styrenesulfonate). Journal of Materials Chemistry.2006,16(2):155-158.
    [19] Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite:2d electron gasproperties and a route toward graphene-based nanoelectronics. The Journal ofPhysical Chemistry B.2004,108(52):19912-19916.
    [20] Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence inpatterned epitaxial graphene. Science.2006,312(5777):1191-1196.
    [21] Pan Y, Zhang H G, Shi D X, et al. Highly ordered, millimeter-scale, continuous,single-crystalline graphene monolayer formed on Ru (0001). Advanced Materials.2009,21(27):2777-2780.
    [22] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes. Nature.2009,457(1):706-710.
    [23] Li X S, Cai W W, An J H, et al. Large-area synthesis of high-quality and uniformgraphene films on copper foils. Science.2009,324(5932):1312-11314.
    [24] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping ofcarbon nanotubes to form graphene nanoribbons. Nature.2009,458(1):872-876.
    [25] Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons.Physical Review Letters.2006,97(21):216803-216806.
    [26] Neto A H C, Guinea F, Peres N M R, et al. The electronic properties of graphene.Reviews of Modern Physics.2009,81(1):109-162.
    [27] Novoselov K S, Jiang D, Schedin F, et al. Two dimensional atomic crystals.Proceedings of the National Academy of Sciences of the United States ofAmerica.2005,102(30):10451-10453.
    [28] Li D, Müller M B, Gilje S, et al. Processable aqueous dispersions of graphenenanosheets. Nature Nanotechnology.2008,3(1):101-105.
    [29] Luo J, Tian P, Pan C T, et al. Ultralow secondary electron emission of graphene.ACS nano.2011,5(2):1047-1055.
    [30] Liu C G, Yu Z N, Neff D, et al. Graphene-based supercapacitor with an ultrahighenergy density. Nano Letters.2010,10(12):4863-4868.
    [31] Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene andgraphene layers. Physical Review Letters.2006,97(18):187401-187404.
    [32] Lee D S, Riedl C, Krauss B, et al. Raman spectra of epitaxial graphene on SiCand of epitaxial graphene transferred to SiO2. Nano Letters.2008,8(12):4320-4325.
    [33] Can ado L G, Pimenta M A, Neves B R A, et al. Anisotropy of the Ramanspectra of nanographite ribbons. Physical Review Letters.2004,93(4):47403-47406.
    [34] Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phononsin supported n-graphene layer films. Nano Letters.2006,6(12):2667-2673.
    [35] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas ofmassless dirac fermions in graphene. Nature.2005,438(1):197-200.
    [36] Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport infew-layer graphene. Nature Materials.2010,9(1):555-558.
    [37] Ghosh S, Calizo I, Teweldebrhan D, et al. Extremely high thermal conductivityof graphene: prospects for thermal management applications in nanoelectroniccircuits. Applied Physics Letters.2008,92(15):151911-151913.
    [38] Hu J, Ruan X, Chen Y P. Thermal conductivity and thermal rectification ingraphene nanoribbons: a molecular dynamics study. Nano Letters.2009,9(7):2730-2735.
    [39] Nika D L, Pokatilov E P, Askerov A S, et al. Phonon thermal conduction ingraphene: role of umklapp and edge roughness scattering. Physical Review B.2009,79(1):155413-155424.
    [40] Savin A V, Kivshar Y S, Hu B. Suppression of thermal conductivity in graphenenanoribbons with rough edges. Physical Review B.2010,82(19):195422-195430.
    [41] Chen J H, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits ofgraphene devices on SiO2. Nature Nanotechnolgy.2008,3(4):206-209.
    [42] Heersche H B, Jarillo-Herrero P, Oostinga J B, et al. Bipolar supercurrent ingraphene. Nature.2007,446(7131):56-59.
    [43] Ponomarenko L, Sehedin F, Katsnelson M. Chaotic Dirac billiard in graphenequantum dots. Science.2008,320(5874):356-358.
    [44] Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas moleculesadsorbed on graphene. Nature Materials.2007,6(1):652-655.
    [45] Li Y J, Gao W, Ci L J, et al. Catalytic performance of Pt nanoparticles onreduced graphene oxide for methanol electro-oxidation. Carbon.2010,48(4):1124-1130.
    [46] Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors. NanoLetters.2008,8(10):3498.
    [47] Partoens B, Peeters F M. From graphene to graphite: electronic structure aroundthe k point. Physical Review B.2006,74(7):75114-75404.
    [48] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials. Nature.2006,442(1):282-286.
    [49] Liang Y Y, Wu D Q, Feng X L, et al. Dispersion of graphene sheets in organicsolvent supported by ionic interactions. Advanced Materials.2009,21(1):1679-1683.
