用户名: 密码: 验证码:
强子谱理论中奇特态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人们认为非阿贝尔规范理论量子色动力学(QCD)是强相互作用的正确描写,它刻画了夸克和胶子、胶子和胶子之间的强相互作用。由于QCD是一个非线性的、非常复杂的理论,而且强子内部的相互作用很强,所以从QCD拉式量出发计算强子的性质是一个非常艰巨的任务。尽管我们对强相互作用的认识取得很大进展,尤其是在高能标区域,但是对于中低能区域的强相互作用我们了解的还很有限,只有我们从第一原理预言物理态的性质,并且被实验所证实,我们才可以说是完全理解了QCD。
     由于很难通过严格求解QCD来预言强子性质,我们只能借助于各种近似方法,与QCD联系最紧密、最被大家看好的是格点QCD,尽管格点QCD取得了很大进展,但是在格点QCD中计算物理量需要用计算机做大量的计算,进展缓慢。另外一种很有效、取得很大成功的方法是利用强子结构的唯象学模型刻画强子的性质,这些模型除了预言夸克模型中的q(?)介子和qqq重子外,还预言了多夸克态、胶球、混杂态。本论文主要征对BES合作组和Babar合作组最近发现的新强子态,利用强子结构的唯象学模型估计这些强子态的质量、研究它的产生和衰变性质等。
     我们从手征孤立子模型和夸克模型研究了X(1835)的产生和衰变性质,认为X(1835)是一个J~(PC)=0~(-+),I~G=0~+的baryonium。在此图像下,我们预言X(1835)衰变到η′ππ有很大分支比,这一理论结果为BES合作组后来的实验所证实。进一步我们指出X(1835)在γ(1S)→γX(1835)和J/ψ→ωX(1835)中的产生率很小,因而很难被观测到,这样很自然地解释了为什么CLEO合作组在γ(1S)的辐射衰变中没有观测到X(1835)。由X(1835)的的量子数和baryonium结构得知,为了理解X(1835)和0~(-+)介子的多夸克结构非常有必要从夸克模型研究q~3(?)~3系统,同时还可以在该框架下考察最近发现的p(?)和A(?)近阈放大效应。我们在色磁相互作用的夸克模型中严格求解了q~3(?)~3系统的谱,发现与p(?)近阈放大、p(?)近阈放大、A(?)近阈放大等相对应的态有较大的色磁束缚能,所以这些态应当足够稳定以至于被现有实验观测到。色磁能量较低的态的物理可观测效应及其和重子反重子近阈放大效应的关系还有待进一步的深入研究。
     BES合作组最近还在J/ψ→π~0K~+K~-的末态K~+K~-的不变质量谱上发现了宽共振态X(1576),我们指出X(1576)是diquark-antidiquark bound state,这样我们可以很自然的理解X(1576)为什么这么宽。在此图像下应存在一个矢量九重态,它是大家熟知的标量九重态(α_0(980),f_0(980),κ等)的P波激发。我们估计了该九重态中每个成员的质量,在“fall apart”衰变机制下仔细考察了它们的衰变,它可以衰变到两个赝标介子或者一个赝标介子和一个矢量介子。我们预言除KK末态外,X(1576)→φπ~0也是X(1576)的重要衰变道,而X(1576)衰变到π~+π~-的分支比几乎为0,这两个预言可以检验我们的图像、区分各种理论模型,进一步我们指出通过J/ψ衰变寻找该九重态中其他成员的衰变道。
     除BES物理外,我们还研究了Babar合作组最近在有初始光子辐射的e~+e~-→φf_0(980)过程中发现的新结构Y(2175),我们认为Y(2175)是1—奇异混杂态的理想候选者,从流管模型和组分胶子模型估计它的质量、研究了它的衰变。两个模型给出的最低能量的1—奇异混杂态的质量估计与Y(2175)的观测质量相符,两个模型预期的衰变模式也很相近。在混杂态图像下Y(2175)主要衰变到K_1(1270)K,K_1(1400)K和K~*(1410)K,这一预言得到现有实验数据的支持。为了确认Y(2175)是混杂态还是普通q(?)介子态,我们分别从~3P_0模型和流管模型考察了2~3D_1 s(?)的衰变,指出实验上寻找KK,K~*K~*,K(1460)K,h_1(1380)η衰变模式对于区分两者也很重要,2~3D_1奇异夸克偶素倾向于衰变到以上末态,而这些衰变模型在混杂态图像下几乎被禁戒。
     强子谱是一个非常具有挑战性的问题,到目前为止QCD理论中还没有关于强子谱的理论,近年来各实验室发现很多新的强子态,这些强子态的结构和性质还不清楚、存在很大争议,我们迫切需要一个从第一原理理解强子结构和强子性质的理论和方法。此领域还有一些很难的、重大的理论问题需要回答,如为什么至今为止实验上还没有确认一个奇特强子态。针对最新的实验进展,我们在这一领域做了有意义的理论探讨,我们期望强子谱研究在不久的将来能取得重大进展。
Our present understanding of the strong interactions is that it is described as the non-Abelian gauge field theory Quantum Chromodynamics(QCD) [1,3-6] which describes the interactions of quarks and gluons. Even though in QCD we have a theory of the strong interactions, unfortunately, calculating the properties of hadrons from the QCD lagrangian has proven to be a very difficult task in this strongly coupled nonlinear theory. Although we have made great progress in understanding strong interaction especially in the ultraviolet region, properties of medium and low energy QCD still present challenges to particle physicist and remain to be understood. Until we can both predict the properties of the physical states of the theory and confirm these predictions by experiment we can hardly claim to understand QCD.
