用户名: 密码: 验证码:
砂岩储层微观孔隙结构对聚合物驱油效果影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储层的孔隙结构是指岩石孔隙和喉道的空间结构,包括孔隙大小和分布、孔隙和喉道的连通情况、孔隙的几何形状和微观非均质特征、孔隙中粘土矿物的成分和产状等,是反映储层微观非均质的重要参数。它不仅控制了石油的运移和储集,而且对储层的产油能力、驱油效率以及最终采收率都有较大的影响。
     已有研究成果表明,水驱采收率与孔隙结构的某些参数具有较好的相关性,但未见孔隙结构与聚合物驱采收率关系的有关报道。实际上由于聚合物驱与水驱的驱油机理不同,聚合物驱存在不可及孔隙体积,以及岩石对聚合物分子存在吸附和捕集作用,还有聚合物溶液的粘弹性、流变性等等,使得储层的孔隙结构特征对聚合物驱油效果的影响可能会远远大于水驱。因此,有必要开展储层的微观孔隙结构特征对聚合物驱油效果影响这方面的研究。
     本文应用普通压汞、恒速压汞、铸体薄片分析、电镜扫描等研究手段,通过大量的分析数据,对喇萨杏油田萨葡油层的微观孔隙结构特征进行了研究,建立了储层微观孔隙结构参数与宏观参数(渗透率)的关系;分析了相同油层组在不同地区的孔隙结构差异、同一地区不同油层组之间的孔隙结构差异以及不同相别油层之间的孔隙结构差异,得出:①从平面上来看,葡Ⅰ组油层在萨中孔隙均质性最强,在杏南孔隙非均质性最强;萨尔图油层由北往南孔隙非均质性增强。②从纵向上来看,喇嘛甸葡Ⅰ组油层较萨Ⅱ、萨Ⅲ组油层微观非均质性强;在萨中和杏南则是萨Ⅱ、萨Ⅲ组油层微观非均质性较强。③相同渗透率下,杏南葡I组油层平均孔隙半径略大,微观非均质性较强。
     结合物理模拟实验结果,应用相关性分析和网络模型,定量研究了孔隙结构参数与聚合物驱效果的关系,并根据影响程度的大小确定了影响聚合物驱效果的主要孔隙结构参数。同时应用多元线性回归、多项式逐步回归以及人工神经网络方法,建立了主控参数与聚合物驱效果的关系方程和预测模型,并对喇萨杏油田萨葡油层聚合物驱提高采收率值进行了预测。
     本文还提出了一种较实用的计算聚合物驱不可及孔隙体积的方法,可以准确地确定任意分子量聚合物在任意渗透率油层的不可及孔隙体积。发明应用了一种荧光示踪聚合物驱油物理模拟实验方法,可以较直观地观察到聚合物溶液在多孔介质中的流动轨迹。
The reservoir pore structure means that space structures of pore and throat space,which include the size and distribution of pore, the connectivity between pore and throat, the geometry and heterogeneity of pore, the component and occurrence of the clay mineral in pore and so on,and they reflect the heterogeneity of reservoir. The pore structure parameters not only control migration and accumulation of oil but have major effect on production capacity and displacement efficiency and final recovery efficiency of the reservoir.
     The previous research demonstrated that there was preferable correlation between some pore structure and water flooding recovery, but there was not a report about the correlation between pore structure and polymer floodinging recovery. Actually pore structure has bigger effect on polymer floodinging than water floodinging because oil displacement mechanism of polymer floodinging is different from water flooding and polymer flooding has inaccessible pore structure and polymer solution has viscoelasticity and rheological property and adsorption captation effect on rock. So it is necessary to research the effect of microscopic pore structure on polymer floodinging displacement characteristics.
     This paper used the methods including normal mercury penetration, constant rate mercury penetration, cast thin analysis and electron microscope scanning to analysed the microscopic pore structure of Lasaxing oilfield ,and built the relationship between pore structure parameter and macro-parameter; it also analysed the pore structure divergence in different oil layer and different oilfield:①The pore homogeneity in PI oil layer was the strongest in Sazhong area and the pore heterogeneity was the strongest in Xingnan area; the pore heterogeneity in Saertu oil layer became stronger from north to south;②In Lamadian oilfield, the micro-heterogeneity in PI oil layer was stronger than SII and SIII oil layer; and in Sazhong and Xingnan oil field micro-heterogeneity in SII and SIII oil layer was stronger than PI oil layer.③The average pore radius was bigger and the micro-heterogeneity was stronger in PI oil layer of Xingnan area.
