用户名: 密码: 验证码:
基站协作技术及其在高速铁路宽带无线通信系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信发展,用户对无线网络的数据速率和服务品质的要求越来越高。因此,下一代无线蜂窝系统引入了可以获得更高频谱效率的多输入多输出(MIMO)技术,并采用全频率复用的方式进行组网。这种部署将产生小区间干扰,会严重地降低MIMO技术带来的高频谱效率。因此,作为抑制小区间干扰的有效方法,基站协作(也称协作多点传输)技术的研究已经引起了学术界和工业界的极大关注。协作多点传输(CoMP)技术旨在避免或利用干扰来提高蜂窝边界和平均数据速率。但是,所有的CoMP方案存在大容量和低延时的回传链路需求,复杂度高,数据和信道状态信息交换量大等实际的挑战性问题。另外,高速铁路已经成为3G(3rd Generation)和4G(4th Generation)业务的一个很大的商业应用场景,而传统的铁路无线通信系统存在频谱效率低和切换过于频繁的问题,急需设计关键物理层技术来实现高速铁路宽带无线通信系统。
     针对以上问题,论文对已有的基站协作算法进行了相应的改进,并通过MATLAB仿真进行了实验验证。另外,也对如何将CoMP技术应用到高速铁路宽带无线系统进行了理论讨论。本论文取得如下主要研究成果:
     (1)针对集中式多基站协同处理方式中整个系统的反馈开销很大的缺点,提出一种基于反馈增强的组播单频网预编码方案。该方案在各用户端采用最小均方算法自适应获得等效信道并将其量化,然后反馈至基站端。从而,基站端通过迫零准则来获得最佳预编码矢量。基于基站间的用户信息交互,基站执行联合式协作多点传输来消除小区间干扰。实验证明该方案能有效地提高系统性能。
     (2)针对分布式多基站协同处理方式如何利用本地信道状态信息消除小区间干扰同时又能在每个蜂窝内支持多个用户进行了研究,提出了一种基于汤姆林森-哈拉希玛预编码的分布式预编码方案。具体为,在传输到每个用户组的过程中,每个基站根据本地获得的信道状态信息,为每个用户组设计相应的前向预编码和反馈滤波器。然后,基于基站端之间的信息交换,每个基站执行分布式CoMP来同时服务小区每个用户组。仿真结果表明该方案能取得较好的性能。
     (3)针对Jafar提出的原始的干扰对齐预编码方案,提出了两种有效的非迭代算法。基于最大化信噪比准则的预编码方案用来最大化相应无干扰等效信道的信息速率。而基于最小化均方误差的预编码方案用来改进相应无干扰等效信道的误比特率(Bit Error Ratio:BER)。分析表明,两种优化方案均能有效的利用天线资源,并具有低复杂度的特性。另外,仿真结果表明,两种次优算法有效地改进了系统性能。
     (4)研究了CoMP系统的可行性问题,论文提出了一种可行的基于机会干扰对齐的联合预编码和调度方案,该方案能消除信道状态信息的交换所带来的开销。具体地讲,首先,每个基站端给出了基于机会干扰对齐的联合预编码和调度过程。然后,在每个选择的用户端,基于构建的预编码矩阵和相应的本地信道状态信息,设计了一种可行的两阶段接收机。仿真结果表明,该方案明显的改善了系统性能。
     (5)研究了CoMP技术在高速铁路宽带无线系统中的应用,论文首先提出一种高速铁路宽带无线接入系统的网络结构。然后,在此网络结构基础上,针对单数据流场景,提出了一种基于光载无线(RoF)的CoMP方案。针对多个数据流的场景,论文又进一步提出了基于全球定位系统辅助估计离开角的预编码技术来执行基于RoF的CoMP方案。分析表明,两种方案都能减少车载台频繁切换同时避免了高速列车上的旅客终端设备的切换,并提高系统的传输功率的效率和系统的吞吐量。
With the development of wireless communications, demands for both high quality and high speed are increasing. Multi input multi output (MIMO) technology and full frequency reuse will be widely used in next generation cellular systems. These deployment trends lead to a lot of interference between different cells, which will severely degrade the high spectral efficiency achieved by MIMO technology. Therefore, as an effective method of Inter-cell Interference (ICI) suppression, researches on base station (BS) cooperation (i.e., coordinated multi-point transmission) technologies have attracted much focus from both academic and industrial fields. The coordinated multi-point transmission (CoMP) techniques aim to avoid or exploit interference to improve the cell edge and average data rates. However, all COMP schemes come with the technical challenges of increased demand on backhaul with high capacity and low latency, high complexity, much overhead for data and channel station information (CSI) exchange, and so on. In addition, high speed railway has become a huge business application scenario of 3G (3rd Generation) and 4G (4th Generation). However, to overcome low spectral efficiency and over-frequent handoff problems in traditional railway wireless communication system, it is imperative to design the key physical layer techniques enabling broadband wireless communications (BWC) for high speed trains.
