用户名: 密码: 验证码:
基于微孔发泡注塑成型的制品表面质量与多孔支架制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔发泡注射成型技术是近年发展起来的一种新型聚合物成型加工方法,此种法可以降低加工温度、降低注射压力、减小对锁模力、缩短成型周期和节约能耗。微孔气泡在制品内部均匀分布,泡孔的内压可以抵抗塑料制品成型过程中的冷却收缩,使制品具有尺寸稳定性好及质量轻的特点。然而,这项技术也存在一些限制,最突出的是微孔发泡注射成型制品的表面质量不够好,经常伴有气穴和银纹等表面缺陷。当制品对外观有严格要求时,微孔发泡注射成型技术的应用就受到限制。因此,如何改善微孔发泡注射成型制品的表面质量对于微孔发泡注射成型技术的发展具有重要意义。进而如何在促进微孔发泡注射成型技术发展的同时,可以降低设备成本和简化流程,并且从根本上解决微孔制品表面质量不好的难题,对微孔发泡注射成型技术提出新的挑战。不仅如此,在对微孔发泡注射成型技术研究的基础上,促进其在其他领域,特别是在医疗领域的应用,为微孔发泡注射成型技术指出新的发展方向。
     本课题系统的研究了应用滑移作用和应用可膨胀热塑性微球(ETM)做为发泡剂的两种方法对改善微孔发泡注射成型制品表面质量的作用。研究发现,应用滑移作用,通过在聚合物基体中添加外润滑剂可以有效增强滑移作用,从而改善发泡制品的表面质量。定义滑移速度定量表征滑移作用,滑移速度是外润滑剂添加量和加工参数(注射速度、模具温度)的函数。第二种方法,应用可膨胀热塑性微球(ETM)做为发泡剂提高微孔发泡注射成型制品的表面质量。应用ETM做为发泡剂,在常规注射机上实现制备微孔塑料制品,由于微球本身的皮层结构能够限制气体的溢出而使微孔制品具有较好的表面形态。实验结果表明应用滑移作用和应用ETM做为发泡剂的方法可以有效的降低微孔发泡注射成型制品的表面粗糙度。
     随着微孔发泡注射成型技术的发展,现在的研究热点和难点集中于如何在保持微孔塑料众多优点的基础上,可以节约设备成本和原材料成本,同时还可以改善微孔制品的表面质量。本文研制成功以水做为发泡剂的新型微孔发泡注射成型技术,并且在自行搭建的实验平台上实现制备微孔发泡注射成型聚碳酸酯制品。在制品重量降低10%时,以水做为发泡剂的微孔制品(如聚碳酸酯)比以超临界流体作为发泡剂的制品具有更好的表面质量,几乎媲美于固体注射制品。新型微孔发泡注射成型技术:把盐水泵入到料筒中,水作为物理发泡剂,重结晶的盐粒子(10~20微米)作为成核剂。此过程不需要复杂的超临界流体控制单元和注气单元,从而大幅度节约设备成本。
     本论文不仅深入探讨微孔发泡注射成型技术本身,还进一步研究了微孔发泡注射成型技术的应用,特别是在制备组织工程多孔支架领域的应用。在微孔发泡注射成型混合物制品中,由于不同聚合物之间的互补作用而表现出不同于单相聚合物制品的性能。本文对比研究了固体和微孔发泡注射成型聚(己二酸丁二酯-对苯二甲酸丁二酯) (PBAT)/聚乙烯醇(PVA)混合物及聚乳酸(PLA)/聚乙烯醇(PVA)混合物两相体系的热性能,流变性能,机械性能,两相体系的微观形态和泡孔的微观结构。在对微孔发泡注射成型可降解两相系混合物研究的基础上,制备出具有多孔性通孔的PLA支架
Microcellular injection molding enable to fabricate microcellular plastic parts by low temperatures and pressures leading to a reduction of clamp tonnage required, cycle time, and energy consumption. In addition, the expansion of the gas inside of the polymer melt creates a uniform packing effect and prevents the material from shrinking during cooling, leading to excellent dimensional stability of molded parts. However, the benefits of this technology also come with some limitations, notably a surface finish with swirls and silver streaks resulting from the stretching and collapsing of bubbles on the foamed part surfaces. For applications with strict part appearance requirements, the surface swirl marks on the molded part limit the adoption of microcellular injection molding unless the surface quality can be improved with other techniques.