    [50] Yao K, Manjare M, Barrett C A, et al. Nanostructured scrolls from grapheneoxide for microjet engines. The Journal of Physical Chemistry Letters.2012,3(16):2204-2208.
    [51] Braga S F, Coluci V R, Legoas S B, et al. Structure and dynamics of carbonnanoscrolls. Nano Letters.2004,4(5):881-884.
    [52] Pan H, Feng Y P, Lin J Y. Ab initio study of electronic and optical properties ofmultiwall carbon nanotube structures made up of a single rolled-up graphitesheet. Physical Review B.2005,72(8):85415-85419.
    [53] Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls: a promisingmaterial for hydrogen storage. Nano Letters.2007,7(7):1893-1897.
    [54] Chen Y, Lu J, Gao Z X. Structural and electronic study of nanoscrolls rolled upby a single graphene sheet. Journal of Physical Chemistry C.2007,111(4):1625-1630.
    [55] Bacon R. Growth, structure, and properties of graphite whiskers. Journal AppliedPhysics.1960,31(2):283-290.
    [56] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls.Science.2003,299(28):1361.
    [57] Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrollsproduced from acceptor-type graphite intercalation compounds. Carbon.2007,45(14):2797-2800.
    [58] Xie X, Ju L, Feng X F, et al. Controlled fabrication of high-quality carbonnanoscrolls from monolayer graphene. Nano Letters.2009,9(7):2565-2570.
    [59] Gao Y, Chen X Q, Xu H, et al. Highly-efficient fabrication of nanoscrolls fromfunctionalized graphene oxide by langmuir–blodgett method. Carbon.2010,48(15):4475-4482.
    [60] Li X L, Wang X R, Zhang L, et al. Chemically derived, ultrasmooth graphenenanoribbon semiconductors. Science.2008,319(5867):1229-1232.
    [61] Jiao L Y, Zhang L, Wang X R, et al. Narrow graphene nanoribbons from carbonnanotubes. Nature.2009,458(1):877-880.
    [62] Wang X R, Li X L, Zhang L, et al. N-doping of graphene through electrothermalreactions with ammonia. Science.2009,324(5928):768-771.
    [63] Yao Y X, Wang C Z, Zhang G P, et al. A first-principles divide-and-conquerapproach for electronic structure of large systems and its application to graphenenanoribbons. Journal of Physics: Condensed Matter.2009,21(23):125507-235501.
    [64] Li Z, Qian H, Wu J. Role of symmetry in the transport properties of graphenenanoribbons under bias. Physical Review Letters.2008,100(20):206802-206805.
    [65] Barone V, Hod O, Scuseria G E. Electronic structure and stability ofsemiconducting graphene nanoribbons. Nano Letters.2006,6(12):2748-2754.
    [66] Nakada K, Fujita M. Edge state in graphene ribbons: nanometer size effect andedge shape dependence. Physical Review B.1996,54(24):17954-17961.
    [67] Yang L, Park C H, Son Y W, et al. Quasiparticle energies and band gaps ingraphene nanoribbons. Physical Review Letters.2007,99(18):186801-186804.
    [68] Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature.2006,444(1):347-349.
    [69] Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping ofmulti-walled carbon nanotubes for facile synthesis of high-quality graphenenanoribbons. Journal of the American Chemical Society.2011,133(12):4168-4171.
    [70] Morelos-Gómez A, Vega-Díaz S M, González V J. Clean nanotube unzipping byabrupt thermal expansion of molecular nitrogen: graphene nanoribbons withatomically smooth edges. ACS nano.2012,6(3):2261-2272.
    [71] Cano-Márquez A G, Rodríguez-Macías F J, Campos-Delgado J, et al. Ex-mwntsgraphene sheets and ribbons produced by lithium intercalation and exfoliation ofcarbon nanotubes. Nano Letters.2009,9(4):1527-1533.
    [72] Zhang L, Liang J J, Huang Y, et al. Size-controlled synthesis of graphene oxidesheets on a large scale using chemical exfoliation. Carbon.2009,47(14):3365-3380.
    [73] Chan C, Crawford G, Gao Y M, et al. Liquid crystal engineering of carbonnanofibers and nanotubes. Carbon.2005,43(12):2431-2440.
    [74] Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbonfibers. Nano Letters.2012,12(2):844-849.
    [75] Silvestrov P G, Efetov K B. Quantum dots in graphene. Physical Review Letters.2007,98(1):16802-16805.
    [76] Ritter K A, Lyding J W. The influence of edge structure on the electronicproperties of graphene quantum dots and nanoribbons. Nature Materials.2009,8(1):235-242.
