用户名: 密码: 验证码:
固液废弃物资源化功能微生物制剂研发及外源固氮菌与土壤特性关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物制剂广泛应用于禽畜粪高温堆肥及农业生产,以促进堆肥腐熟、增加作物养分供应或增强作物抗病性,对保护农业生态环境和农业增产增收具有重要作用。然而,由于生产和使用成本过高以及接种效应的不稳定限制了农用微生物制剂的推广应用。另一方面,大量高浓度食品工业有机废液,如谷氨酸发酵液经提取谷氨酸后剩下的味精废液,具有低pH、高COD和BOD、高SO_4~(2-)、高菌体含量和排放量大的特点,导致治污达标困难,带来巨大环境污染治理压力。其含有的大量N、P、K营养和多种微量元素能为微生物和植物生长提供丰富优质的营养源。因此,将味精废液等食品工业有机废水作为微生物制剂和基质栽培营养液的营养源开发利用,可以减轻其环境污染治理压力,实现其营养资源的再循环利用,并降低微生物制剂和基质栽培的生产成本。为此,本文在分离、筛选获得高效功能微生物菌株的基础上,以高浓度食品工业有机废水为营养源,研究了畜禽粪廉价发酵菌剂和联合固氮菌接种剂等农用微生物制剂的培养基配方和应用效果;研究探讨了改性味精废液作为番茄基质培营养液的可行性;针对微生物制剂接种效果的不稳定性问题,着重探讨了外源固氮菌接种效果与土壤因子的相互关系。取得主要结果如下:
     (1)从市售发酵有机肥、鸡粪及菜园土壤等分离源,利用细菌、霉菌、真菌、放线菌和酵母菌选择性培养基,分别在30℃、45℃培养温度下,共分离获得了10个纤维素降解功能候选分离物;利用霉菌、放线菌、酵母菌和羧甲基纤维素钠培养基,分别在30℃、45℃和70℃培养温度下,共分离获得9个除臭功能候选分离物。进一步通过纤维素降解能力、除臭能力和植物病原真菌抗性测定,从15株自行分离或实验室收藏的菌株中筛选出地衣芽孢杆菌、枯草芽孢杆菌、浸麻芽孢杆菌、新木和里氏木霉等8株具有或兼具降解纤维素、除臭和抗病等多重功能的微生物作为高温堆肥发酵菌剂开发的候选菌株。
     (2)通过味精废液、黄泔水和蔗糖3因子3水平L_9(3~4)正交设计试验,筛选出8个供试畜禽粪发酵候选菌株的3种营养源基础培养基配方;并通过12种营养元素的L_(16)(2~(15))正交设计试验,在上述3种营养源基础培养基配方的基础上筛选出各候选菌株添加常量和微量元素的优化配方。结果表明,利用味精废液、黄泔水等食品工业有机废水作为功能菌的基本营养来源,并适量添加常量和微量元素来生产廉价微生物菌剂是可行的。培养基配方申请国家发明专利(申请号:200510049704.9),已通过初审进入实审。
     (3)通过鸡粪高温堆肥发酵试验,研究了自行制备的廉价发酵菌剂的高温堆肥效果。秋季堆肥试验结果表明,5个单一功能菌剂及它们的2个复合菌制剂接种处理,相对于不接种对照,加速肥堆升温效果显著,其中地衣芽孢杆菌、浸麻芽孢杆菌及混合菌剂2的升温作用更为明显。冬季堆肥试验,以2个市售发酵菌剂和不接种空白处理为对照,比较了接种9个单一菌剂及它们复合菌剂的堆肥升温效果,筛选出肥堆升温和促腐效果达到或超过酵素菌的菌株6个:地衣芽孢杆菌、枯草芽孢杆菌、浸麻芽孢杆菌、里氏木霉、CMC-W70-S、CS-R30-P。春季堆肥试验结果表明,采用6个菌株制备的混合菌剂接种处理的肥堆升温、保氮、pH和有机肥全氮磷钾含量及有机质含量达到或超过市售发酵菌剂的接种效果,表明本研究开发的利用有机废液生产的发酵菌剂在禽畜粪高温堆肥中具有实际应用价值。
     (4)通过番茄基质培盆栽试验、大棚滴灌试验和西瓜田间试验,研究了改性味精废液作为番茄基质栽培营养液的可行性以及采用有机废液制备的联合固氮菌W12和地衣芽孢杆菌等微生物制剂对西瓜、番茄的接种效应。①番茄基质培盆栽试验结果表明,浇施味精废液处理可显著增加番茄株高、叶片数和茎粗,促进其营养生长,并使番茄提早开花,有利于生殖生长,尽管始花期恰逢连阴雨天气影响初期花的挂果,但产量仍略高于完全营养液处理。而且,栽培基质的电导率与浇施完全营养液处理无显著差异。②味精废液与W12菌剂联用促生效果基质培盆栽试验结果表明,番茄茎、叶的全氮量表现为接种W12处理极显著高于不接菌对照,浇味精废液处理极显著高于其它两个营养液,且番茄茎全氮含量在基质接种方式与不同营养液间的交互作用极显著,说明浇施味精废液不仅可直接为番茄植株提供营养,还可以为W12提供丰富的营养源。浇施味精废液的番茄产量显著高于完全营养液处理,而且生长后期的下位叶黄化程度明显比后者减轻。虽然浇施味精废液的栽培基质pH略低于完全营养液处理,基质的电导率略高于后者,但均在番茄生长安全pH和电导率范围内。③樱桃番茄基质培大棚滴灌味精废液试验结果,进一步证实了味精废液能改善番茄叶片的氮素营养,显著提高其叶绿素和类胡萝卜素含量。滴灌味精废液的番茄功能叶抗衰老相关因子SOD、MDA、POD和常规营养液无显著差异,却显著提高叶片可溶性蛋白含量,说明有利于提高番茄叶片的抗逆性。滴灌味精废液不仅取得与滴灌常规无机营养液相同的产量,而且果实总氨基酸增加30%,总糖度及糖酸比显著提高,总酸度明显降低,明显改善番茄果实的鲜食风味和营养品质。此外,微生物菌剂对西瓜接种田间试验结果表明,接种采用味精废液制备的地衣芽孢杆菌菌剂能使西瓜产量有所提高。综上所述,经过改性的味精废液可以作为基质培番茄营养液,且能与联合使用的功能微生物菌剂产生显著的正交互作用,提高功能微生物接种效果。该项技术已获国家发明专利授权(ZL200510049612.0)。