     Incorporating physical modeling experiment result, it also analysed the quantitative effect of pore structure parameters on polymer flooding displacement characteristics and selected the principal factors; Using the methods of polynomial regression and artificial neural network, it built the relationship equation and forecasting model between principal factors and polymer flooding displacement characteristics and forecasted the polymer flooding recovery in Lasaxing oil filed.
     This thesis provided an utility method which could calculate the inaccessible pore volume which could establish the inaccessible pore volume of arbitray molecular polymer solution in arbitray permeability reservoir, and invented a polymer floodinging physical modeling method using tracer polymer solution which could watch the flow route of polymer solution in porous media.
引文
[1]尹玉萍,吴庆峰.聚驱见效特征与影响因素分析[J].油气田地面工程,2008,27(5):43-45.
    [2]李俊键,姜汉桥,陈民锋.聚合物驱效果影响因素关联性及适应性分析[J].石油钻采工艺,2008,30(2):86-89.
    [3]吴海燕.孤东油田二区聚驱动态特征及其见效影响因素[J].内江科技,2008,(2):128-129.
    [4]梁会珍,武英利,耿晶.聚合物驱油效果储层影响因素分析[J].西北地质,2004,37(4):113-116.
    [5]侯健,赵辉,杜庆军.影响聚合物驱增油动态的敏感参数研究[J].石油天然气学报,2007,29(1):118-120.
    [6]王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78.
    [7]沈平平,袁士义,邓宝荣.化学驱波及效率和驱替效率的影响因素研究[J].石油勘探与开发,2004,31增刊:1-4.
    [8]姜喜庆,周群,黄修平.影响油层聚合物驱效果的地质因素[J].大庆石油地质与开发,1999,18(1):37-39.
    [9]赵四新,刘兰桂,邵先杰,等.陈堡油田储层微观特征及对开发效果的影响[J].特种油气藏,2008,15(1):21-24.
    [10]谢丛姣,刘明生,王国顺.基于砂岩微观孔隙模型的水驱油效果研究[J].地质科技情报,2008,27(61):58-60.
    [11]陈民锋,姜汉桥.基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J].石油天然气学报,2006,28(5):92-95.
    [12]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [13]刘柏林.苏北盆地陈堡油田微观水驱油机理及水驱油效率影响因素研究[J].石油实验地质,2003,25(2):178-181.
    [14]张绍东,王绍兰,李琴,等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报,2002,26(3):47-49.
    [15]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):47-49.
    [16]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,(1):23-25.
    [17]刘青年.大庆砂岩孔隙结构特征和水驱油渗透特征的研究[C].大庆油田勘探开发研究院档案,1984.
    [18]杨普华,刘青年.孔隙结构对驱油效率关系的研究[C].大庆油田勘探开发研究院档案,1984.
    [19] VanPoollenHK,etal.Steady-state and Unsteady-state Flow of Non-Newtonian Fluids throught Porous Media[J].SPE,1969,80-88.
    [20] K.S.Sorbie,LJ.Roberts.A Model for calculating polymer injectivity including the effects of sheared gradation[J].SPE,1984,15-18.
    [21] D.G.Clark,T.D Van Golf-Racht.Pressure-Derivative Approach to Transient Test Analysis[J].A High-Perme_ability North Sea Reservoir Example,JPT,1985,2023-2039.
    [22] L.P.Dake.Fundamentals of Reservoir Engineering[M].Amsterdam:Elsevier Scientific Publishing Company,1978.
    [23] Ruddy,Anderson,M.A,Pattillo,P.D,Bishiawi,M and Foged,N..Rock compressibility, Compaction and subsidence in a High Porosity Chalk Reservoir[J].JPT,1989,741-749.
    [24] Richardson,TX.Society of Petroleum Engineers [J] .SPE,1984.
    [25]王志武,刘恒,高树棠.三次采油技术及矿场应用[M].上海:上海交通大学出版社,1995.
    [26]胡博仲,刘恒,李林.聚合物驱采油工程[M].北京:石油工业出版社,1997.
    [27]刘恒,姚玉明,李伟,等.大庆三次采油技术报告集[R].大庆:1997.
    [28]王启民,冀宝发,隋军,等.大庆油田三次采油技术的实践与认识[J].大庆石油地质与开发,2001,20(2):1-8.
    [29]终曼丽.流经孔隙介质时聚合物稀溶液德博拉数的确定[J].油田化学,1992,9(l):50-53.
    [30]许元泽.高分子结构流变学[M].北京:科学出版社,1988.
    [31]贝尔.多孔介质流体动力学[M].北京:建筑工业出版社,1983.
    [32]郭尚平.微观驱油物理化学机理[M].北京:科技出版社,1990,100-102.