    [77] Trauzettel B, Bulaev D V, Loss D, et al. Spin qubits in graphene quantum dots.Nature Physics.2007,3(1):192-196.
    [78] Wu Z S, Ren W C, Gao L B, et al. Synthesis of high-quality graphene with apre-determined number of layers. Carbon.2009,47(2):493-499.
    [79] Wang D W, Li F, Wu Z S, et al. Electrochemical interfacial capacitance inmultilayer graphene sheets: dependence on number of stacking layers.Electrochemistry Communications.2009,11(9):1729-1732.
    [80] Zhang L, Li X, Huang Y, et al. Controlled synthesis of few-layered graphenesheets on a large scale using chemical exfoliation. Carbon.2010,48(8):2361-2380.
    [81] Luo J Y, Cote L J, Tung V C, et al. Graphene oxide nanocolloids. Journal of theAmerican Chemical Society.2010,132(50):17667-17669.
    [82] Zhenga R T, Zhao Y, Liu H P, et al. Orientations of liquid crystals in contactwith surfaces that present continuous gradients of chemical functionality. Carbon.2006,44(4):742-746.
    [83] Lucas A D, García P B, Garrido A, et al. Catalytic synthesis of carbon nanofiberswith different graphene plane alignments using ni deposited on iron pillaredclays. Applied Catalysis A: General.2006,301(1):123-132.
    [84] Yu Z X, Borg, Chen D, et al. Carbon nanofiber supported cobalt catalysts forfischer–tropsch synthesis with high activity and selectivity. Catalysis Letters.2006,109(1-2):43-47.
    [85] Chen X, Xu Z, Li X, et al. Structural and mechanical characterization of plateletgraphite nanofibers. Carbon.2007,45(2):416-423.
    [86] Huang C W, Li Y Y. In situ synthesis of platelet graphite nanofibers fromthermal decomposition of Poly (ethylene glycol). The Journal of PhysicalChemistry B.2006,110(46):23242-23246.
    [87] Anderson P E. A method for characterization and quantification of plateletgraphite nanofiber edge crystal structure. Carbon.2006,44(11):2184-2190.
    [88] Jian K, Xianyu H, Eakin J, et al. Orientationally ordered and patterned discoticfilms and carbon films from liquid crystal precursors. Carbon.2005,43(2):407-415.
    [89] Lee D H, Kim J E, Han T H, et al. Versatile carbon hybrid films composed ofvertical carbon nanotubes grown on mechanically compliant graphene films.Advanced Materials.2012,22(11):1247-1252.
    [90] Fan Z J, Yan J, Zhi L J, et al. A three-dimensional carbon nanotube/graphenesandwich and its application as electrode in supercapacitors. Advanced Materials.2010,22(33):3723-3728.
    [91] Yu D S, Dai L M. Self-assembled graphene/carbon nanotube hybrid films forsupercapacitors. The Journal of Chemical Physics Letters.2010,1(2):467-470.
    [92] Cheng Y W, Lu S T, Zhang H B, et al. Synergistic effects from graphene andcarbon nanotubes enable flexible and robust electrodes for high-performancesupercapacitors. Nano Letters.2012,12(8):4206-4211.
    [93] Yan J, Wei T, Fan Z J, et al. Preparation of graphene nanosheet/carbonnanotube/polyaniline composite as electrode material for supercapacitors.Journal of Power Sources.2010,195(9):3041-3045.
    [94] Fan Z J, Yan J, Wei T, et al. Nanographene-Constructed Carbon NanofibersGrown on Graphene Sheets by Chemical Vapor Deposition: High-PerformanceAnode Materials for Lithium Ion Batteries. ACS nano.2011,5(4):2787-2794.
    [95] Conway B E. Electrochemical supercapacitors-scientific fundamentals andtechnological applications. New York: Kluwer,1999.
    [96] Spamaay M J. The electric double layer. Sydney: Pergamon Press Pty. Ltd.,1972.
    [97] Amatucci G G, Badway F, Pasquier A D, et al. An asymmetric hybridnonaqueous energy storage cell. Journal of the Electrochemical Society.2001,148(8):930-939.
    [98] Pasquier A D, Plitz I, Gural J, et al. Characteristics and performance of500Fasymmetric hybrid advanced supercapacitor prototypes. Journal of PowerSources.2003,113(1):62-71.
    [99] Pasquier A D, Plitz I, Menocal S, et al. A comparative study of Li-ion battery,supercapacitor and nonaqueous asymmetric hybrid devices for automotiveapplications. Journal of Power Sources.2003,115(1):171-178.