     (5)为探讨土壤化学和生物学性状与外源固氮菌对土著菌竞争力的关系,采用联合固氮菌W12的利福平诱导抗性菌株W12-R,设计了W12-R在3个熟化度和肥力水平差异悬殊的土壤浸提液中与土著菌的竞争生长试验。结果表明,W12-R在3个土壤浸提液中单独培养时生长量无显著差异,但与土著菌共培养时,W12-R的生长受到了不同程度的抑制,其中以在有效养分含量最低的洪合土壤浸提液中受到的竞争抑制最大。补充适量碳源可不同程度削弱这种抑制,其中在洪合土壤浸提液中最为突出,使W12-R生长量回复到纯培养水平。比较在无氮培养基中W12单独以及分别与各供试土壤土著菌共培养系统中测得的固氮酶活性,发现共培养系统的固氮酶活性相对于纯培养系统大幅下降,而且三个土壤的共培养体系的固氮酶活性差异极显著(p=0.0001),其中以总氮、有机质、微生物量最高的新埭土壤共培养系统最低,而各项土壤特性指标相对较低的洪合土壤共培养系统最高。可见,外源固氮菌W12与土著菌共存时,土著微生物不仅对其生长造成营养竞争抑制,对其固氮酶活性也产生了显著的影响。进一步分析土壤NH_4~+-N含量、微生物量碳、微生物量氮、TOC以及土著细菌、真菌和放线菌数量与共培养系统固氮酶活性的关系,结果表明土壤NH_4~+-N含量和土著微生物数量越高,W12与土著菌共培养系统的固氮酶活性降低越多。由上述结果可见,对微生物量较少,肥力较低,特别是NH_4~+-N含量较低的土壤接种外源固氮菌W12,并利用固、液有机废弃物补充适当的营养源,将有利于提高其接种效果。
     (6)多元统计分析结果表明,土壤土著菌固氮酶活性NAS仅与13项土壤性状指标中的土壤有效态Cd呈显著偏负相关;外源菌W12与土著菌共培养系统的固氮酶活性NA(S+W12)及W12接种效应估计值NAD(NA(S+W12)-NAS)分别与土壤NH_4~+-N、有效态Cr含量呈显著的负偏相关和正偏相关;NA(S+W12)与NAS呈显著的正相关,而NAD却与NAS呈显著的负相关,表明接种W12后共培养系统的总固氮量有一部分是来自土著固氮菌的贡献,但较高NAS却不利于提高外源固氮菌W12的接种效应。通过系统聚类分析将27个供试土样分为外源固氮菌W12接种效应明显不同的3个类型,其中,第一类由于接种效应正相关因子土壤有效Cr水平较高,而负相关因子NH_4~+-N、NAS居中等水平,因而表现为正种效应;第二类因土壤有效态Cd过高,表现为负接种效应;第三类可能由于NAS过高而具有负接种效应。根据外源固氮菌W12接种效应估计值NAD与其正相关因子土壤有效态Cr含量及负相关因子土壤NH_4~+-N含量的关系曲线,初步发现在供试土壤范围内,两者对外源固氮菌W12接种效应产生胁迫的临界值分别为2μg kg~(-1)和20mg kg~(-1),即土壤有效态Cr含量低于2μg kg~(-1)和/或土壤NH_4~+-N含量高于20mg kg~(-1)将抑制外源固氮菌W12的接种效应发挥。
For the benefit of improving nutrition and resistance to fungi pathogenesis for plant, accelerating maturity of compost, microbial agents are used widely in agriculture and in thermophilic composting of livestock or poultry wastes. It plays important roles in protecting agricultural ecological environment and enhancing agricultural production. But quite high production cost and unstable inoculation effect of microbial agents are the main obstacles for its application. On the other hand, difficulties of pollution disposal increase for large amounts of high concentration organic wastewater produced in food industry. Monosodium