     To overcome the shortcomings of primitive CoMP algorithms, improving methods have been presented and further tested through MATLAB simulations in this dissertation. In addition, the specific application in BWC for high speed trains has been studied based on CoMP. The major contributions of the dissertation are as follows:
     (1)A feedback enhanced based multicast broadcast single frequency network precoding scheme is proposed to reduce large feedback overhead for central BS coordination processing. In this algorithm, the users apply least mean square algorithm to capture the effective channel adaptively and feedback the quantified channel to the BSs. Then, the BSs obtain the best precoding vector through Zero-forcing criterion. Basing on information exchange, the BSs can do joint CoMP transmission to mitigate the ICI. The simulation results indicate that the proposed algorithm can effectively improve the performance of system.
     (2)A distributed precoding scheme based on Tomlinson-Harashima Precoding is proposed for distributed BS coordination processing, which can eliminate the overhead for the CSI exchange, efficiently exploit the available spatial degrees of freedom and support multiple users per cell. In this scheme, relying on the local CSI, each BS designs one forward precoder and one feedback filter per user group for the transmission from itself to corresponding user group. Then, based on information exchange among the BSs, each BS do distributed CoMP to simultaneously serve each user group. The simulation results demonstrate good performance of the proposed scheme.
     (3)To improve the original interference alignment (IA) based precoding scheme proposed by Jafar, two effective and non-iterative algorithms are presented. One of those algorithms is the maximum signal to noise ratio based precoding scheme, which is employed to maximize the information rate of the corresponding noninterfering effective channel. The other is the minimum mean square error based precoding scheme, which is adopted to improve the bit error rate of the corresponding noninterfering effective channel. It is analytically shown that the proposed algorithms exploit antenna resources effectively and have low complexity. Moreover, the proposed algorithms are shown to achieve good performance.
     (4)The feasibility study for CoMP is performed, and the dissertation proposes a novel joint precoding and scheduling scheme with opportunistic interference alignment (OIA). First, at each BS, the precoding and scheduling process based on OIA is presented. Then, at each selected user, a feasible two-stage receiver is designed based on the constructed percoding matrices and the corresponding local CSI. It is demonstrated that the proposed scheme achieves good performance.
     (5)The application of CoMP technology in BWC for high speed trains is studied, and this dissertation first proposes a network structure for BWC systems for high speed trains. Based on the network structure, a Radio-over-Fiber (RoF) based CoMP scheme is proposed for the single stream scenario. In the two stream scenario, the global positioning system assisted angle of departure estimation based precoding technology is further proposed as an appropriate implementation form for the RoF based CoMP scheme. It is analytically shown that the proposed algorithms can address the issue of handover and improve power efficiency and system throughput.
引文
[1] 3GPP TR25.913 V7.3.0, Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN).
    [2]啜钢,王文博,常永宇,全庆一,移动通信原理与系统,第2版,北京邮电大学出版社, 2009.
    [3] Yoo T. and Goldsmith A., On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming, IEEE J. Select. Areas Commun., 2006, 24(3): 528-541.
    [4] http://www.cww.net.cn/article/html/2006/9/2799/49974.htm: OFDM系统的小区间干扰抑制技术研究.
    [5]高亭,杨晓辉,陈立全,一种有效抑制LTE TDD小区间干扰的方法,南京邮电大学学报(自然科学版), 2010, 30(5): 73-76.
    [6]张瑞,宋荣方,基于协作多点的干扰协调技术,南京邮电大学学报(自然科学版), 2010, 30(3): 46-52+57.
    [7]何翠,刘娟, MIMO-OFDM系统的小区间干扰抑制技术研究,电信快报, 2009年04期, pp:39-41+45.
    [8] Blum R. S., MIMO capacity with interference, IEEE J. Select. Areas Commun., 2003, 21(5): 793-801.
    [9] Catreux S., Driessen P. F. and Greenstein L. J., Simulation results for an interference-limited multiple input multiple output cellular system, IEEE Commun. Lett., 2000, 4(11): 334-336.
    [10]邱玲,许杰,刘蓓,梁晓雯,多用户、多小区MIMO通信技术,第1版,北京邮电大学出版社, 2011.
    [11] Andrews J. G., Wan C. and Heath R. W., Overcoming Interference in Spatial Multiplexing MIMO Cellular Networks, IEEE Wireless Communications, 2007, 14 (6): 95-104.
    [12] Dai H. Y., Molisch A. F. and Poor H. V., Downlink capacity of interference-limited MIMO systems with joint detection, IEEE Transactions on Wireless Communications, 2004, 3(2): 442-453.
    [13] Li P., Liu L. H., Wu K. Y. and Leung W. K., Interleave division multiple access, IEEE Trans. Wireless Comm., 2006, 5 (4): 938-947.
    [14] Sheng J., Tse D. N. C., Soriaga J. B., Hou J. L., Smee J. E. and Padovani R., Downlink Macro Diversity in Cellular Networks, IEEE International Symposium on Information Theory (ISIT), 2007:1-5.