    [100] Du X, Guo P, Song H, et al. Graphene nanosheets as electrode material forelectric double-layer capacitors. Electrochimica Acta.2010,55(16):4812-4819.
    [101] Wang Y, Shi Z Q, Huang Y, et al. Supercapacitor devices based on graphenematerials. The Journal of Physical Chemistry C.2009,113(30):13103-13107.
    [102] Fu C, Kuang Y, Huang Z, et al. Supercapacitor based on graphene and ionicliquid electrolyte. Electrochimica Acta.2011,15(11-12):2581-2585.
    [103] Wang D, Li F, Wu Z, et al. Electrochemical interfacial capacitance in multilayergraphene sheets: Dependence on number of stacking layers. ElectrochemistryCommunications.2009,11(9):1729-1732.
    [104] Subramaniana V, Karkia A, Gnanasekara K I, et al. Nanocrystalline TiO2(anatase) for li-ion batteries. Journal of Power Sources.2006,159(1):186-192.
    [105]毕道志.电动车电池的开发现状及展望.电池工业.2000,2(1):56-63.
    [106]金明钢.我国固态锂离子电池工业发展近况.电池工业.2000,2(1):88-92.
    [107] Dahn J R, Zheng T, Liu Y H, et al. Mechanisms for lithium insertion incarbonaceous materials. Science.1995,270(5236):590-593.
    [108] Khantha M, Cordero N A, Molina L M, et al. Interaction of lithium withgraphene: An ab initio study. Physical Review B.2004,70(12):125422-125429.
    [109] Yoo E J, Kim J, Hosono E, et al. Large reversible Li storage of graphenenanosheet families for use in rechargeable lithium ion batteries. Nano Letters.2008,8(8):2277.
    [110] Paek S, Yoo E, Honma I. Enhanced Cyclic Performance and Lithium StorageCapacity of SnO2/Graphene Nanoporous Electrodes with Three-DimensionallyDelaminated Flexible Structure. Nano Letters.2009,9(1):72-75.
    [111] Wang G, Shen X, Yao J, et al. Graphene nanosheets for enhanced lithium storagein lithium ion batteries. Carbon.2009,47(8):2049-2053.
    [112] Pan D, Wang S, Zhao B, et al. Li Storage Properties of Disordered GrapheneNanosheets. Chemistry of Materials.2009,21(14):3136-3142.
    [113] Gnanaraja J S, Levia M D, Levia E, et al. Comparison between theelectrochemical behavior of disordered carbons and graphite electrodes inconnection with their structure. Journal of the Electrochemical Society.2001,148(6): A525-A536.
    [114] Choi Y K, Chung K, Kim W S, et al. Electrochemical properties of passivationfilm on mesophase pitch-based carbon fiber electrode. Microchemical Journal.2001,68(1):61-70.
    [115] Snow E S, Perkins F K, Houser E J, et al. Chemical detection with asingle-walled carbon nanotube capacitor. Science.2005,307(5717):1942-1945.
    [116] Kharchenko S B, Douglas J F, Obrzut J, et al. Flow-induced properties ofnanotube-filled polymer materials. Nature Materials.2004,3(1):564-568.
    [117] Rurali R, Coluci V R, Galv o D S. Prediction of giant electroactuation forpapyruslike carbon nanoscroll structures: first-principles calculations. PhysicalReview B.2006,74(8):85414-85417.
    [118] Shi X H, Pugno N M, Gao H J. Constitutive behavior of pressurized carbonnanoscrolls. International Journal of Fracture.2011,171(2):163-168.
    [119] Penga X, Zhou J, Wang W C, et al. Computer simulation for storage of methaneand capture of carbon dioxide in carbon nanoscrolls by expansion of interlayerspacing. Carbon.2010,48(13):3760-3768.
    [120] Shi X H, Cheng Y, Pugno N M, et al. A translational nanoactuator based oncarbon nanoscrolls on substrates. Applied Physics Letters.2010,96(5):53115-53117.
    [121] Zhang Z, Li T. Carbon nanotube initiated formation of carbon nanoscrolls.Applied Physics Letters.2010,97(8):81909-81911.
    [122] Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls withmicrowave spark assistance in liquid nitrogen. Advanced Materials.2011,23(21):2460-2463.
    [123] Kim Y K, Min D H. Preparation of scrolled graphene oxides with multi-walledcarbon nanotube templates. Carbon.2010,48(15):4283-4288.
    [124] Wang Y G, Cheng L, Xia Y Y. Electrochemical profile of nano-particle CoAldouble hydroxide/active carbon supercapacitor using KOH electrolyte solution.Journal of Power Sources.2006,153(1):191-196.