     To improve surface roughness and maintain mechanical properties, two methods in this thesis were employed to achieve a better surface quality of microcellular injection molded products. Slip effects enhanced by external lubricant additives is capable to improve the surface qualities of microcellular foamed parts. Additionally, expandable thermoplastic microspheres (ETM) based on conventional injection molding can fabricate microcellular plastic parts with smooth surface qualities.
     The urgent requirements for microcellular injection molding technique focus on how to further save the cost and simultaneously obtain the smooth surface of foamed parts as well as conventional benefits. A novel microcellular injection molding technique using water as a blowing agent, the technique is capable to fabricate polycarbonate (PC) microcellular injection molded parts with good surface qualities and mechanical properties. The new process for produce microcellular injection molded plastics parts using water as the physical blowing agent and micro-scaled salt particles as the cell nucleating agents. The surface roughness, mechanical properties, and microstructure of the solid and foamed parts were measured and compared with microcellular injection molded parts using supercritical fluid (SCF) nitrogen as the physical blowing agent. At a similar weight reduction of about 10%, the water foamed PC parts have a smoother surface comparable to that of solid injection molded parts. They also possess similar, if not better, mechanical properties compared to SCF nitrogen foamed PC parts.
     In comparison with single polymer microcellular injection molded parts, two-phase blends as foamed matrices have more benefits to improve the mechanical properties, thermal properties and cell morphologies based on complementary interaction. The properties of solid and microcellular injection molded biodegradable polylactic acid (PLA)/polyvinyl alcohol (PVA) blends and Poly (butylenes adipate-co-terephthalate) (PBAT)/polyvinyl alcohol (PVA) blends are investigated in terms of rheology properties, thermal properties, mechanical properties, morphologies, nucleating rate, and cell microstructures with various compositions ratios. Moreover, targeted for potential medical applications and tissue engineering scaffold applications, microcellular injection molding technique is probably employed to fabricate highly porous biodegradable polymer scaffold. Porous PLA matrices are fabricated for potential application of scaffolds.
引文
[1] Gong, S., Yuan, M., Chandra, A., Kharbas, H., Osorio, A., Turng, L. S., Microcellular Injection Molding [J], International Polymer Processing, 2005, volume, 20, issue, 2, 202-214
    [2] Xu, J. Y., Morphology for Microcellular Injection Molding [C], ANTEC, SPE, 2009, 1646-1651
    [3] Stevenson, J. F., Innovation in Polymer Processing-Molding, Stevenson [M], Hanser Publishers, Munich, 1996
    [4] Matuana, L. M., Park, C. B., Balatinecz, J. J., Processing and Cell morphology Relationships for microcellular foamed PVC/wood-fiber Composties [J], Polymer Engineering and Science, 1997, 37 (7), 1137-1147.
    [5] Seeler, K. A., Kumar, V., Tension-Tension Fatigue of Microcellular Polycarbonate-Initial Results [J], Journal of Reinforced Plastics and Composites, 1993, 12 (3), 359-376
    [6] Shimbo, M., Baldwin, D. F., Nam, S. P., The Viscoelastic Behavior of Microcellular Plastics with Varying Cell-Size [J], Polymer Engineering and Science, 1995, 35 (17), 1387-1393
    [7] Trexel Web site, http://www.trexel.com/, Sept. 2010.
    [8] Martini, J. E., The Production and Analysis of Microcellular Foam, [D], MIT, January 1981.