     Because of the difficulties in solving QCD exactly to obtain the properties of the physical states of the theory, we have resorted to various approximation methods. The most promising of these is lattice QCD(redefine the problem on a discrete spacetime lattice) [7-9], Although a great deal of progress has been made, these calculations take enormous amounts of computer time and progress has been slow. A less rigorous approach which has proven to be quite useful and reasonably successful, has been to use phenomenological models of hadron structure to describe hadron properties. These models predict multiquark states, glueballs, and hybrids, in addition to the conventional q(?) mesons and qqq baryons of the quark model. This thesis mainly concentrates on the the hadrons which are recently discovered by the BES Collaboration and the Babar Collaboration, mostly we use phenomenological models of hadron structure to estimate the hadron mass, to study the production properties and decay properties and so on.
     We have studied X(1835) from both the chiral soliton model and the quark model, we propose X(1835) is a baryonium with quantum number J~(PC) = 0~(-+), 1~G = 0~+, in this picture, we predict X(1835) have large branch ratio intoη'ππ, which has been verified by experiment. Moreover, the small production rate of X(1835) inγ(1S)→γ(1835) and J/ψ→ωX(1835) can be understood. Both the quantum number and the baryonium structure suggest us to study the q~3(?)~3 system in order to understand nature of X(1835), as a byproduct both the p(Λ|-) andΛ(Λ|-) enhancements are considered in the same framework. We exactly calculate the spectrum of q~3(?)~3 in quark model with colormagnetic interaction, we find that the states corresponding to the p(?) enhancement, p(Λ|-) enhancement,Λp(Λ|-) enhancement,...have rather large negative colormagnetic energy, this indicates that these states should be visible in experiments. The relation between the lower energy states and the baryon-antibaryon enhancements needs to be studied further.
     The BES Collaboration also reported an extremely broad signal X(1576) in the K~+K~- invariant mass spectrum in the J/ψ→π°K~+K~- channel. We propose X(1576) is a diquark-antidiquark bound state, then the large width can be naturally understood. In this scheme there exist a vector nonet similar to the famous scalar nonet (α_0(980),f_0(980),κet al), the masses of members of the nonet are estimated, the decay of the nonet is analyzed in detail, it can decay into two pseudoscalars or one pseudoscalar and one vector meson. We predict that X(1576) almost can not decay intoπ~+π~-, and another favored decay channel X(1576)→φπ~0 is suggested, which are crucial tests of our scheme, can distinguish different models. Furthermore, J/ψdecay channels to search other members of the nonet are suggested.