    [125] Lei Z B, Christov N, Zhao X S. Intercalation of mesoporous carbon spheresbetween reduced graphene oxide sheets for preparing high-rate supercapacitorelectrodes. Energy&Environmental Science.2011,4(5):1866-1873.
    [126] Yan J, Wei T, Shao B, et al. Electrochemical properties of graphenenanosheet/carbon black composites as electrodes for supercapacitors. Carbon.2010,48(6):1731.
    [127] Shaijumon M M, Ou F S, Ci L J, et al. Synthesis of hybrid nanowire arrays andtheir application as high power supercapacitor electrodes. ChemicalCommunications.2008,8(20):2373-2375.
    [128] Kim J H, Lee K H, Overzet L J, et al. Synthesis and Electrochemical Propertiesof Spin-Capable Carbon Nanotube Sheet/MnOxComposites forHigh-Performance Energy Storage Devices. Nano Letters.2011,11(7):2611-2617.
    [129] Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2electrodeused in aqueous electrochemical capacitor. Chemistry of Materials.2004,16(16):3184-3190.
    [130] Xue M Q, Xie Z, Zhang L S, et al. Microfluidic etching for fabrication of flexibleand all-solid-state micro supercapacitor based on MnO2nanoparticles. Nanoscale.2011,3(7):2703-2708.
    [131] Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline forsupercapacitors. Electrochemistry Communications.2009,11(6):1158-1161.
    [132] Yang M M, Cheng B, Song H H, et al. Preparation and electrochemicalperformance of polyaniline-based carbon nanotubes as electrode material forsupercapacitor. Electrochimica Acta.2010,55(23):7021-7027.
    [133] Yan X B, Tai Z X, Chen J T, et al. Fabrication of carbon nanofiber–polyanilinecomposite flexible paper for supercapacitor. Nanoscale.2011,3(1):212-216.
    [134] Yoon B J, Jeong S H, Lee K H, et al. Electrical properties of electrical doublelayer capacitors with integrated carbon nanotube electrodes. Chemical PhysicsLetters.2004,388(1-3):170-174.
    [135] Wu Z S, Ren W C, Gao L B, et al. Synthesis of graphene sheets with highelectrical conductivity and good thermal stability by hydrogen arc dischargeexfoliation. ACS nano.2009,3(2):411-417.
    [136] Leenaerts O, Partoens B, Peeters F M. Adsorption of small molecules ongraphene. Microelectronics Journal.2009,40(4-5):860-862.
    [137] Zhang L L, Zhao S Y, Tian X N, et al. Layered graphene oxide nanostructureswith sandwiched conducting polymers as supercapacitor electrodes. Langmuir.2010,26(22):17624-17628.
    [138] Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofibercomposites as supercapacitor electrodes. Chemistry of Materials.2010,22(4):1392-1401.
    [139] Béguin F, Szostak K, Lota G, et al. A self-supporting electrode forsupercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends. Advanced Materials.2005,17(19):2380-2384.
    [140] Li F, Song J, Yang H, et al. One-step synthesis of graphene/SnO2nanocomposites and its application in electrochemical supercapacitors.Nanotechnology.2009,20(45):455602-455606.
    [141] Hu C C, Wang C C, Chang K H. A comparison study of the capacitive behaviorfor sol–gel-derived and Co-annealed Ruthenium-Tin oxide composites.Electrochimica Acta.2007,52(7):2691-2700.
    [142] Bueno P R, Leite E R. Nanostructured li ion insertion electrodes.1. Discussionon fast transport and short path for ion diffusion. The Journal of PhysicalChemistry B.2003,107(34):8868-8877.
    [143] Numao S, Judai K, Nishijo J, et al. Synthesis and characterization of mesoporouscarbon nano-dendrites with graphitic ultra-thin walls and their application tosupercapacitor electrodes. Carbon.2009,47(1):306-312.
    [144] Lu W, Qu L T, Henry K, et al. High performance electrochemical capacitorsfrom aligned carbon nanotube electrodes and ionic liquid electrolytes. Journal ofPower Sources.2009,189(2):1270-1277.
    [145] Sugimoto W, Iwata H, Yokoshima K, et al. Proton and electron conductivity inhydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy:the origin of large capacitance. The Journal of Physical Chemistry B.2005,109(15):7330-7338.
    [146] Gamby J, Taberna P L, Simon P, et al. Studies and characterisations of variousactivated carbons used for carbon/carbon supercapacitors. Journal of PowerSources.2001,101(1):109-116.
    [147] Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors?Chemical Reviews.2004,104(10):4245-4269.