    [9] http://faculty.washington.edu/vkumar/microcel/solidstate.html
    [10] Nalawase, S. P., Picchioni, F., Janssen, L. P. B. M., Supercritical Carbon Dioxide As A Green Solvent for Processing Polymer Melts: Processing Aspects and Applications [J], Progress Polymer Science, 2006, 31, 19-43
    [11] Colton, J. S., Suh, N. P., Nucleation of Microcellular Foam: Theory and Practice [J], Polymer Engineering and Science, 1987, 27 (7), 500-503
    [12] Doroudiani S., Park C.B., Kortschot M.T. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers [J]. Polymer Engineering Science, 1996, 36(21): 2645-2662
    [13] Doroudiani S., Park C.B., Kortschot M.T. Processing and characterization of microcellular foamed high-density polyethylene/isotactic polypropylene blends [J]. Polymer Engineering Science, 1998, 38(7): 1205-1215
    [14] Rachtanapun P., Selke S.E.M., Matuana L.M. Relationship between cell morphology and impact strength of microcellular foamed high-density polyethylene/polypropylene blends [J]. Polymer Engineering Science, 2004, 44(8): 1551-1560
    [15] Rachtanapun P., Selke S.E.M., Matuana L.M. Effect of the high-density polyethylene melt index on the microcellular foaming of high-density polyethylene/polypropylene blends [J]. Polymer Engineering Science, 2004, 93(8): 364-371
    [16] Park, C. B., Suh, N. P., Filamentary Extrusion of Microcellular Polymers Using A Rapid Decompressive element [J], Polymer Engineering and Science, 2004, 36 (1), 34-48
    [17] Han, X. M., Koelling, K. W., Tomasko, D. L., et al., Continuous Microcellular Polystyrene Foam Extrusion with Super critical CO2 [J], Polymer Engineering and Science, 42 (11), 2094-2106
    [18] Park, C. B., Suh, N. P., Rapid Polymer/gas Solution Formation for Continuous Production of Microcellular Plastics [J], Journal Manufacturing Science and Engineeirng, 1996, 118(4), 639-646
    [19] Siripurapu, S., Gay, Y. J., Royer, J. R., DeSimone, J. M., and et al., Generation of Microcellular Foams of PVDF and Its Blends Using Supercritical Carbon Dioxide In A Continuous Process [J], Polymer, 2002, 43 (20), 5511-5520
    [20] Baldwin, D. F., Park, C. B., Suh, N. P., Microcellular Sheet Extrusion System Process Design Models for Shaping and Cell Growth Control [J], Polymer Engineering and Science, 1998, 38 (4) 674-688.
    [21] Baldwin, D. F., Park, C. B., Suh, N. P., A Extrusion System for the Processing of Microcellular Polymer Sheet Shaping and Cell Growth Control [J], Polymer Engineering and Science, 36 (10), 1425-1435
    [22] Park, C. B., Baldwin, D. F., Suh, N. P., Effect of the pressure drop on cell nucleation in continuous processing of microcellular polymers [J], Polymer Engineering and Science, 1995, 35(5), 432-440
    [23] Srinivas, S. Yvon, J. G, Joseph R. R., and et al. Generation of Microcellular Foams of PVDF and Its Blends Using Supercritical Carbon Dioxide in a Continuous Process [J], Polymer, 2002, 43, 5511-5520.
    [24] Wang, C., Cox, K., Campbell, G. A., Microcellular Foam of Polypropelene Containing Low Glass Transition Rubber Particles in an Injection Molding Process [C], ANTEC, SPE, 1995, 406-410
    [25] Shimbo, M., Nishida, K., Heraku, T., and et al., Foam Processing Technology of Microcellular Plastics by Injection Mold Machine [C], First International Conference of Thermoplastic Foam, 1999, 132-137
    [26] Shimbo, M., Foam Injection Technology and Influence Factors of Microcellular Plastics [C], FOAMS 2000, 2000, 162-168
    [27] Kramschuster, A., Gong, S., Turng, L. S., and Li, T., Injection Molded Solid and Microcellular Polylactide and Polylactide Nanocomposites [J], Journal of Biobased Materials and Bioenergy, 2007, 1, 37-45 .
    [28] Pilla, S., Kramschuster, A., Gong, S., Chandra, A., and Turng, L. S., Solid and Microcellular Polylactide-Carbon Nanotube Nanocomposites [J], invited paper for a special issue of International Polymer Processing, 2007, 22, 418-428.