glutamate wastewater (MGW) characterized with low pH, high COD and BOD value, high SO_4~(2-), high cell concentration and large amount of discharged volume is difficult to be disposed completely for manufacture. Many components in MGW, e.g. N, P, K and trace elements, are high quality nutrition resources for plants and microorganisms. The difficulty of pollution disposal might be alleviated if MGW is used to produce microbial agents and /or develop nutrient solutions for medium culture at a certain extent, which reuse MGW as nutrient resource of plant and reduce the cost of producing microbial agents. In this article, cheap culture media of isolated functional microorganisms for composting and associated nitrogen fixing bacteria was developed using high concentration organic wastewater of food industry as nutrient resources. The effect of composting microbial agents was verified in three composting experiments. The feasibilities of using improved MGW as nutrient solution for tomato were also studied. To understand the unstable inoculation effect of microbial agents in field, the relationship between the inoculation effect of exotic nitrogen fixing bacteria and soil properties was discussed. Main results are listed as follow:
     1. 10 candidate strains capable of fibre-degrading were screened using selective media of bacteria, mildew, fungi, actinomyces and microzyme at 30℃or 45℃from compost, chicken manure and vegetable soils; and another 9 candidate strains capable of deodorization were screened using culture media of mildew, actinomyces and microzyme and carboxymethyl cellulose sodium at temperature of 30℃、45℃or 75℃from the same source. According to the further studies on the functions of fibre-degrading, deodorization and plant pathogenic fungi resistance, 8 strains of B.Licheniformis, B.Subtilis, B.macerans, et al. capable of fibre-degrading, deodorization or plant fungi disease resistance were screened for the exploitation of thermorphilic composting fermentogen from 15 strains isolated or collected by our own lab. The major function of each stain was listed in table 2-13.