    [148] Peng C, Zhang S W, Jewell D, et al. Carbon nanotube and conducting polymercomposites for supercapacitors. Progress in Natural Science.2008,18(7):777-788.
    [149] Kim K S, Park S J. Influence of multi-walled carbon nanotubes on theelectrochemical performance of graphene nanocomposites for supercapacitorelectrodes. Electrochimica Acta.2011,56(3):1629-1635.
    [150] Pandolfo A G, Hollenkamp A F. Carbon properties and their role insupercapacitors. Journal of Power Sources.2006,157(1):11-27.
    [151] Lewandowski A, Galinski M. Practical and theoretical limits for electrochemicaldouble-layer capacitors. Journal of Power Sources.2007,173(2):822-828.
    [152] Li L X, Song H H, Chen X H. Pore characteristics and electrochemicalperformance of ordered mesoporous carbons for electric double-layer capacitors.Electrochimica Acta.2006,51(26):5715-5720.
    [153] Zhang H, Zhang W F, Cheng J, et al. Acetylene black agglomeration in activatedcarbon based electrochemical double layer capacitor electrodes. Solid StateIonics.2008,179(33-34):1946-1950.
    [154] Fang B Z, Binder L. A modified activated carbon aerogel for high-energy storagein electric double layer capacitors. Journal of Power Sources.2006,163(1):616-622.
    [155] Lazzari M, Soavi F, Mastragostino M. High voltage, asymmetric EDLCs basedon xerogel carbon and hydrophobic il electrolytes. Journal of Power Sources.2008,178(1):490-496.
    [156] Wen S, Jung M, Joob O S, et al. EDLC characteristics with high specificcapacitance of the cnt electrodes grown on nanoporous alumina templates.Current Applied Physics.2006,6(6):1012-1015.
    [157] Tao X Y, Zhang X B, Zhang L, et al. Synthesis of multi-branched porous carbonnanofibers and their application in electrochemical double-layer capacitors.Carbon.2006,44(8):1425-1428.
    [158] Guo C Y, Wang C Y. Study on preparation of activated mesocarbonmicrobeads/expanded graphite composites for electrical double layer capacitors.Composites Science and Technology.2007,67(7-8):1747-1750.
    [159] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials.2008,7(11):845-854.
    [160] Barbieria O, Hahna M, Herzogb A, et al. Capacitance limits of high surface areaactivated carbons for double layer capacitors. Carbon.2005,43(6):1303-1310.
    [161] Si Y C, Samulski E T. Synthesis of water soluble graphene. Nano Letters.2008,8(6):1679-1682.
    [162] Guo C X, Li C M. A self-assembled hierarchical nanostructure comprisingcarbon spheres and graphene nanosheets for enhanced supercapacitorperformance. Energy&Environmental Science.2011,4(11):4504-4507.
    [163] Pumera M. Graphene-based nanomaterials for energy storage. Energy&Environmental Science.2011,4(3):668-674.
    [164] Yang S Y, Chang K H, Lee Y F, et al. Constructing a hierarchicalgraphene–carbon nanotube architecture for enhancing exposure of graphene andelectrochemical activity of Pt nanoclusters. Electrochemistry Communications.2010,12(9):1206-1209.
    [165] Yang S Y, Chang K H, Tien H W, et al. Design and tailoring of a hierarchicalgraphene-carbon nanotube architecture for supercapacitors. Journal of MaterialsChemistry.2011,21(7):2374-2380.
    [166] Lu X J, Dou H, Gao B, et al. A flexible graphene/multiwalled carbon nanotubefilm as a high performance electrode material for supercapacitors.Electrochimica Acta.2011,56(14):5115-5121.
    [167] Cheng Y W, Lu S T, Zhang H B, et al. Synergistic effects from graphene andcarbon nanotubes enable flexible and robust electrodes for high-performancesupercapacitors. Nano Letters.2012,12(8):4206-4211.
    [168] Lowell S, Shields J E. Power surface area and porosity,3rd ed. New York:Chapman&Hall,1991.
    [169] Wu Y M, Wen Z H, Li J H. Hierarchical Carbon-Coated LiFePO4NanoplateMicrospheres with High Electrochemical Performance for Li-Ion Batteries.Advanced Materials.2011,23(9):1126-1129.
    [170] Wen Z H, Li J H. Hierarchically structured carbon nanocomposites as electrodematerials for electrochemical energy storage, conversion and biosensor systems.Journal of Materials Chemistry.2009,19(46):8707-8713.
    [171] Wang Q, Wen Z H, Li J H. Solvent-Controlled Synthesis and ElectrochemicalLithium Storage of One-Dimensional TiO2Nanostructures. Inorganic Chemistry.2006,45(17):6944-6949.