    [29] Yuan, M., Gong, S. and Turng, L. S., Spatial Orientation of Nanoclay and Crystallite in Microcellular Injection Molded Polyamide-6 Nanocomposites [J], Polymer Engineering and Science, 2007, 47, 765-779
    [30] Kramschuster, A. and Turng, L. S., An Injection Molding Process for Manufacturing Highly Porous and Interconnected Biodegradable Polymer Matrices for Use as Tissue Engineeing Scaffolds [J], Journal of Biomedical Materials Research: Part B - Applied Biomaterials, 2010, 92B (2), 366-376.
    [31] Xu J. Y., Microcellular Injection Molding, John Wiley and Sons, Wiley Series on Plastics Engineering and Technology, [M], 2010, 332-339
    [32] Okamoto, K. T., Microcellular Processing, Hanser Verlag, [M], 2003, 32-38
    [33] Xu, J. Y., Methods for mManufacturing Foam Material Including Systems With Pressure Restriction Element, [P], 2001, US6 322 347,
    [34] Royer, J. R., Gay, Y. J., Desimone, J. M. and Khan, S. A., High-pressure Rheology of Polystyrene Melts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships [J], Journal of Polymer Science: Part B- Polymer Physics, 2000, 38(23): 3168-3180.
    [35] Kwang, C., Manke, C.W. and Gulari, E., Effects of Dissolved Gas on Viscoelastic Scaling and Glass Transition Temperature of Polystyrene Melts [J], Industrial and Engineering Chemistry Research, 2001, 40, 3048-3052.
    [36] Shen, C., Kramschuster, A., Ermer, D., and Turng, L. S. Study of Shrinkage and Warpage in Microcellular Co-Injection Molding [J], International Polymer Processing, 2006, 21(4): 393-401.
    [37] Yuan, M. J., Turng, L. S., Gong, S. Q., et al, Study molded Microcellular Polyamide-6 Nanocomposites [J], Polymer Engineering and Science, 2004, 44 (4), 673-686.
    [38] Turng, L. S., Kharbas, H., Effect of Process Conditions on the Weld-Line Strength and Microstructure of Microcellular Injection molded Parts [J], Polymer Engineering and Science, 2003, 43 (1), 157-168.
    [39] Suh, N. P., In Innovation in Polymer Processing– Molding [M], J. F. Stevenson, (Ed.), Hanser, Munich, 93 (1996).
    [40] S.C. Chen, W.R. Jong, Y.J. Chang, et al., Rapid mold temperature variation for assisting the micro injection of high aspect ratio micro-feature parts using induction heating technology[ J], Journal of Micromechanics and Microengineering, 2006, 16 (9), 1783 1791.
    [41] Chen Shia Chung, Li Hai Mei, Hwang Shyh Shin, Wang Ho Hsiang, Passive Mold Temperature Control by a Hybrid Filming-Microcellular Injection Molding Processing [J], Internatinal Communications in Heat and Mass Transfer, 2008, 35, 822-827
    [42] Chen Hui Li, Chien Rean Der, Chen Shia Chung, Using Thermally Insulated Polymer Film for Mold Temperature Control to Improve Surface Quality of Microcellular Injection Molded Parts [J], International Communications in Heat and Mass Transfer 2008, 35, 991-994
    [43] Jae D. Yoon, Soon K. Hong, Ji H. Kim and Sung W. Cha. A Mold Surface Treatment for Improving Surface Finish of Injection Molded Microcellular Parts [J]. Cellular Polymers, 2004, 23 (1)
    [44] Lee, J. and Turng, L. S., Improving Surface Quality of Microcellular Injection Molded Parts through Mold Surface Temperature Manipulation with Thin Film Insulation [J], Polymer Engineering and Science, 2010, 50 (7), 1281-1289
    [45] Yoon J.D., Hong S.K., Kim J.H., et al., A Mold Surface Treatment for Improving Surface Finish of Injection Molded Microcellular Parts [J], Cellular Polymers, 2004, 23 (1), 39 47.
    [46] Cha S.W., Yoon J.D., The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics [J], Polymer-Plastics Technology and Engineering 2005, 44 (5), 795 803.
    [47] Turng, L. S. and Kharbas, H. Development of a Hybrid Solid-Microcellular Co-Injection Molding Process [J], International Polymer Processing, 2004, 19, 77-86.