     The good 1~(--) strangeonium hybrid candidate Y(2175) is studied in detail from both the flux Lube model and the constituent gluon model, which is observed in e~+e~-→φf_0(980) with initial state radiation. The mass estimates in both models support Y(2175) should be a strangeonium hybrid, and the decay pattern is very similar in both models. Y(2175) mainly decays into K_1(1270)K, K_1(1400)K and K*(1410)K in hybrid scheme, which is supported by the present experimental data. Furthermore 2~3D_1 strange quarkonium is investigated in order to confirm whether Y(2175) is a exotic hybrid state or a common q(?) state, and the experimental search of the decay modes KK, K*K*, K(1460)K,h_1 (1380)ηis suggested to distinguish the two pictures, which are favored in 2~3 D_1 s(?) picture, however are suppressed in the hybrid scheme.
     Hadron spectrum is a very difficult problem, and there is no "Theory of Spectrum" in QCD, understanding the hadron structure and hadron properties from first principle is especially demanded, since many new hadrons have been observed in recent years. There arc some important, very difficult problems need to be answered, such as the absence of exotics, we expect great progress in hadron spectrum in future.
引文
[1] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47, 365 (1973).
    [2] O.W. Greenberg, Phys. Rev. Lett.13, 598 (1964).
    [3] M. Han and Y. Nambu, Phys. Rev. B.139, 1006 (1965).
    [4] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
    [5] H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
    [6] S. Weinberg,Phys. Rev. Lett. 31,494 (1973).
    [7] K. G. Wilson,Phys. Rev. D 10, 2445 (1974).
    [8] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rept. 95 (1983) 201.
    [9] J. B. Kogut, Rev. Mod. Phys. 51,659 (1979); Rev. Mod. Phys. 55,775 (1983).
    [10] D. J. Gross, Nucl. Phys. Proc. Suppl.74, 426-446 (1999).
    [11] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).
    [12] R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969).
    [13] S. Bethke, Nucl. Phys. Proc. Suppl. 121, 74 (2003), hep-ex/0211012.
    [14] A. P. Szczepaniak, Phys. Rev. D 69, 074031 (2004), hep-ph/0306030; C. Feuchter and H. Reinhardt, hep-th/0402106; D. Zwanziger, Phys. Rev. D 70, 094034 (2004), hep-ph/0312254; A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65, 025012 (2002), hep-ph/0107078,
    [15] Murray Gell-Mann (1961) CALTECH Report CTSL-20(1961).
    [16] S. Okubo,Prog. Theor. Phys. 27, 949 (1962).
    [17] C.Vafa and E.Witten, Nucl. Phys. B234,173 (1984).
    [18] Particle Data Group, W.-M. Yao et al., Journal of Physics G 33, 1 (2006).
    [19] S. Weinberg, Physica A 96 (1979) 327; J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142; J. Gasser and H. Leutwyler, Nucl. Phys. B 250 (1985) 465.
    [20] E.Fermi and C.N.Yang, Phys.Rev.76, 1739(1949).
    [21] I.S.Shapiro, Sov. Phys. Usp. 16, 173 (1973); I.S.Shapiro, Phys. Reports, 35, 123 (1978); C.B.Dover and J.M.Richard, Ann. Phys. 121, 70 (1979); A.M.Badalyan, L.P.Kok, M.I.Polikarpov, Yu.A.Simonov, Phys. Reports, 82, 31 (1982); C.Amsler, Advances in Nuclear Physics, 18, 183 (1987); C. Amsler and F. Myhrer, Annu. Rev. Nucl. Part. Sci. 41:219-267(1991); E. Klempt, F. Bradamante, A. Martin and J. M. Richard,Phys. Rept. 368, 119 (2002)。
    [22] J.Z.Bai et al., Phys.Rev.Lett.91(2003)022001, hep-ex/0303006.