    [172] Geckeler K E, Samal S. Syntheses and properties of macromolecular fullerenes, areview. Polymer International.1999,48(9):743-757.
    [173] Wudl F. Fullerene materials. Journal of Materials Chemistry.2002,12(7):1959-1963.
    [174] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes.Science.1996,273(5274):483-487.
    [175] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walledcarbon nanotubes by the electric-arc technique. Nature.1997,388(1):756-758.
    [176] Liu J, Rinzler A G, Dai H J, et al. Fullerene pipes. Science.1998,280(5367):1253-1256.
    [177] Tans S J, Devoret M H, Dai H J, et al. Individual single-wall carbon nanotubes asquantum wires. Nature.1997,386(1):474-477.
    [178] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength,and toughness of nanorods and nanotubes. Science.1997,277(1):1971-1975.
    [179] Yakobson B I, Smalley R E. Fullerene nanotubes: C-1000000and beyond.American Scientist.1997,85(1):324-337.
    [180] Chen H Q, Müller M B, Gilmore K J, et al. Mechanically strong, electricallyconductive, and biocompatible graphene paper. Advanced Materials.2008,20(18):3557-3561.
    [181] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization ofgraphene oxide paper. Nature.2007,448(1):457-460.
    [182] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration ofwater-soluble noncovalent functionalized graphene sheets. Journal of theAmerican Chemical Society.2008,130(18):5856-5857.
    [183] Mcallister M J, Li J L, Adamson D H, et al. Single sheet functionalized grapheneby oxidation and thermal expansion of graphite. Chemistry of Materials.2007,19(18):4396-4404.
    [184] Zu S Z, Han B H. Aqueous dispersion of graphene sheets stabilized by pluroniccopolymers: formation of supramolecular hydrogel. The Journal of PhysicalChemistry C.2009,113(31):13651-13657.
    [185] Yang S B, Huo J P, Song H H, et al. A comparative study of electrochemicalproperties of two kinds of carbon nanotubes as anode materials for lithium ionbatteries. Electrochimica Acta.2008,53(5):2238-2244.
    [186] Subramanian V, Zhu H W, Wei B Q. High Rate Reversibility Anode Materials ofLithium Batteries from Vapor-Grown Carbon Nanofibers. The Journal ofPhysical Chemistry B.2006,110(14):7178-7183.
    [187] Li C C, Yin X M, Chen L B, et al. Porous Carbon Nanofibers Derived fromConducting Polymer: Synthesis and Application in Lithium-Ion Batteries withHigh-Rate Capability. The Journal of Physical Chemistry C.2009,113(30):13438-13442.
    [188] Su F B, Zhao X S, Wang Y, et al. Synthesis of graphitic ordered macroporouscarbon with a three-dimensional interconnected pore structure forelectrochemical applications. The Journal of Physical Chemistry B.2005,109(43):20200-20206.
    [189] Su F B, Zhao X S, Wang Y, et al. Bridging mesoporous carbon particles withcarbon nanotubes. Microporous and Mesoporous Materials.2007,98(1-3):323-329.
    [190] Sun J, Liu H M, Chen X, et al. Carbon nanorings and their enhanced lithiumstorage properties. Advanced Materials.2013,25(8):1125-1130.
    [191] Sun X, Zaric S, Daranciang D, et al. Optical properties of ultrashortsemiconducting single-walled carbon nanotube capsules down to sub-10nm.Journal of the American Chemical Society.2008,130(20):6551-6555.
    [192] Wang Y, Su F B, Wood C D, et al. Preparation and characterization of carbonnanospheres as anode materials in lithium-ion secondary batteries. Industrial&Engineering Chemistry Research.2008,47(7):2294-2300.
    [193] Xing W, Bai P, Li Z F, et al. Synthesis of ordered nanoporous carbon and itsapplication in li-ion battery. Electrochimica Acta.2006,51(22):4626-4633.
    [194] Habazaki H, Kiriu M, Konno H. High rate capability of carbon nanofilamentswith platelet structure as anode materials for lithium ion batteries.Electrochemistry Communications.2006,8(8):1275-1279.
    [195] Lee K T, Lytle J C, Ergang N S, et al. Synthesis and rate performance ofmonolithic macroporous carbon electrodes for lithium-ion secondary batteries.Advanced Functional Materials.2005,15(4):547-556.
    [196] Zhou H, Zhu S, Honma I, et al. Lithium storage in ordered mesoporous carbon(CMK-3) with high reversible specific energy capacity and good cyclingperformance. Advanced Materials.2003,15(24):2107-2111.