    [48] Kwon T.H., Ahn S.Y., Slip Characterization of Powder/Binder Mixtures and Its Significance in the Filling Process Analysis of Powder Injection Molding [J], Powder Technology, 1995, 85, 45-55
    [49] Anne M. Grillet, Arjen C.B.Bogaerds, Gerrit W.M.Peters, and etc., Numerical Analysis of Flow Mark Surface Defects in Injection Molding Flow [J], Journal of Rheology, 2002, 46(3), 651-669
    [50] Adeniyi Lawal, Squeezing Flow of Viscoplastic Fluids Subject to Wall Slip [J], Polymer Engineering and Science, 1998, 38 (11)
    [51] Lee Eonseok, White James L., Extrusion Chatacteristics of Thermoplastic Melts Containing Fluoropolymers [J], Polymer Engineering and Science, 1999, 39 (2), 327
    [52] Gang Hong-goo, Cuculo John A., Nam Sehyun, Crater Davis H., Frictional Properties of Polyolefins Treated with Fluoroelastomer Processing Aids [J], Journal of Applied Polymer Science, 1995, 55, 1465
    [53] Ahn S., White J.L., Influence of Low Molecular Weight Additives on Die Extrusion Rheometer Flow of Thermoplastic Melts [J], International polymer processing, 2003, 18 (3),
    [54] Kalika DS, Denn MM. Wall Slip and Extrudate Distortion in Linear Low-Density Polyethylene [J]. Journal of Rheology, 1987, 31 (8), 815-834
    [55] Hatzikiriakos SG, A Slip Model for Polymers Based on Adhesive Failure [J]. International polymer processing, 1993, 8 (2), 135-142.
    [56] Chen J., Li J., Hu T., Walther B., Fundamental Study of Erucamide Used as a Slip Agent [J], Journal of vacuum science technology, 2007, 25(4),
    [57] Mooney M., Explicit Formulas for Slip and Fluidity [J], Journal of Rheology, 1931, 210-222
    [58] Hay Grant, Mackay Michael E., McGlashan Stewart A., Park Yoosup, Comparison of Shear Stress and Wall Slip Measurement Techniques on a Linera Low Density Polyethylene [J], Journal of Non-Newtonian Fluid Mechanical, 2000, 92, 187-201
    [59] Awati K.M., Park Y., Weisser E., Mackay M.E., Wall Slip and Shear Stresses of Polymer Melts at High Shear Rates Without Pressure and Viscous Heating Effects [J], Journal of Non-Newtonian Fluid Mechanical. 1999, 89, 117–131.
    [60] Yoshimura A., Prud’homme R.K., Wall Slip Corrections for Couette and Parallel Disk Viscometers [J], Journal Rheology, 1998, 32, 53–67.
    [61] Expancel web site, http://www.expancel.com, Sept. 2010.
    [62] Dorgan, J. R., Lehermeie,r H., Mang, M., Thermal and Rheological Properties of Commercial-grade Poly(lactic acid)s [J], Journal of Polymer and the Enviroment, 2000, 8, 1 -9
    [63] Auras, R. A., Harte, B., Selke, S., Hernandez, R., Mechanical, Physical, and Barrier Properties of Poly(Lactide) Films [J], Journal of Plastic Film and Sheeting, 2003, 19, 123-135.
    [64] Mathieu, L. M., Mueller, T. L., Bourban, P. E., Pioletti, D. P., Muller R., Architecture and Properties of Anisotropic Polymer Composite Scaffolds For Bone Tissue Engineering [J], Biomaterials, 2006, 27, 905-916.
    [65] Naguib, H. E., Park, C. B., Panzer, U., Reichelt, N., Strategies For Achieving Ultra Low-Density Polypropylene Foams [J], Polymer Engineering and Science, 2002, 41, 1481-1492.
    [66] Peng, S., Yuxian, A., Chen, C., Fei, B., Zhuang, Y., Dong, L., Isothermal Crystallization of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [J], European Polymer Journal, 2003, 39,1475-1480.
    [67] Conway, B. R., Eyles, J. E., Alpar, H. O., A Comparative Study on The Immune Responses To Antigens In PLA and PHB Microspheres [J], Journal of Controlled Release, 1997, 49, 1-9.