     2. The recipes of basic culture media for these 8 stains were selected by L_9(3~4) orthogonal design experiments for 3 factors, e.g. MGW, bean products wastewater (BPW) and cane sugar. Based on L_(16)(2~(15)) orthogonal design experiments of 12 nutrient elements, the former basic culture media recipes were optimized by additive macro-elements and/or microelements. It help us find the way to produce low cost microbial agents by using MGW and BPW. The application of national invention patent for these recipes has been accepted (Application Number: 200510049704.9).
     3. Three thermophilic composting experiments for chicken manure were conducted for testing the effects of low cost microbial agents on composting process. Results of autumn composting experiment show the temperature of compost heap inoculated with 5 single strain agents and 2 multiple strains agents is significantly higher than that of uninoculated control treatment. Bacillus lieheniformis, Bacillus macerans and No.2 combined agent are especially benefit for enhancing the temperature of compost heap. Effects of 9 single strain agents and their combined agent on enhancing compost heap temperature were compared with 2 commercial microbial agents in winter compost experiment. Six strains including Bacillus lieheniformis, Bacillus subtilis, Bacillus macerans, Trichoderma reesei, CMC-W70-S and CS-R30-P showing better and/or the same heap temperature enhancing effects compared with commercial products were screened for next composting experiment. A composting experiment was further conducted to confirm the effect of the combined agent with former selected 6 strains. The result indicated that the combined agent showed the same or better effects of enhancing compost heap temperature and protecting ammonia from volatilization as commercial product. Furthermore, content of total N, P, K and organic matter of organic fertilizer are higher than that of the commercial agent. It predicts that this agent with selected functional microbial strains prepared using high concentration organic wastewater of food production as nutrient resources is capable of being applied in thermophilic composting of animal manure.
     4. The feasibility of MGW as main nutrition resource in nutrient solution of tomato medium culture and the effect of microbiological agents such as associative nitrogen-fixing bacteria and Bacillus licheniformis inoculants prepared by organic wastewater, on growth of watermelon and tomato were studied by tomato potted planting experiment, greenhouse drop-irrigation experiment and watermelon field experiment.①The results of tomato potted planting experiment indicated that plant height, leaf number and stem diameter were significantly increased in MGW treatment compared with the traditional nutrient solution (TNS) treatment. Furthermore, the first flowering stage was earlier and the yield of tomato was higher than those of the latter treatment. Meanwhile, there are no siginificant difference found in the eclectrical conductivity (EC) of the media between the MGW treatment and the TNS treatment.②The results of the second tomato medium culture experiment applying MGW combined with W12 inoculant indicated that higher nitrogen contents of tomato roots and leaves were abtained in the W12 inoculating treatment compared with non-inoculated treatment. The nitrogen contents of tomato roots and leaves in MGW treatment were higher than those in TNS treatment. Furthermore, the positive interaction was showed between application of MGW and inoculated W12 on the nitrogen contents in tomato shoots. In conclusion, MGW not only provide the nutrients for plant, but also for W12. The tomato yield of the MGW treatment is higher than that of TNS treatment. Senescence of the older leaves was delayed in MGW treatment compared with TNS treatment. Although the culture medium pH is a little lower and the electric conductivity is a bit higher in MGW treatment than those in TNS treatment after the experiment finished, but both are still suitable for tomato growth.③Results of meidium culturing cherry tomato experiment in greenhouse showed that MSW as drip irrigation nutrition can improve the nutrition supply of tomato and significantly enhancing the content of Chlorophyll and carotenoid of leaves. No significant difference is found in the antiaging factors, e.g. SOD, MDA and POD between traditional inorganic nutrition solution and MSW drip irrigation treatments. Content of soluble proteins of tomato leaves in MSW treatment is significantly higher than that in the inorganic nutrition treatment. The total amino acid content, total sugar content and ratio of sugar to acid of tomato fruits in MSW treatment were significantly enhanced while total acidity is reduced compared with the inorganic nutrition treatment. Therefore, application of MSW can improve the edibility and nutrient quality of fruits besides the same yield obtained as the inorganic nutrition treatment. In addition, yield increased after inoculating Bacillus lieheniformis agent prepared with MSW in the watermelon field experiment. In conclusion, MSW used as the main nutrition resource in nutrient solution for tomato medium culture is suitable for plant growth and can obtain reasonable yield and higher product quality, and may be capable of enhancing microbial agent inoculation effects. A national invention patent for this technique was obtained (patent Number: ZL 200510049612.0).