    [197] Jian K Q, Shim H S, Schwartzman A, et al. Orthogonal carbon nanofibers bytemplate-mediated assembly of discotic mesophase pitch. Advanced Materials.2003,15(2):164-167.
    [198] Jian K Q, Truong T C, Hoffman W P, et al. Mesoporous carbons withself-assembled surfaces of defined crystal orientation. Microporous andMesoporous Materials.108,108(1-3):143-151.
    [199] Kaneda M, Tsubakiyama T, Carlsson A, et al. Structural study of mesoporousMCM-48and carbon networks synthesized in the spaces of mcm-48by electroncrystallography. The Journal of Physical Chemistry B.2002,106(6):1256-1266.
    [200] Choi Y K, Chung K, Park S M, et al. Suppressive effect of Li2CO3on initialirreversibility at carbon anode in li-ion batteries. Journal of Power Sources.2002,104(1):132-139.
    [201] Yang S B, Song H H, Chen X H. Electrochemical performance of expandedmesocarbon microbeads as anode material for lithium-ion batteries.Electrochemistry Communications.2006,8(1):137-142.
    [202] Takami N, Satoh A, Ohsaki T, et al. Structural and kinetic characterization oflithium intercalation into carbon anodes for secondary lithium batteries. Journalof The Electrochemical Society.1995,142(2):371-379.
    [203] Hu J, Li H, Huang X J. Electrochemical behavior and microstructure variation ofhard carbon nano-spherules as anode material for li-ion batteries. Solid StateIonics.2007,178(3-4):265-271.
    [204] Chang J C, Tzeng Y F, Chen J M, et al. Carbon nanobeads as an anode materialon high rate capability lithium ion batteries. Electrochimica Acta.2009,54(27):7066-7070.
    [205] Armand M, Tarascon J M. Building better batteries. Nature.2008,451(1):652-657.
    [206] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithiumbatteries. Angewandte Chemie International Edition.2008,47(16):2930-2946.
    [207] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energyconversion and storage devices. Advanced Materials.2008,20(15):1887-2878.
    [208] Maier J. Nanoionics: ion transport and electrochemical storage in confinedsystems. Nature Materials.2005,4(1):805-815.
    [209] Reddy A L M, Shaijumon M M, Gowda S R, et al. Coaxial MnO2/carbonnanotube array electrodes for high-performance lithium batteries. Nano Letters.2009,9(3):1002-1006.
    [210] Wang Y, Cao G Z. Developments in nanostructured cathode materials forhigh-performance lithium-ion batteries. Advanced Materials.2008,20(12):2251-2269.
    [211] Wua Y P, Fang S B, Jiang Y Y. Carbon anodes for a lithium secondary batterybased on polyacrylonitrile. Journal of Power Sources.1998,75(2):201-206.
    [212] Xing W, Xue J S, Dahn J R. Optimizing pyrolysis of sugar carbons for use asanode materials in lithium-ion batteries. Journal of the Electrochemical Society.1996,143(10):3046-3052.
    [213] Bonino F, Brutti S, Reale P, et al. A disordered carbon as a novel anode materialin lithium-ion cells. Advanced Materials.2005,17(6):743-746.
    [214] Wu Y P, Wan C R, Li Y X, et al. Effects of morphology on the properties ofcarbon anodes. Journal of the Electrochemical Society.1999,2(3):118-120.
    [215] Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules withuniform nanopores. Carbon.2001,39(14):2211-2214.
    [216] Li H Q, Liu R L, Zhao D Y, et al. Electrochemical properties of an orderedmesoporous carbon prepared by direct tri-constituent co-assembly. Carbon.2007,45(13):2628-2635.
    [217] Masarapu C, Subramanian V, Zhu H W, et al. Long-cycle electrochemicalbehavior of multiwall carbon nanotubes synthesized on stainless steel in li ionbatteries. Advanced Functional Materials.2009,19(7):1008-1014.
    [218] Wua Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries.Journal of Power Sources.2003,114(2):228-236.
    [219] Yang S B, Song H H, Chen X H. Electrochemical performance of arc-producedcarbon nanotubes as anode material for lithium-ion batteries. ElectrochimicaActa.2007,52(16):5286-5293.
    [220] Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodesusing a hierarchical bottom-up approach. Nature Materials.2010,9(1):353-358.
    [221] Chewa S Y, Ng S H, Wang J Z, et al. Flexible free-standing carbon nanotubefilms for model lithium-ion batteries. Carbon.2009,47(13):2976-2983.
    [222] Cheng F Y, Tao Z L, Liang J, et al. Template-directed materials for rechargeablelithium-ion batteries. Chemistry of Materials.2008,20(3):677-681.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700