    [68] Ha, C. S., Cho, W. J., Miscibility, Properties, and Biogedradability of Microbial Polyester Containing Blends [J], Progress in Polymer Science, 2002, 27, 759–809.
    [69] Javadi, A., Kramschuster, A., Pilla, S., Lee, J., Gong, S., and Turng, L.S., Processing and Characterization of Microcellular PHBV/PBAT Blends [J], Polymer Engineering and Science, 2010, 50, 1440-1448.
    [70] Coyle, D. J., Blake, J.W., Macosko, C.W., The Kinematics ff Fountain Flow in Mold Filling [J], AIChE Journal, 1987, 33, 1168-1177.
    [71] Thirumal M., Khastgir D., Singha N. K., Manjunath B. S., Naik Y. P.. Effect of Foam Density on the Properties of Water Blown Rigi Polyurethane Foam [J], Journal of Applied Polymer Science, 2008, 108: 1810-1817.
    [72] Szycher, M. Handbook of Polyurethanes [M]; CRC Press: New York, 1999.
    [73] Zhongbin Xu, Xiling Tang, Aijuan Gu, Zhengping Fang, Novel Preparation and Mechanical Properties of Rigid Polyurethane Foam/Organoclay Nanocomposiets [J], Journal of Applied Polymer Science, 2007, 106: 439-447.
    [74] Gao L. L., Liu Y. H., Lei H. W., Peng H., Ruan R., Preparation of Semirigid Polyurethane Foam with Liquefied Bamboo Residues [J], Journal of Applied Polymer Science, 2010, 116: 1694-1699.
    [75] Crevecoeur J. J., Nelissen L., Lemstra P.J., Water Expandable Polystyrene (WEPS) Part 1: Strategy and Procedures, Polymer, 1999, 40: 3685-3689.
    [76] Crevecoeur J.J., Nelissen L., Lemstra P.J., Water Expandable Polystyrene (WEPS) Part 2: In-Situ Syntheisi of (Block) Copolymer Surfactants, Polymer, 1999, 40: 3691-3696.
    [77] Shen Jiong, Cao Xia, Lee L. James, Synthesis and Foaming of Water Expandable Polystyrene-Clay Nanocomposites, Polymer, 2006, 47: 6303-6310.
    [78] Amiri R.-S. N., Qazvini N. T., Sanjani N. S., Water Expandable Polystryrene-Oranoclay Nonocomposites: Role of Clay and Its Dispersion State [J], Journal of Macromolecular Science, Part B: Physics, 2009, 48: 955-966.
    [79] Pallay Jan, Kelemen Peter, Berhmans Hugo, Daniel Van Dommelen, Expansion of Polystyrene Using Water as the Blowing Agent, Macromolecular Materials and Engineering, 2000, 275: 18-25.
    [80] Kramschuster A., Injection Molding of Highly Porous and Interconnected Biodegradable Polymer Matrices [D], University of Wisconsin–Madison, 2007.
    [81] Lexan Resin 141 Americas: Commercial, Material Process Data Sheet, SABIC Innovative Plastics.
    [82] Colton, J. S., and Suh, N. L., Nucleation of Microcellular Thermoplastic Foam with Additives: Part 1: Theroretical Considerations [J]. Polymer Engineering and Science, 1982, 27(7), 485-492.
    [83] Colton, J. S., and Suh, N. L., Nucleation of Microcellular Thermoplastic Foam with Additives: Part 2: Experimental Results and Discussion [J]. Polymer Engineering and Science, 1982, 27(7), 493-499.
    [84] Blander, M., Katz, J. L., Bubble nucleation in liquids [J], AIChe Journal, 1975, 21(5), 833-848.
    [85] Han, J. H., and Han, C. D., A Study of Bubble Nucleation in a Mixture of Molten Polymer and Volatile Liquid in a Shear Flow Field [J], Polymer Engineering and Science, 1988, 28(24), 1616-1627.
    [86] Novak, B. R., Maginn, E. J., and McCready, M. J., Comparison of Heterogeneous and Homogeneous Bubble Nucleation Using Molecular Simulations [J], Physics Review B, 2007, 75(8), 5413-5423.