    [23] J.L. Rosner, Phys. Rev. D68, 014004 (2003).
    [24] B.S.Zou and H.C.Chiang, Phys.Rev.D69(2004)034004; B.Kerbikov, A.Stavinsky and V.Fedotov , Phys.Rev. C69 (2004) 055205, hep-ph/0402054; J. Haidenbauer, U. G. Meissner and A. Sibirtsev, Phys. Rev. D 74, 017501 (2006), hep-ph/0605t27;J. Haidenbauer, H. W. Hammer, U. G. Meissner and A. Sibirtsev, Phys. Lett. B 643, 29 (2006), hep-ph/0606064.
    [25] A.Datta and RJ. O'Donnell, Phys.Lett. B567, 273 (2003), hep-ph/0306097; Mu-Lin Yan, Si Li, Bin Wu, Bo-Qiang Ma, hep-ph/0405087; Chong-Shou Gao and Shi-Lin Zhu, Commun.Theor.Phys.42(2004)844, hep-ph/0308205; M. Suzuki, J. Phys. G 34, 283 (2007), hepph/0609133.
    [26] G. J, Ding and M. L. Yan, Phys. Rev. C 72, 015208 (2005), hep-ph/0502127.
    [27] M. Ablikim, et al. BES Collaboration, hep-ex/0508025, Phys.Rev.Lett. 95 (2005) 262001.
    [28] G.J. Ding and M. L. Yah, Eur. Phys. J. A 28, 351 (2006), hep-ph/0511186.
    [29] G. J. Ding and M. L. Yah, nucl-th/0702037, accepted by Phys. Rev. C.
    [30] J. Cote, M. Lacombe, B. Loiseau, B. Moussallam and R. Vinh Mau, Phys. Rev. Lett. 48, 1319 (1982); M. Pignone, M. Lacombe, B. Loiseau and R. Vinh Mau, Phys. Rev. C 50 (1994) 2710; B. El-Bennich, M. Lacombe, B. Loiseau and R. Vinh Mau, Phys. Rev. C 59 (1999) 2313.
    [31] T. Hippchen, J. Haidenbauer, K. Holinde and V. Mull, Phys. Rev. C 44, 1323 (1991).
    [32] T.H.R.Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (196t); T.H.R.Skyrme, Nucl. Phys. 31,556 (1962); G. S. Adkins, C. R. Nappi and E. Witten, Nucl. Phys. B 228, 552 (1983); G. S. Adkins and C. R. Nappi, Nucl. Phys. B 233, 109 (1984).
    [33] A. Jackson, A. D. Jackson and V. Pasquier, Nucl. Phys. A 432, 567 (1985); R. Vinh Mau, M. Lacombe, B. Loiseau, W. N. Cottingham and R Lisboa, Phys. Lett. B 150, 259 (1985); M. Lacombe, B. Loiseau, R. Vinh Mau and W. N. Cottingham, Phys. Lett. B 169, 121 (1986); T. S. Walhout and J. Wambach, Phys. Rev. Lett. 67, 314 (1991); A. Hosaka, M. Oka and R. D. Amado, Nucl. Phys. A 530, 507 (1991); N. R. Walet and R. D. Arnado, Phys. Rev. Lett. 68, 3849 (1992), nucl-th/9210015; Phys. Rev. C 47, 498 (1993); H. Yabu and K. Ando, Prog. Theor. Phys. 74, 750 (1985).
    [34] Y. Lu and R. D. Amado, Phys. Rev. C 54, 1566 (1996), nucl-th/9606002; Y. Lu, P. Protopapas and R. D. Amado, Phys. Rev. C 57, 1983 (1998), nucl-th/9710046.
    [35] B. A. Li, M. L. Yan and K. E Liu, Phys. Rev. D 43, 1515 (1991); B. A. Li and M. L. Yan, Phys. Lett. B 282, 435 (1992); D. Diakonov et al, Nucl. Phys. B480 341 (1996).
    [36] M. Oka, R. Bijker, A. Bulgac and R. D. Amado, Phys. Rev. C 36, 1727 (1987).