    [15] Jafar S. A. and Goldsmith A. J., Transmitter optimization for multiple antenna cellular system, IEEE International Symposium on Information Theory (ISIT), 2002: 5.
    [16] Wan C. and Andrews J.G., Downlink performance and capacity of distributed antenna systems in a multicell environment, IEEE Transactions on Wireless Communications, 2007, 6 (1): 69-73.
    [17] 3GPP TR25.814 v7.1.0., Physical layer aspects for Evolved UTRA, 2006.
    [18]谢显中,雷维嘉,抑制MIMO蜂窝系统中小区间干扰的多基站联合处理研究进展,数字通信, 2009年03期, pp: 13-19+24.
    [19] Huawei, Further Analysis of Soft Frequency Reuse Scheme, 3GPP TSG RAN WG1 #42/ R1-050841, 2005: 1-6.
    [20] Siemens, Interference mitigation-Considerations and Results on Frequency Reuse, 3GPP TSG RAN WG1 #42/ R1-050738, 2005: 1-5.
    [21] Ericsson, Inter-cell Interference Handling for E-UTRA, 3GPP TSG RAN WG1 #42/ R1-050764, 2005: 1-4.
    [22] LG Electronics, Interference mitigation in evolved UTRA/UTRAN, 3GPP TSG RAN WG1 #42/R1-050833, 2005: 1-5.
    [23] Alcatel, Multi-cell Simulation Results for Interference Coordination in new OFDM DL, 3GPP TSG RAN WG1 #42/R1-050694, 2005: 1-11.
    [24] Nokia, OFDMA Downlink inter-cell interference mitigation, 3GPP TSG RAN WG1 Meeting #44/R1-060291, 2006: 1-6.
    [25]马富樱,王喆,张日芳,李红霞, LTE系统的小区间干扰协调分析,数据通信, 2010, (5): 15-17.
    [26] Li G. and Liu H., Downlink dynamic resource allocation for multicell OFDMA system,IEEE VTC, 2003: 1698-1702.
    [27] Fodor G. and Koutsimanis C., A low intercell interference variation scheduler for OFDMA networks, IEEE ICC, 2008: 3078-3084.
    [28] Lee K. I., Woo K. S., Ko Y. H., Ahn J. Y. and Cho Y. S., An intercell interference cancellation method for OFDM cellular systems using a subcarrier-based virtual MIMO, IEEE VTC, 2006: 1-5.
    [29] Li H. T., Distributed Multibase Collaborative Transmission for MIMO OFDM with Zero Forcing Beamforming, IEEE WiCOM, 2008: 12-14.
    [30] Hadisusanto Y., Thiele L. and Jungnickel V., Distributed Base Station Cooperation via Block-Diagonalization and Dual-Decomposition, IEEE GLOBECOM, 2008: 1-5.
    [31] Zhang J., Chen R. H., Andrews J. G., Ghosh A. and Heath R.W., Networked MIMO with clustered linear precoding, IEEE Transactions on Wireless Communictions, 2009, 8(4): 1910-1921.
    [32] Ericsson and ST-Ericsson, Performance evaluation of intra-site DL CoMP, 3GPP TSG RAN WG1 #60/R1-100855, 2010: 1-4.
    [33] Ericsson and ST-Ericsson, Standardization impact of downlink CoMP, 3GPP TSG RAN WG1 #60/R1-100856, 2010: 1-3.
    [34] Shamai S. and Zaidel B. M., Enhancing the cellular downlink capacity via co-processing at the transmitting end, IEEE Vehicular Technology Conference, 2001: 1745-1749.
    [35] Zhang H. Y., Dai H. Y. and Zhou Q., Base Station Cooperation for Multiuser MIMO: Joint Transmission and BS Selection, 2004 Conference on Information Sciences and Systems, 2004: 1-6.
    [36] Zhang H. Y. and Dai H. Y., Cochannel interference mitigation and cooperative processing in downlink multicell multiuser MIMO networks, Eurasip Journal on Wireless Communications and Networking, 2004(2), 2004: 222-235.
    [37] Karakayali M. K., Foschini G. J. and Valenzuela R. A., Network Coordination for Spectrally Efficient Communications in Cellular System, IEEE Wireless Communications, 2006, 13(4): 56-61.
    [38] Somekh O., Zaidel B. M. and Shamai S., Sum Rate Characterization of Joint Multiple Cell-Site Processing, IEEE Transactions on Information Theory, 2007, 53 (12): 4473-4497.
    [39] Venkatesan S., Lozano A. and Valenzuela R., Network MIMO: Overcoming Intercell Interference in Indoor Wireless Systems, Asilomar Conference on Signals, Systems and Computers, 2007: 83-87.
    [40] Wang L. C. and Yeh C. J., 3-Cell Network MIMO Architectures with Sectorization and Fractional Frequency Reuse, IEEE Journal on Selected Areas in Communications, 2011, 29(6): 1185-1199.