    [87] Sato, H., Furuhashi, M., Yang, D., and et al., A Novel Evaluation Method For Biodegradability of Poly (butylenes succinate-co-butylene adipate) by Pyrolysis-Gas Chromatography [J], Polymer Degradation and Stability, 2001, 73 (2), 327-334
    [88] Tserki, V., Matzinos, P., Pavlidou, E., et al. Biodegradable Aliphatic Polyesters. Part 1. Properties and biodegradation of Poly (butylenes succinate-co-butylene adpate) [J], Polymer Degradation and Stability, 91 (2), 367-376
    [89] Zhao, J. H., Wang, X. Q., Zheng, J., et al., Biodegradation of Poly (butylenes succinate-co-butylene adipate) by Aspergillus Versicolor [J], Polymer Degradation and Stability, 2005, 90 (1), 173-179
    [90] Jiang, L., Wolcott, W. P., Zhang, J. W., Study of Biodegradable Polyactide/poly (butylenes adipate-co-terephthalate) Blends, Biomacromolecules [J], 2006, 7 (1), 199– 207.
    [91] Liu, T. Y., Lin, W. C., Yang, M. C., et al. Miscibility, thermal characterization and crystallization of Poly (L-lactide ) and Poly (tetramethylene adipate-co-terephthalate) blend membranes [J], Polymer, 2005, 46 (26), 12586 - 12594
    [92] K. Li, J. Peng, L. S. Turng, H. Huang, Dynamic Rheological Behavior and Morphology of Polylactide (PLA)/ Poly (butylenes adipate-co-terephthalate) (PBAT) Blends with Various Composition Ratios, Advances in Polymer Technology, 2011, 30(2), 150-157.
    [93] Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering [J]. Biomaterials 1993, 14, 323–330.
    [94] Mikos A. G., Thorsen A. J., Gzerwonka L. A., Bao Y., Langer R., Winsolw D. N., Vacanti J. P. Preparation and characterization of poly (l-lactic acid) foams [J]. Polymer 1994, 35,1068–1077.
    [95] Devin J. E., Attawia M. A., Laurencin C. T., Three-Dimensional Degradable Porous Polymer-Ceramic Matrices for Use in Bone Repair [J], Journal of Biomaterials Science Polymer Editin 1996, 7 (8):661-669.
    [96] Lu L, Peter S. J., Lyman M. D., et al, InVitro and In Vivo Degradation of Porous (DL-lactic-co-glycolic acid) Foams [J], Biomaterials, 2000, 21 (18), 1837-1845.
    [97] Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P. Polylactide Macroporous Biodegradable Implants for Cell Transplantation. 2. Preparation of Polylactide Foams by Liquid–Liquid Phase Separation [J]. Journal of Biomedical Materials Research, 1996, 30: 449–461.
    [98] Nam Y. S., Park T. G., Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation [J]. Journal of Biomedical Materials Research, 1999, 47, 8–17.
    [99] Lo H, Kadiyala S, Guggino E, Leong KW. Poly (l-lactic acid) Foams with Cell Seeding and Controlled-release Capacity. Journal of Biomedical Materials Research, 1996, 30:475–84.
    [100] Sterzel H-J. Production of Foamed Polylactide Injection Molding of High Strength and rigidity [P], US Patent 5,422,053; 1995.
    [101] Guan J, Eskridge KM, Hanna MA. Acetylated Starch-Polylactic Acid Loose-Fill Packaging Materials [J], Industrial Crops and Products, 2005, 22:109-23.
    [102] Fujiwara T, Yamaoka T, Kimura Y, Wynne KJ. Poly (lactide) Swelling and Melting Behavior in Supercritical Carbon Dioxide and Postventing Porous Material [J]. Biomacromolecules, 2005; 6: 2370-3.
    [103] Matuana LM. Solid State Microcellular Foamed Poly (lactic acid): Morphology and Property Characterization [J], Bioresource Technol, 2008, 99:3643-50.
    [104] Harris LD, Kim BS, Mooney DJ. Open Pore Biodegradable Matrices Formed with Gas Foaming [J]. Journal of Biomedical Materials Research, 1998, 42: 396–402.
    [105] Nam YS, Yoon JJ, Park TG. A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive [J] . Journal of Biomedical Materials Research, 2000, 53:1–7.