    [37] R. A. Bryan and R. J. N. Phillips, Nucl. Phys. B 5, 201 (1968).
    [38] P.H. Timmers, W. A. van der Sanden and J. J. de Swart, Phys. Rev. D 29, 1928 (1984)[Erratum-ibid. D 30, 1995 (1984)].
    [39] R.D. Amado, E Cannata, J-P. Dedonder, M.P. Locher, and B. Shao, Phys. Rev. Lett. 72, 970-972, (1994), nucl-th/9311020; Yang Lu and R.D. Amado, Phys. Lett. B 357, 446-450 (1995), hep-ph/9504362 ; Phys. Rev. C 52, 2158-2171 (1995), nucl-th/9505021.
    [40] R.D. Amado, F.Cannata, J-P. Dedonder, M.P. Locher, and B. Shao, Phys.Rev.C50, 640-651, 1994, hep-ph/9403374.
    [41] S.J.Brodsky, D.G.Coyne, T.A.DeGrand, and R.R.Horgan, Phys. Lett. B73, 203 (1978).
    [42] S.B. Athar, et al, CLEO Collaboration, Phys. Rev. D 73, 032001 (2006), hep-ex/0510015.
    [43] V.A.Novikov, M.A.Shifman, A.I.Vainshtein and V.I.Zakharov, Nucl. Phys. B165, 55 (1980).
    [44] N. Brambilla et al.,Heavy Quarkonium Physics, CERN Yellow Report, hep-ph/0412158; J. P. Ma, Phys. Rev. D65, 097506 (2002), hep-ph/0202256.
    [45] L. Micu, Nucl. Phys. B 10, 521, 1969.
    [46] H.G. Blundell and S. Godfrey, Phys. Rev. D53, 3700, 1996; A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Phys. Lett. B71,397, 1977; B72, 57, 1977; P.R. Page, Nucl. Phys. B446, 189, 1995; S. Capstick and N. Isgur, Phys. Rev. D34, 2809, 1986; W.Roberts and B.Silvestre-Brac, Few Body Syst. 11, 171 (1992).
    [47] A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Phys. Rev. DS, 2223, 1973; D9, 1415, 1974; D11, 1272, 1975; Phys. lett. B71, 57(1977).
    [48] A. Le Yaouanc, L. Oliver, O. Pene and J. Raynal, Phys. Lett. B72, 57, 1977.
    [49] A. Le Yaouanc, L. Oliver, O. Pene aad J. Raynal, Hadron Transitions in the Quark Model, Gordon and breach science publishers, New York, 1987.
    [50] S. Capstick and W. Roberts, Phys. Rev. D49, 4570, 1994; S. Godfrey and N. isgur, Phys. Rev. D32, 189, (1985); E. S. Ackleh, T. Barnes, and E. S. Swanson, Phys. Rev. D54,6811, 1996.
    [51] H. Q. Zhou, R. G. Ping and B. S. Zou, Phys. Lett. B611, 123,2005; Phys. Rev. D71: 114002,2005; R. G. Ping, B. S. Zou, H. C. Chiang, Eur. Phys. J. A23:129-133,2004; Phys. Rev. D66: 054020, 2002; R. G Ping, H. Q Jiang, P. N Shen and B. S Zou, Chin. Phys. Lett. 19, 1592, 2002;
    [52] L. Kopke, N. Wermes, Phys. Rept.174: 67,1989.
    [53] S. Jin, talk presented at International Conference on QCD and Hadronic Physics, Beijing, China, 6/16-6/20, 2005; S. S. Fang, talk presented at International Conference on QCD and Hadronic Physics, Beijing, China, 6/16-6/20, 2005; X. Y. Shen, Talk presented at Lepton-Photon 2005, 6/30-7/5, 2005, Uppsala, Sweden.
    [54] BES Collaboration, M. Ablikim et al., Phys. Rev. Lett. 93,112002(2004).