    [33]黄延章,于大森,张桂芳.聚合物驱油微观机理研究[J].油田化学,1990,7(l):57-60.
    [34]王德民,等.大庆油田聚合物驱工业化推广结果及几点认识[J].SPE50928.
    [35]赵颖,张华,朱金才.黄原胶溶液在油田开发中的应用[J].断块油气田,1997,(4):9-14.
    [36]李卫东,郭雄华,陈跃章,等.孤东油田黄原胶驱先导试验粘度变化及影响因素[J].石油钻采工艺,1998,20(5):75-78.
    [37]王德辰,周辉,刘津桂,等.玉门石油沟油田M油藏生物聚合物驱油技术研究[J].油田化学,1996,13(2):235-242.
    [38]王凤兰,王天智,李丽娟.萨中地区聚合物驱前后密闭取心井驱油效果及剩余油分析[J].大庆石油地质与开发,2004,23(2):59-61.
    [39]卢祥国,高振环,王为民.应用核磁成像技术进行聚合物驱油实验研究[J].大庆石油地质与开发,1995,14(3):56-59.
    [40]卢祥国,高振环,赵小京,等.聚合物驱后剩余油分布规律研究[J].石油学报,1996,17(4):13-17.
    [41]刘风歧,汤心颐.高分子物理[M].北京:高等教育出版社,1995.
    [42]韩显卿,薄万芬.多孔介质中滞留聚合物分子的粘弹效应模型[J].西南石油学院学报,1989,1(2):50-56.
    [43]翁蕊,梅佐黔.聚合物不可及/排斥体积测定方法的研究[J].石油勘探与开发,1995,12:55-58.
    [44]翁蕊.聚合物的滞留类型及相应的测定方法[J].油气采收率技术,1998,5(4):51-56.
    [45] C.R.史密斯,G.W.特蕾西,R.L.法勒.实用油藏工程[M].北京:石油工业出版社,1995.
    [46]赵永胜,魏国章,陆会民,等.聚合物驱能否提高驱油效率的几点认识[J].石油学报,2001,5:43-46.
    [47]王德民.发展新理论,搞好有战略意义的技术创新,确保大庆持续稳定发展[C].王德民院士报告论文集.北京:石油工业出版社,2001.403-420.
    [48]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,7:60-65.
    [49]汪伟英.利用聚合物粘弹效应提高驱油效率[J].断块油气田.1995,9:27-29.
    [50]大庆油田有限责任公司勘探开发研究院.加快科技攻关步伐,努力实现油田跨世纪持续发展[R],大庆:2000.
    [51]唐金星,陈铁龙,何劲松,等.聚合物驱相对渗透率曲线实验研究[J].石油学报,1997,1:81-84.
    [52]卢祥国,高振环,赵小京,等.聚合物驱后剩余油分布规律研究[J].石油学报,1996,17(4):13-17.
    [53]宋考平,杨二龙,王锦梅,等.聚合物驱提高驱油效率机理及驱油效果分析[J].石油学报,2004,25(3):71-74.
    [54]张宏方,王德民,王立军.聚合物溶液在多孔介质中的渗流规律及其提高驱油效率的机理[J].大庆石油地质与开发,2002,21(4):57-60.
    [55] Hirasaki, G.J.,Pope ,G.A..Analysis of Factors Influencing Mobility and Adsorption in the Flow of Polymer Solutions through Porous Media [J].SPE Researvoir Engineering, 1974, (3):337-350.
    [56]王新海,赵郭平.幂律流体在多孔介质中的剪切速率[J].新疆石油地质,1998,19 (4):312-314.
    [57] Chauveteaug,Tirrelim,Omaria, A.Concentration Dependence of the Effective Viscosity of Polymer Solutions in Small Poreswith Repulsive or Attractive Walls [J].Journal of Colloid and Interface Science,1984,100(1):41-54.
    [58] Gupta, P.K., Sridhar, T..Viscoelastic Effects in Non-Newtonian Flows through PorousMedia [J].Rheologica ACTA,1985,24:148-151.
    [59]邢义良,洪云利,郎兆新.包含幂律流体的驱替过程的理论研究[J].石油勘探与开发,1998,25(3):38-40.
    [60] Pope , G . A .. The application of fractional flow theory to enhanced oil recovery[J].Soc.Pet.Eng J,1980,191-205.
    [61] Bird, B.R.,et al..Transport Phenomena[M].New York City:Jhon Wiley & Sons Inc.,1990.
    [62] Wu,Y.S., et al..Flow and Displacement of Bingham Non-Newtonian Fluids in Porous Media[J].SPE 20051,1990.