     5. In order to understand the instability of microbial agent inoculating effect in agriculture production, the relationship between soil chemical and biological traits and competitive ability of exotic nitrogen fixation bacteria against soil indigenous bacteria was studied. A competitive growth experiment between the Rifampin resistant associative nitrogen fixation bacteria W12-R and soil indigenous bacteria in the extracts of three soils with distinguishing properties was conducted. Results showed that there was no significant difference found in the counts of W12-R when pure cultured in three soil extracts, however growth of W12-R were inhibited in a wide extent when cultured together with soil indigenous bacteria, especially in the extract of Honghe soil having lowest contents of available nutrient. However, supplement with some carbon source could alleviate the inhibition in a various degree, particularly in the Honghe soil extract where the growth increment of W 12-R reverted to the level of pure culture. Nitrogenase activities of W12 pure cultured or cultured together with indigenous bacteria of three soils were determined. It was found that nitrogenase activities of co-culture systems sharply declined contrast to that of pure culture system and nitrogenase activities within three co-culture systems were significantly different. The lowest nitrogenase activity was detected in the co-culture system of Xindai soil which had the highest levels of total nitrogen content, organic matter and microbial biomass and the highest was found in Honghe soil co-culture system. It indicated that soil indigenous bacteria could not only compete for nutrients with exotic inoculated nitrogen fixing bacteria but also affect on their nitrogenase activity. It can be found that the higher the contents of soil NH_4~+-N, microbial biomass C and microbial biomass N as well as amounts of soil indigenous bacterial, fungi and actinomycete, the lower the nitrogenase activities in co-culture systems based on analysising the relationship between these properties. In conclusion, positive inoculation effect of exotic nitrogen fixation bacteria angent might be obtained when inoculated in soils with lower content of NH_4~+-N, lower fertility and microbe biomass, especially supplemented with proper carbon source.
     6. The nitrogenase activities of indigenous nitrogen fixing bacteria of 27 soils (NAS) and of exotic nitrogen fixing bacteria W12 together with indigenous microbes of these soils (NA (S+W12)) were tested. The inoculating effects of W12 was estimated by the difference between NA(S+W12) and NAS, denoted as NAD. Multiple statistical analysis results showed that among 13 soil properties tested, only the content of soil available Cd is significant partial negative correlated with NAS. In the co-culture system of exotic nitrogen fixing bacteria W12 and indigenous microbes, significant negative partial correlation between NA(S+W12) or NAD and soil NH_4~+-N content, and significant partial positive correlation between NA(S+W12) or NAD and soil available Cr were found. Although, NA(S+W12) is significantly positive correlated with NAS, significant negative correlation was showed between NAD and NAS. It indicates that part of the fixed nitrogen in co-culture system is contributed by indigenous microbes and higher NAS may be unfavorable for inoculating effect of exotic nitrogen fixing bacteria. 27 soils can be classified to 3 categories according to their inoculation effect by hierachical cluster analysis. Positive inoculation effect of W12 found in the first group may be caused by the highest content of soil available Cr (positive correlated factor of inoculating effect) and moderate content of soil NH_4~+-N content and NAS (negative correlated factors). The negative inoculation effect of W12 showed in the second group may be due to its highest content of soil available Cd. The higher NAS might be the cause of the negative inoculation effect in the third group. According to the curve between NAD and soil available Cr content or soil NH_4~+-N content, the stress threshold of soil available Cr and soil NH_4~+-N on W12 are 2μg kg~(-1) and 20mg kg~(-1), respectively. That is to say, the positive inoculation effect can hardly be obtained when the content of soil available Cr is lower than 2μg kg~(-1) or soil NH_4~+-N content higher than 20mg kg~(-1).