    [41] Mailaender L., Indoor Network MIMO Performance with Regularized Zero-Forcing Transmission, IEEE 10th International Symposium on Spread Spectrum Techniques and Applications, 2008: 124-128.
    [42] Boccardi F., Huang H. and Alexiou A., Network MIMO with reduced backhaul requirements by MAC coordination, 42nd Asilomar Conference on Signals Systems and Computers, 2008:1125-1129.
    [43] Marsch P. and Fettweis G., On Base Station Cooperation Schemes for Downlink Network MIMO under a Constrained Backhaul, IEEE Global Telecommunications Conference, 2008:1-6.
    [44] 3GPP TR36.814 V0.4.1, Further advancements for E-UTRA physical layer aspects.
    [45] Jiang D. J., Wang Q. X., Liu J. J., Liu G. Y. and Cui C. F., Uplink Coordinated Multi-Point Reception for LTE-Advanced Systems, 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009: 1-4.
    [46] Irmer R., Droste H., Marsch P., Grieger M., Fettweis G., Brueck S., Mayer H. P., Thiele L. and Jungnickel V., Coordinated multipoint: Concepts, performance, and field trial results, IEEE Communications Magazine, 2011, 49(2): 102-111.
    [47]刘思杨, LTE-Advanced系统中的协作多点传输技术,电信网技术, 2009年第9期, pp: 5-9.
    [48] CMCC, Application of BBU+RRU based CoMP system to LTE-Advanced, 3GPP TSG-RAN1 #55/R1-084487, 2008: 1-3.
    [49]骆纯, LTE-Advanced CoMP中联合处理技术及系统性能研究,武汉理工大学硕士学位论文, 2010.
    [50] Nortel, Discussion and Link Level Simulation Results on LTE-A Downlink Multi-site MIMO Cooperation, 3GPP TSG-RAN1 #55/R1-084465, 2008: 1-11.
    [51] Venkatesan S., Coordinating Base Stations for Greater Uplink Spectral Efficiency in a Cellular Network, IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 2007: 1-5.
    [52] Gesbert D., Kiani S. G., Gjendemsj A. and ien G. E., Adaptation, Coordination, and Distributed Resource Allocation in Interference-Limited Wireless Networks, Proceedings of the IEEE, 2007, 95(12): 2393-2409.
    [53] Zhang H. Y., Mehta N. B., Molisch A. F., Zhang J. and Dai H. Y., Asynchronous interference mitigation in cooperative base station systems, IEEE Transactions on Wireless Communications, 2008, 7(1): 155-165.
    [54] Zhang R. and Song R. F., On Network MIMO: Base Station Coordination, Journal of Nanjing University of Posts and Telecommunications (Natural Science), 2010, 30(1): 89-96.
    [55] Jungnickel V., Thiele L., Wirth T., Haustein T., Schiffermuller S., Forck A., Wahls S., Jaeckel S., Schubert S., Luhn F., Zavrtak R., Droste H., Kadel G., Kreher W., Mueller J., Stoermer W. and Wannemacher G., Coordinated multipoint trials in the downlink, IEEE GLOBECOM, 2009:1-7.
    [56] Karakayali M. K., Foschini G. J. and Valenzuela R. A., Network coordination for spectrally efficient communications in cellular systems, IEEE Wireless Communications, 2006, 13(4): 56-61.
    [57] Tse D. and Viswanath P., Fundamentals of Wireless Communication, Cambridge, U. K.: Cambridge Univ. Press, 2005.
    [58] Ng B. L., Evans J. S., Hanly S. V. and Aktas D., Distributed downlink beamforming with cooperative base stations, IEEE Trans. Inf. Theory, 2008, 54(12): 5491-5499.
    [59] Skjevling H., Gesbert D. and Hjorungnes A., Precoded distributed space-time block codes in cooperative diversity-based downlink, IEEE Trans. Wireless Commun., 2007, 6(12): 4209-4214.
    [60]许晓东,陈鑫,李静雅,协作多点通信系统中的切换机制,中兴通讯技术, 2010年第01期, pp: 32-36.
    [61] Wang Q. X., Jiang D. J., Liu G. Y. and Yan Z. G., Coordinated Multiple Points Transmission for LTE-Advanced Systems, IEEE WiCOM, 2009: 1-4.
    [62]刘晶,常永宇,潘峮,郑瑞明,张欣, LTE-A系统协作多点传输技术的性能分析和算法研究,现代电信科技, 2010年第Z1期, pp: 85-90.
    [63] LG Electronics, CoMP Configurations and UE/eNB Behaviors in LTE-advanced, 3GPP TSG RAN WG1 Meeting #55bis/R1-090213, 2009: 1-4.
    [64] Hitachi Ltd, Downlink CoMP Transmission using DPC MIMO, 3GPP TSG RAN WG1 Meeting #55bis/R1-090245, 2009: 1-4.
    [65] CMCC, Downlink CoMP-MU-MIMO transmission Schemes, 3GPP TSG RAN WG1 Meeting #56/R1-090922, 2009: 1-4.