    [55] Gui-Jun Ding, Jia-lun Ping and Mu-Lin Yan, Phys. Rev. D 74, 014029 (2006), hep-ph/05 10013.
    [56] C. Z. Yuan, X. H. Mo and P. Wang, Phys. Lett. B626 (2005) 95-100, hep-ph/0506019.
    [57] H. E. Haber, J. Perrier, Phys. Rev. D32:2961,1985: A. Seiden, H. F. -W. Sadrozinski, H. E. Haber, Phys. Rev. D38:824,1988.
    [58] BES Collaboration, M. Ablikim et al.,Phys.Rev. D71 (2005) 072006, hep-ex/0503030.
    [59] BES Collaboration, M. Ablikim et al.,Phys.Rev.Lett.93,112002(2004).
    [60] Belle Collaboration, K. Abe et al., Phys. Rev. Lett.88,181803(2002).
    [61] Belle Collaboration, M.-Z.Wang et al., Phys. Rev. Lett.90,201802(2003).
    [62] Belle Collaboration, Y.-J. Lee et al., Phys. Rev. Lett.93.211801(2004).
    [63] H. Hogaasen and P. Sorba, Nucl. Phys.B 145:119,1978; Mod. Phys. Lett.A 19:2403-2410,2004, hep-ph/0406078; Fl. Stancu,Phys.Lett. B595 (2004) 269-276; Erratum-ibid. B598 (2004) 295-295, hep-ph/0402044; Carl E. Carlson et al.,Phys.Lett. B573 (2003) 101-108, hep-ph/0307396; Jialun Ping et al., Phys.Lett. B602 (2004) 197-204, hep-ph/0408176.
    [64] R. L. Jaffe and F. Wilcek, Phys. Rev. Lett 91,232003(2003), hep-ph/0307341; M. Karliner and H. J. Lipkin, Phys. Lett. B575:249-255,2003, hep-ph/0402260.
    [65] Gui-Jun Ding and Mu-Lin Yan, Phys. Rev.D72, 034014,(2005), hep-ph/0506119.
    [66] A. De Rujula, H. Georgi and S. L. Glashow, Phys,Rev.D.12,147(1975).
    [67] R J. Mulders, A. T. M. Aerts and J. J. De Swart, Phys.Rev.D21, 2653 (1980).
    [68] R.L.Jaffe and K.Johnson, Phys.Lett.B60,201(1976); R.L.Jaffe, Phys.Rev.D15:267,1977; R.L.Jaffe, Phys.Rev.D15:281,1977; R.L.Jaffe, Phys,Rev.D.72,074508(2005), hepph/0507149.
    [69] C.Itzykson, M.Nauenberg, Rev.Mod.Phys.38:95-120,1966.
    [70] BES Collaboration, M. Ablikim et al., Submitted to Phys. Rev. Lett., hep-ex/0606047.
    [71] M. Karliner and H. J. Lipkin, hep-ph/0607093.
    [72] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. D 71, 014028 (2005), hepph/0412098.
    [73] L. Maiani, V. Riquer, F. Piccinini and A. D. Polosa, Phys. Rev. D 72, 031502 (2005), hepph/0507062.
    [74] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, Phys. Rev. Lett. 93, 212002 (2004), hepph/0407017.
    [75] R. L. Jaffe, Phys. Rept. 409, 1 (2005)[Nucl. Phys. Proc. Suppl. 142, 343 (2005)] [arXiv:hepph/0409065]; F. E. Close,Int. J. Mod. Phys. A 20, 5156 (2005), hep-ph/0411396.
    [76] B. Aubert et al. [Babar Collaboration], Phys.Rev. D74 (2006) 091103, hep-ex/0610018.
    [77] B. Aubert et al. [Babar Collaboration], Phys. Rev. Lett. 95, 142001 (2005), hep-ex/0506081.
    [78] F. E. Close and R R. Page, Phys. Lett. B 628, 215 (2005), hep-plg0507199; S. L. Zhu, Phys. Lett. B 625,212 (2005), hep-ph/0507025.