    [106] Mooney D, Baldwin DF, Suh NP, Vacanti JP, Langer R. Novel Approach to Fabricate Porous Sponges of Poly(d,l-lactic-coglycolic acid) Without the Use of Organic Solvents. Biomaterials 1998, 17:1417 22.
    [107] Se H. O., Soung G. K., Eun S. K., Sang H. C., Jin H. L.. Fabrication and Characterization of Hydrophilic Poly(lactic-coglycolic acid)/Poly(vinyl alcohol) Blend Cell Scaffolds by Melt-Molding Particulate-leaching Method. Biomaterials, 2003, 24 4011–4021.
    [108] Mooney DJ, Park S, Kaufmann PM, Sano K, McNamara K, Vacanti JP, Langer R. Biodegradable sponges for hepatocyte transplantation. Journal of Biomedical Materials Research, 1995, 29:959–65.
    [109] Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, Jerome R. Peripheral Nerve Regeneration Using Bioresorbable Macroporous Polylactide Scaffolds [J]. Journal of Biomedical Materials Research, 2000, 52:639–51.
    [110] Whang K, Thomas CH, Healy KE, Nuber G. A Novel Method to Fabricate Bioabsorbable Scaffolds [J]. Polymer, 1995, 36:837–42.
    [111] Coombes AGA, Heckman JD. Gel Casting of Resorbable Polymers. 1. Processing and Applications [J]. Biomaterials, 1992, 13: 217–224.
    [112] Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R. Preparation of Poly(glycolic acid) Bonded Fiber Structures for Cell Attachment and Sransplantation [J]. Journal of Biomedical Materials Research, 1993, 27: 183–189.
    [113] Park A, Wu B, Griffith LG. Integration of Surface Modification and 3D Fabrication Techniques to Prepare Patterned Poly(llactide) Substrates Allowing Regionally Selective Cell Adhesion. Journal of Biomaterials Science Polymer Editin, 1998, 9:89–110.
    [114] Fischer, E. W.; Sterzel, H. J.; Wegner, G. Kolloid Z Z Polym 1973, 251, 980-990.
    [115] Tubbs, R. K. Polym Sci Part A 1965, 3, 4181.
    [116] Chopra, D., Kontopoulou, M., Hatzikiriakos, S. G., Effect of Maleic Anhydride Content on the Rheology and Phase behavior of Poly (styrene-co-maleicanhydride)/poly (methyl methacrylate) blends [J], Rheologica Acta, 2002, 41, 10-24.
    [117] Li, R. M., Yu, W., Zhou, C. X., Phase Behavior and Its Viscoelastic Responses of Poly (methyl methacrylate) and Poly (styrene-co-maleic anhydride) blend systems [J], Polymer Bulletin, 2006, 56, 455-466.
    [118] Palierne, J. F., Linear Rheology of Viscoelastic Emulsions with Interfacial Tension [J], Rheologica Acta, 1990, 29 (3), 204-214.
    [119] Hoy K. L., Editior, Tables of Solubility Parameters [M]. Solvents and Coatings Materials Research and Development Department. Union Carbide Corporation, 1985.
    [120] Hoy KL. Journal of Coated Fabrics 1989, 19:53.
    [121] Brandrup J. Immergut E. H. Grulke E. A., Polymer Handbook [M], Fourth Edition, New York: Wiley Interscience Publication, 2005.
    [122] Pillin I., Montrelay N., Grohens Y. Thermo-Mechanical Characterization of Plasticized PLA: Is the Miscibility the Only Significant Factor [J]? Polymer, 2006, 47 (13), 4676–4682.
    [123] Moolman F.S., Meunier P. M., Labuschagne P-A. Compatibility of Polyvinyl Alcohol and Poly (methyl vinyl ether-co-maleic acid) Blends Estimated by Molecular Dynamics [J], Polymer, 2005, 46 (16) 6192–6200.
    [124] Kramschuster A., Turng L. S., Li W. J., Peng Y. Y., Peng J., Effect of NanoHydroxyapatite Particles on Morphology and Mechanical Properties of Microcellular Injection Molded Polylactide/Hydroxyapatite Tissue Scaffold [C], Processing of ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology, 2010, Houston, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700