    [66] Kobayashi M., Debbah M. and Belfiore J. C., Outage efficient strategies for network MIMO with partial CSIT, IEEE ISIT’09, 2009: 249-253.
    [67] Gesbert D., Hanly S., Huang H., Shitz S. S., Simeone O. and Yu W., Multi-Cell MIMO Cooperative Networks: A New Look at Interference, IEEE Journal on Selected Areas in Communications, 2010, 28(9): 1380-1408.
    [68] WOASiS, Downlink Joint Transmission Scheme Based on Tomlinson-Harashima Precoding, 3GPP TSG RAN WG1 Meeting #60b/R1-102436, 2010: 1-6.
    [69] WOASiS, MU-MIMO Scheme Based on Nonlinear Precoding, 3GPP TSG RAN WG1 Meeting #59b/R1-100467, 2010: 1-6.
    [70]魏宁,李少谦,岳刚, LTE-A中协同多点传输的联合处理预编码方法, ZTE COMMUNICATIONS, 16(1): 37-43.
    [71] Vemula M., Avidor D., Ling J. and Papadias C., Inter-cell coordination, opportunistic beamforming and scheduling, IEEE International Conference on Communications, 2006: 5319-5324.
    [72] Zhang C. Q., Zhang T. K., Zeng Z. M., Cuthbert L. and Xiao L., Optimal Locations of Remote Radio Units in CoMP Systems for Energy Efficiency, IEEE 72nd VehicularTechnology Conference Fall, 2010: 1-5.
    [73] Seifi N., Wolfgang A. and Ottosson T., Downlink performance and capacity of distributed antenna systems based on realistic channel model, International ITG Workshop on Smart Antennas, 2008: 249-253.
    [74] Song Y., Cai L., Wu K. and Yang H., Collaborative MIMO Based on Multiple Base Station Coordination, IEEE C802.16m-07/162, 2007.
    [75] Yeh C. I., Song Y. S., Lee S. J., Kwak B. J., Kim J. and Kwon D. S., Frame Structure to Support Inter-cell Interference Mitigation for Downlink Traffic Channel using Co-MIMO and FFR, IEEE C802.16m-08/017r1, 2008.
    [76] Papadogiannis A., Hardouin E. and Gesbert D., A framework for decentralising multi-cell cooperative processing on the downlink, 4th IEEE Broadband Wireless Access Workshop, 2008: 1-5.
    [77] Bj?rnson E., Zakhour R., Gesbert D. and Ottersten B., Cooperative Multicell Precoding: Rate Region Characterization and Distributed Strategies with Instantaneous and Statistical CSI, IEEE Transactions on Signal Processing, 2010, 58(8): 4298-4310.
    [78] Ericsson and ST-Ericsson, Extended ICIC-A Rel-10 CoMP Scheme, 3GPP TSG RAN WG1 #57/R1-094279, 2009: 1-2.
    [79] Alcatel-Lucent, Consideration on performance of coordinated beamforming with PMI feedback, 3GPP TSG RAN WG1 #58/R1-093016, 2009: 1-7.
    [80] Zhang J. and Andrews J. G., Adaptive Spatial Intercell Interference Cancellation in Multicell Wireless Networks, IEEE Journal on Selected Areas in Communications, 2010, 28(9): 1455-1468.
    [81]王存祥,邱玲,协作多点传输中一种基于特征子信道的干扰对齐预编码矩阵优化方案,信号处理, 2011, 27(03): 395-399.
    [82]王存祥,多小区系统中干扰对齐技术研究,中国科学技术大学硕士学位论文, 2011.
    [83] Peters S. W. and Heath R. W., Cooperative Algorithms for MIMO Interference Channels, IEEE Transactions on Vehicular Technology, 2011, 60(1): 206-218.
    [84] Gou T. G. and Jafar S. A., Degrees of freedom of the K user M×N MIMO interferencechannel, IEEE Transactions on Information Theory, 2010, 56(12): 6040-6057.
    [85] Seok-Hwan P. and Lee I., Analysis of Degrees of Freedom of Interfering MISO Broadcast Channels, IEEE Global Telecommunications Conference, 2009: 1-6.
    [86] Host-Madsen A. and Nosratinia A., The multiplexing gain of wireless networks, IEEE International Symposium on Information Theory, 2005: 2065-2069.
    [87] Jafar S. A. and Shamai S., Degrees of freedom of the MIMO X channel, IEEE Global Telecommunications Conference, 2007: 1632-1636.
    [88] Maddah-Ali M., Motahari A. and Khandani A., Communication over MIMO X channels: Interference alignment, decomposition, and performance analysis, IEEE Trans. on Information Theory, 2008, 54(8): 3457-3470.
    [89] Maddah-Ali M., Motahari A. and Khandani A., Signaling over MIMO Multi-Base Systems: Combination of Multi-Access and Broadcast Schemes, ISIT, 2006: 2104-2108.