    [79] E. Kou and O. Pene, Phys. Lett. B 631,164 (2005), hep-ph/0507119.
    [80] L. Maiani, V. Riquer, F. Piccinini and A. D. Polosa, Phys. Rev. D 72, 031502 (2005), hepph/0507062.
    [81] C. F. Qiao, Phys. Lett. B 639, 263 (2006), hep-ph/0510228; X. Liu, X. Q. Zeng and X. Q. Li, Phys. Rev. D 72, 054023 (2005), hep-ph/0507177.
    [82] N. isgur and J. E. Paton, Phys. Rev. D 31, 2910 (1985); N. Isgur, R. Kokoski and J. E. Paton, Phys. Rev. Lett. 54, 869 (1985).
    [83] T. Barnes, F. E. Close and E. S. Swanson, Phys. Rev. D 52, 5242 (1995), hep-ph/9501405.
    [84] F. E. Close and E R. Page, Nucl. Phys. B 443, 233 (1995), hep-ph/9411301.
    [85] P. R. Page, E. S. Swanson and A. P. Szczepaniak, Phys. Rev. D 59, 034016 (1999), hep-ph/9808346.
    [86] T. Burns and F. E. Close, Phys. Rev. D 74, 034003 (2006), hep-ph/0604161; T. J. Burns, hep-ph/0611132.
    [87] D. Horn and J. Mandula,Phys. Rev. D 17, 898 (1978)
    [88] A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal and S. Ono, Z. Phys. C 28, 309 (1985).
    [89] M. Tanimoto, Phys. Lett. B 116, 198 (1982); Phys. Rev. D 27, 2648 (1983).
    [90] J. Govaerts, F. de Viron, D. Gusbin and J. Weyers, Nucl. Phys. B 248, 1 (1984).
    [91] For a review on the lattice QCD study of hybrid states, see C. Michael, hep-ph/0308293 and references therein.
    [92] A. Donnachie and Yu. S. Kalashnikova, Phys. Rev. D 60, 114011 (1999), hep-ph/9901334.
    [93] R. Kokoski and N. Isgur, Phys. Rev. D 35, 907 (1987).
    [94] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).
    [95] P. Geiger and E. S. Swanson, Phys. Rev. D 50, 6855 (1994), hep-ph/9405238.
    [96] P. R. Page, Phys. Lett. B 401,313 (1997), hep-ph/9608487.
    [97] F. Iddir, A. Le Yaouanc, L. Oliver, O. Pene and J. C. Raynal, Phys. Lett. B 207,325 (1988).
    [98] T. Barnes, N. Black and P. R. Page, Phys. Rev. D 68, 054014 (2003), nucl-th/0208072.
    [99] N. Dowrick, J. E. Paton and S. Perantonis, J. Phys. G 13, 423 (1987).
    [100] F. E. Close, Phys. Lett. B 342, 369 (1995), hep-ph/9409203; F. E. Close et al., Phys. Rev. D 57, 5653 (1998), hep-ph/9708265; F. E. Close and S. Godfrey, Phys. Lett. B 574, 210 (2003), hep-ph/0305285.
    [101] Yu. S. Kalashnikova, Z. Phys. C 62, 323 (1994).
    [102] F. Iddir, S. Safir and O. Pene, Phys. Lett. B 433, 125 (1998), hep-ph/9803470;F. Iddir and L. Semlala, hep-ph/0611183.
    [103] B. Aubert et aI. [Babar Collaboration], Phys. Rev. D 71, 052001 (2005), hep-ex/0502025.
    [104] T. Barnes, F. E. Close, P. R. Page and E. S. Swanson, Phys. Rev. D 55, 4157 (1997), hep-ph/9609339.
    [105] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
    [106] M. Jacob and G. C. Wick, Annals Phys. 7 (1959) 404.
    [107] R R Page, Nucl. Phys. B 446, 189 (1995), hep-ph/9502204;
    [108] T. Barnes, S. Godfrey and E, S. Swanson, Phys. Rev. D 72, 054026 (2005), hep-ph/0505002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700