引文
[1] 白正伟.2000.测定混合物组成及组分含量的热重分析法.分析测试学报.19(4):83-85.
    [2] 仓龙,李辉信,胡锋,等.2003.蚯蚓堆制处理牛粪的腐熟度指标初步研究.农村生态环境.19(4):35-39.
    [3] 陈冠军,杜宗军,高培基.2000.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究.工业微生物.30(4):23-27.
    [4] 陈活虎,何品晶,吕凡,等.2006.腐熟堆肥接种对蔬菜废物中高温好氧降解过程的影响.环境化学.25(4):444-448.
    [5] 陈亮,陈东辉.2000.壳聚糖絮凝剂在水处理中的应用.工业水处理.20(9):4-8.
    [6] 陈世和,谌建宇.1992.城市生活垃圾堆肥动态工艺(DANO)的研究.上海环境科学.11(5):13-15,21.
    [7] 陈世和,张所明.1988.城市生活垃圾堆肥处理的微生物特性研究.上海环境科学.78(8):17~21.
    [8] 陈因,方大惟.1995.硝酸钾缓解氯化钠胁迫蓝藻Anabaena 7120固氮的生理基础.热带亚热带植物学报.3(3):56-61.
    [9] 刁治民,王得贤,罗桂花.1995.促生菌对青饲玉米土壤微生物区系影响的研究.青海师范大学学报(自然科学版).(1):29-33.
    [10] 董晓萍,张华.2002.流感嗜血杆菌与草绿链球菌共生致眼内感染1例.中华实用中西医杂志.2(15):535.
    [11] 房增国,左元梅,李隆,等.2004.玉米-花生混作体系中不同施氮水平对花生铁营养及固氮的影响.植物营养与肥料学报.10(4):386-390.
    [12] 冯明谦,汪立飞,刘德明.2000.高温好氧垃圾堆肥中人工接种初步研究.四川环境.19(3):27-30.
    [13] 龚盛昭,黄小文.2000.味精废母液的综合利用.中国资源综合利用.7:11-12.
    [14] 顾燕飞,顾振芳,支月娥,等.2005.拮抗微生物对茄根腐病菌的抑制作用.上海交通大学学报(农业科学版).23(2):181-183,191.
    [15] 海南省农业技术推广站.1992.值得推广的耐氨固氮菌.海南岛农业科技.2: 34-35.
    [16] 韩如旸,闵航,陈美慈,等.2002.嗜热厌氧纤维素降解细菌的分离、鉴定及其系统发育分析.微生物学报.42(2):138-144.
    [17] 韩玮,聂俊华,李飒.2006.外源纤维素酶对秸秆降解速率及土壤速效养分的影响.中国土壤与肥料.5:28-32.
    [18] 杭文荣.1997.谷氨酸菌体蛋白(SCP)的利用.福建轻纺.(3):9-15.
    [19] 贺芸.2006.产胞外耐高温纤维素酶细菌的获得和酶的纯化及性质研究.常州工学院学报.19(1):13-17.
    [20] 黄丹莲,曾光明,胡天党,等.2005.白腐菌应用于堆肥处理含木质素废物的研究.环境污染治理技术与设备.6(2):29-32.