    [90] Maddah-Ali M., Motahari A. and Khandani A., Communication over X channel: Signaling and multiplexing gain, Tech. Report. UW-ECE-2006-12, University of Waterloo, 2006: 1-19.
    [91] Jafar S. and Fakhereddin M., Degrees of freedom for the mimo interference channel, IEEE Transactions on Information Theory, 2007, 53(7): 2637-2642.
    [92] Jafar S., Degrees of freedom on the MIMO X channel-optimality of the MMK scheme, tech. Report, arXiv:cs. IT/0607099v2, 2006.
    [93] Maddah-Ali M., Motahari A. and Khandani A., Communication over MIMO X channel: Signaling and performance analysis, Tech. Report. UW-ECE-2006-27, University of Waterloo, 2006: 1-34.
    [94] Weingarten H., Shamai S. and Kramer G., On the compound MIMO broadcast channel, Annual Information Theory and Applications Workshop UCSD, 2007: 1-7.
    [95] Jafar S. and Shamai S., Degrees of freedom region for the MIMO X channel, IEEE Trans. on Information Theory, 2008, 54(1): 151-170.
    [96] Cadambe V. R. and Jafar S. A., Interference Alignment and Degrees of Freedom of the K-User Interference Channel, IEEE Trans. Information Theory, 2008, 54(8): 3425-3441.
    [97] Gomadam K., Cadambe V. R. and Jafar S. A., Approaching the Capacity of Wireless Networks through Distributed Interference Alignment, IEEE Global Telecommunications Conference, 2008: 1-6.
    [98] Yetis C.M., Tiangao Gou, Jafar S. A. and Kayran A. H., Feasibility Conditions for Interference Alignment, IEEE Global Telecommunications Conference, 2009:1-6.
    [99] Cadambe V. and Jafar S., Parallel Gaussian interference channels are not always separable, IEEE Trans. on Information Theory, 2009, 55(9): 3983-3990.
    [100] Sankar L., Shang X. H., Erkip E. and Poor H. V., Ergodic two-user interference channels: Is separability optimal? 46th Annual Allerton Conference on Communication, Control, and Computing, 2008: 723-729.
    [101] Cadambe V. R., Jafar S. A. and Wang C. W., Interference Alignment With Asymmetric Complex Signaling-Settling the H?st-Madsen-Nosratinia Conjecture, IEEE Transactions on Information Theory, 2010, 56(9): 4552-4565.
    [102] Avestimehr A. S., Diggavi S. N. and Tse D. N. C., A Deterministic Approach to Wireless Relay Networks, arXiv:0710.3777, 2007: 1-10.
    [103] Bresler G., Parekh A. and Tse D. N. C., The Approximate Capacity of the Many-to-One and One-to-Many Gaussian Interference Channels, IEEE Transactions on Information Theory, 2010, 56(9): 4566-4592.
    [104] Cadambe V., Jafar S. and Shamai S., Interference alignment on the deterministic channel and application to Gaussian networks, IEEE Trans. on Information Theory, 2009, 55(1): 269-274.
    [105] Sridharan S., Jafarian A., Vishwanath S. and Jafar S., Capacity of symmetric K-user Gaussian very strong interfer-ence channels, IEEE GLOBECOM, 2008: 1-5.
    [106] Etkin R. and Ordentlich E., On the Degrees-of-Freedom of the K-user Gaussian interference channel, IEEE International Symposium on Information Theory, 2009: 1919-1923.
    [107] Motahari A. S., Gharan S. O., Maddah-Ali M. and Khandani A. K., Forming Pseudo-MIMO by Embedding Infinite Rational Dimensions Along a Single Real Line: Removing Barriers in Achieving the DOFs of Single Antenna Systems, arXiv:0908.2282v2, 2009: 1-17.
    [108] Nazer B., Gastpar M., Jafar S. and Vishwanath S., Ergodic interference alignment, International Symposium on Information Theory, 2009: 1769-1773.
    [109] Jafar S. and Cadambe V., Degrees of Freedom of Wireless Networks-What a difference delay makes, Asilomar Conference on Signals, Systems, and Computers, 2007: 133-137.
    [110] Grokop L. H., Tse D. N. C. and Yates R. D., Interference Alignment for Line-of-Sight Channels, IEEE Transactions on Information Theory, 2011, 57(9): 5820-5839.
    [111] Jafar S. A., Exploiting Channel Correlations-Simple Interference Alignment Schemes with No CSIT, IEEE Global Telecommunications Conference, 2010: 1-5.
    [112] Tresch R. and Guillaud M., Clustered interference alignment in large cellular networks, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 2009: 1024-1028.
    [113] Tresch R. and Guillaud M., Cellular interference alignment with imperfect channel knowledge, IEEE ICC, 2009: 1-5.
    [114] Sung H., Park S. H., Lee K. J. and Lee I., Linear precoder designs for k-user interference channels, IEEE Transactions on Wireless Communications, 2010, 9(1): 291-301.