    [63]雷光伦,许震芳,张铁林,等.聚合物驱相对渗透率曲线及影响因素试验研究[J].水动力学研究与进展,1994,9(4):470-476.
    [64]程林松,张姝玉,李春兰.聚合物驱粘弹效应影响因素的数值模拟研究[J].西安石油学院学报(自然科学版).2002,17(6):25-27.
    [65]袁敏,贾忠伟,袁纯玉.聚合物溶液粘弹性影响因素研究[J].大庆石油地质与开发,2005,24(5):74-76.
    [66]夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,7:60-65.
    [67] Wang Demin, Cheng Jiecheng,et al.Viscous-elastic polymer can increase microscale displacement efficiency in cores.SPE 63227,2000:1~10.
    [68]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [69]王德民,程杰成,夏惠芬,等.粘弹性流体平行于界面的力可以提高驱油效率[J].石油学报,2002,23(5):48-52.
    [70]吕平.毛管数对大庆天然岩心上流体流动的影响[J].石油学报,1987,8(3):49-54.
    [71]王伟英.孔隙介质中聚合物溶液的粘弹性及流变性[J].江汉石油学院学报,1994,4.
    [72]刘振宇,许元泽,翟云芳.聚合物微观驱油机理的实验方法研究[J].大庆石油地质与开发,1996,15(1):47-50.
    [73]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
    [74]鲁洪江,邢正岩,王永诗.压汞和退汞资料在储层评价中的综合应用探讨[J].油气采收率技术,1997,4(2):48-53.
    [75]罗蛰潭,王允诚.水银退出效率与岩石孔隙结构的关系[J].石油实验地质,1980,(2):56-60.
    [76]张芳州,安光升.孔隙结构在储层分类评价应用中的研究.石油勘探与开发,1981,(5):48-52
    [77]方少仙,侯方浩.石油天然气储层地质学[M].东营:石油大学出版社,1998.
    [78]洪秀娥,戴胜群,郭建宇.应用毛细管压力曲线研究储层孔隙结构[J].江汉石油学院学报,2002,24(1):53-54.
    [79]王贤君,康燕.砂岩酸化微观孔隙结构研究[J].石油天然气学报,2005,27(6):699-701.
    [80]应凤祥,杨式升,张敏,等.激光扫描共聚焦显微镜研究储层孔隙结构[J].测沉积学报,2002,20(1):75-77.
    [81]高敏,安秀荣,袛淑华,等.用核磁共振测井资料评价储层的孔隙结构[J].测井技术,2000,24(3):188-193.
    [82]吴文祥,刘洋.聚合物驱后岩心孔隙结构变化特性研究[J].油田化学,2002,19(3):253-255,
    [83]朱健,刘伟利,李兴,等.聚合物驱后储层物性参数的变化特征[J].油气地质与采收率,2007,14(4):65-67.
    [84]王金勋,吴晓东,杨普华,等.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003,23(2):8-11.
    [85]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4),46-51.
    [86]侯健,李振泉,关继腾,等.基于二维网络模型的水驱油微观渗流机理研究[J].力学学报,2005,37(6),783-787.
    [87]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [88]高慧梅,姜汉桥,陈民锋等.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发,2006,33(6):734-737.
    [89]王金勋,刘庆杰,杨普华.应用Bethe网络研究孔隙结构对两相相对渗透率的影响[J].重庆大学学报(自然科学版),2000,23(增刊):130-132.
    [90] Cannella, W.J., C.Huh, Seright, R.S..Prediction of Xanthan Rheology in Porous Media[J].SPE 18089,1988,2-5.
    [91] Lopez, X., P.Valvatne, and Blunt, M.J..Predictive network modeling of single-phase non-Newtonian flow in porous media[J].Journal of Colloid and Interface Science,2003,264(1):256-265.
    [92] Xavier Lopez.Pore-Scale Modelling of Non-Newtonian Flow[J].Department of Earth Science & Engineering Petroleum Engineering & Rock Mechanics Group, 2004,93-100.
    [93]钟大康,张崇军,文应初.砂岩储集层物性影响因素定量分析方法[J].石油与天然气地质,2000,21(2):131-132.
    [94]成都地质学院数学地质编写组.概率论与数理统计[M].北京:地质出版社,1981.216-231.
    [95]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.232-234.
    [96]石广仁.地学中的计算机应用新技术[M].北京:石油工业出版社,1999.8-21,47-61.
    [97]李留仁,焦李成.基于人工神经网络的油田产量多因素非线性时变预测[J].西安石油学院学报,2002,17(4):42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700