    [115] Sung H., Park S. H., Lee K. J. and Lee I., A Two-Stage Precoding Method Based on Interference Alignment for Interference Channel Systems, GLOBECOM, 2009: 1-6.
    [116] Shen H., Li B. and Luo Y., Precoding design using interference alignment for the network MIMO, PIMRC, 2009: 2519-2523.
    [117] http://baike.baidu.com/view/192912.htm
    [118] Lannoo B., Colle D., Pickavet M. and Demeester P., Radio-over-Fiber-Based Solution to Provide Broadband Internet Access to Train Passengers, IEEE Comm. Magazine, 2007, 45(2): 56-62.
    [119] Chow B., Yee M. L., Sauer M., Ng'Oma A., Tseng M. C. and Yeh C. H., Radio-over-Fiber Distributed Antenna System for WiMAX Bullet Train Field Trial, IEEE MWS, 2009: 98-101.
    [120] Daniel T. F. and Victor S. F., A Survey on Methods for Broadband Internet Access on Trains, IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010, 12(2): 1-15.
    [121] Hsueh Y. T., Huang M. F., Jiang M. L., Shao Y., Kim K. T. and Chang G. K., Coverage Efficiency of Radio-over-Fiber Network for High-speed Railways, WiCOM, 2010: 1-4.
    [122] Zhou Y. Q., Pan Z. G., Hu J. L., Shi J. L. and Mo X. W., Broadband Wireless Communications on High Speed Trains, WOCC, 2011: 1-6.
    [123] Hsueh Y. T., Huang M. F., Jiang M. L., Shao Y., Kim K. and Chang G. K., A Novel Wireless over Fiber Access Architecture Employing Moving Chain Cells and RoF Technique for Broadband Wireless Applications on the Train Environment, OFC/NFOEC, 2011: 1-3.
    [124] Wang Q. X., Jiang D. J., Jin J., Liu G. Y., Yan Z. G. and Yang D. C., Application of BBU+RRU based CoMP system to LTE-Advanced, IEEE International Conference on Communications Workshops, 2009: 1-5.
    [125] Sharp, MBSFN Precoding with Antenna Selection for DL CoMP, 3GPP TSG RAN WG1 Meeting #57/R1-092102, 2009: 1-9.
    [126] Ho W., Quek T. Q. S. and Sun S., Decentralized Base Station Processing for Multiuser MIMO Downlink CoMP, IEEE VTC, 2010: 1-5.
    [127] Kulkarni S. S. and Rosenberg C., Opportunistic scheduling policies for wireless systems with short term fairness constraint, IEEE GLOBECOM, 2003: 533-537.
    [128] Choi W., Andrew S. and Heath W., Multiuser antenna partitioning for MIMO-CDMA systems, IEEE Trans. on Veh Technology, 2007, 56(5): 2448-2456.
    [129] Zakhour R. and Gesbert D., Coordination on the MISO interference channel using the virtual SINR framework, International ITG workshop on smart antennas, 2009: 1-7.
    [130] Zakhour R. and Gesbert D., Distributed Multicell-MISO Precoding Using the Layered Virtual SINR Framework, IEEE Transactions on Wireless Communications, 2010, 9(8): 2444-2448.
    [131] Widrow B. and Stearns S. D., Adaptive Signal Processing. Prentice-Hall, Englewood Cliffs, New Jersey, 1985.
    [132] LG Electronics, Consideration on CoMP in LTE-Advanced, 3GPP TSG RAN WG1 Meeting #55/R1-084203, 2008: 1-5.
    [133] Ericsson, LTE-Performance and IMT-Advanced Requirements, 3GPP TSG RAN WG1Meeting #56b/R1-091580, 2009: 1-11.
    [134]沈嘉,索士强,全海洋,赵训威,胡海静,姜怡华, 3GPP长期演进(LTE)技术原理与系统设计,第1版,人民邮电出版社, 2008.
    [135] Su D., Hou X. Y. and Yang C. Y., Quantization based on per-cell codebook in cooperative multi-cell systems, IEEE WCNC, 2011: 1753-1758.
    [136] Gesbert D., Shafi M., Shiu D. S., Smith P. J. and Naguib A., From theory to practice: an overview of MIMO space-time coded wireless systems, IEEE Journal on Selected Areas in Communications, 2003, 21(3): 281-302.
    [137] 3GPP TR25.876 V1.8.0, Multiple input multiple output antenna processing for HSDPA.
    [138] Lucent Technologies, Practical aspects of multiple antenna architectures for HSDPA, 3GPP TSG RAN WG1/TSGR1#16(00)1219, 2000: 1-2.
    [139] Yetis C. M., Gou T. G., Jafar S. A. and Kayran A. H., On Feasibility of Interference Alignment in MIMO Interference Networks, IEEE Transactions on Signal Processing, 2010, 58(9): 4771-4782.
    [140] Choi S. W., Jafar S. A. and Chung S. Y., On the beamforming design for efficient interference alignment, IEEE Communications Letters, 2009, 13(11): 847-849.
    [141] Suh C. and Tse D., Interference Alignment for Cellular Networks, 46th Annual Allerton Conference on Communication, Control, and Computing, 2008: 1037-1044.
    [142] Suh C., Ho M. and Tse D. N. C., Downlink Interference Alignment, IEEE Transactions on Communications, 2011, 59(9): 2616-2626.
    [143] Shin W., Lee N., Lim J. B. and Shin C. Y., On the Design of Interference Alignment Scheme for Two-Cell MIMO Interfering Broadcast Channels, IEEE Transactions on Wireless Communications, 2011, 10(2): 437-442.
    [144] Bolcskei H. and Thukral I. J., Interference alignment with limited feedback, IEEE International Symposium on Information Theory, 2009: 1759-1763.
    [145] Krishnamachari R. T. and Varanasi M. K., Interference alignment under limited feedback for MIMO interference channels, IEEE International Symposium on Information Theory Proceedings, 2010: 619-623.
    [146] Shen M. Q., Host-Madsen A. and Vidal J., An improved interference alignment scheme for frequency selective channels, IEEE International Symposium on Information Theory, 2008: 559-563.
    [147] Shen H., Li B., Tao M. X. and Luo Y., The New Interference Alignment Scheme for the MIMO Interference Channel, IEEE Wireless Communications and Networking Conference, 2010: 1-6.
    [148] Santamaria I., Gonzalez O., Heath R. W. and Peters S. W., Maximum Sum-Rate Interference Alignment Algorithms for MIMO Channels, IEEE Global Telecommunications Conference, 2010: 1-6.
    [149] Park S. H., Park H., Kim Y. D. and Lee I., Regularized Interference Alignment Based on Weighted Sum-MSE Criterion for MIMO Interference Channels, IEEE International Conference on Communications, 2010: 1-5.
    [150] Paulraj A., Nabar R. and Gore D., Introduction to Space-Time Wireless Communications, Cambridge University Press, UK, 2003.
    [151] Jiang Y., Li J. and Hager W. W., Joint Transceiver Design for MIMO Communications Using Geometric Mean Decomposition, IEEE Transactions on Signal Processing, 2005, 53(10): 3791-3803.
    [152] Heath M. T., Scientific computing: An introductory survey, 2nd Edition, McGraw-Hill, 2002.
    [153] Nortel Networks, Proposal for IEEE 802.16m DL Network MIMO, IEEE 802.16 Working Group on Broadband Wireless Acces/IEEE C802.16m-08/346, 2008: 1-12.
    [154] Sun S. H., Gao Q. B., Rakesh T. and Wang Y. M., Coordinated Multi-point Transmission Technique in TDD Cellular mobile system, Engineering Sciences, 2011, 9(1): 35-40.
    [155] Lee J. H. and Choi W., Opportunistic Interference Aligned User Selection in Multiuser MIMO Interference Channels, IEEE GLOBECOM, 2010: 1-5.
    [156] Ayach O. E., Peters S. W. and Heath R. W., The Feasibility of Interference Alignment Over Measured MIMO-OFDM Channels, IEEE Transactions on Vehicular Technology, 2010, 59(9): 4309-4321.
    [157] Alcatel-Lucent Shanghai Bell and Alcatel-Lucent, Feedback overhead for DL CoMP, 3GPP TSG RAN WG1 Meeting #60/R1-100935, 2010: 1-8.
    [158] Yi H. Y., Remote antenna unit (RAU) selection scheme using joint angle-frequency estimation algorithm for radio-over-fiber-based railway communication systems, Engine, from https://engine.lib.uwaterloo.ca/ojs-2.2/index.php/pptvt/article/view/626.
    [159] Yang C. Z., Lu L. H., Di C. and Fang X. M., An On-Vehicle Dual-Antenna Handover Scheme for High-Speed Railway Distributed Antenna System, 6th International Conference on Wireless Communications Networking and Mobile Computing, 2010: 1-5.
    [160]陈雄颖,高速铁路GSM网络数字射频光纤拉远覆盖方案,邮电设计技术, 2008年第1期, pp:37-41.
    [161] Venkatesan S., Huang H., Lozano A. and Valenzuela R., A WiMAX-Based Implementation of Network MIMO for Indoor Wireless Systems, EURASIP Journal on Advances in Signal Processing, 2009: 1-35.
    [162] Alcatel-Lucent, DL SU-MIMO Schemes for cross-polarised Antennas, 3GPP TSG RAN WG1 #48b/R1-071427, 2007: 1-5.
    [163] Alcatel-Lucent, Further discussion and performance results for DL SU-MIMO Schemes for cross-polarised Antennas, 3GPP TSG RAN WG1 #49/R1-072657, 2007: 1-15.
    [164] Alcatel-Lucent, Development of two-stage feedback framework for Rel-10, 3GPP TSG RAN WG1 #60b/R1-101859, 2010: 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700