    [21] 黄国锋,吴启堂,孟庆强,等.2002.猪粪堆肥化处理的物质变化及附属度评价.华南农业大学学报(自然科学版).23(3):1-4.
    [22] 黄国锋,钟流举,张振钿,等.2002.猪粪堆肥化处理过程中的氮素转变及腐熟度研究.应用生态学报.13(11):1459-1462..
    [23] 黄国林,许文苑,梁平,等.1999.活性炭动态吸附处理味精废水的研究[J].环境导报,88(3):16-19.
    [24] 黄河清,孙耀东,林庆梅,等.2001.电子供体及受体对棕色固氮菌抗氨阻遏能力的影响.微生物学通报.28(4):55-60.
    [25] 黄开耀,郭厚良,易平.1998.盐胁迫对柱胞鱼腥藻细胞结构和固氮作用的影响.植物学通报.15(3):54-56.
    [26] 黄云,叶华智,董宝成,等.2004.长叶胡颓子锈病菌及其重寄生菌.中国生物防治.20(3):193-196.
    [27] 黄云,叶智华,严吉明,等.2005.重寄生菌葡酒锈生座孢(Tuberculinavinosa)和白蜡锈生座孢(T.fraxinis)的寄生专化性.植物病理学报.35(6):481-485.
    [28] 惠平.1995.硫酸法味精废水的厌氧处理试验.环境污染与防治.17(5):10-13.
    [29] 金显春,郭文杰,杨勇,等.2006.直接降解稻草秸秆的菌株筛选及其发酵过程研究.安徽农业科学.34(20):5144-5145.
    [30] 柯威,熊伟,刘景雪,等.2006.城市固体废弃物热重分析及热解动力学研究.可再生能源.5:53-56.
    [31] 李国学,张福锁,黄焕忠,等.1999.用水芹菜种子发芽特性评价污泥堆肥腐熟度和生理毒性.中国农业大学学报.4:109-116.
    [32] 李国学,张福锁.2000.固体废物堆肥化与有机复混肥生产.北京:化学工业出版社.
    [33] 李红光,吕录宣.1999.味精谷氨酸提取母液固体发酵生产活性蛋白饲料研究.环境工程.17(5):65-68.
    [34] 李红光.1998.味精母液浓缩处理及浓缩液固体发酵产生性蛋白饲料.环境保护.11:27-28.
    [35] 李红光.2001.发酵工业的生态工业模式及其特征.发酵科技通讯.(2):14-18.
    [36] 李洪连,袁红霞,王烨,等.1998.根际微生物多样性与棉花品种对黄萎病抗性关系研究.植物病理学报.28(4):341-345.
    [37] 李吉进,郝晋珉,邹国元,等.2004.高温堆肥碳氮循环及腐殖质变化特征研究.生态环境.13(3):332-334.
    [38] 李吉进,邹国元,徐秋明,等.2006.鸡粪堆肥腐熟度参数及波谱的形状研究.植物营养与肥料学报.12(2):219-226.
    [39] 李丽,顾晓彬,许美蓉.1998.串联式氨解脱离子交换法处理味精等点废母液.环境工程.16(1):7-10.
    [40] 李巧贤,韩菊英,魏道茵.1997.NM_6益生菌对肠道致病菌的生物拮抗和互利共生关系的研究.内蒙古畜牧科学.(3):11-13.
    [41] 李素翠,聂延富.2001.2,4-D诱导固氮螺菌在玉米根部结瘤及固氮效果的研究.山东农业科学.4:12-14.
    [42] 李秀金,董仁杰.2002.粪草堆肥特性的试验研究.中国农业大学学报.7(2):31-35.
    [43] 李艳霞.1998.污泥堆肥机理及堆肥过程研究[D].北京:中国科学院.15-20.
    [44] 李友国,周俊初.2002.影响根瘤菌共生固氮效率的主要因素及遗传改造.微生物学通报.29(6):86-89.
    [45] 李宇庆,陈玲,赵建夫.2006.施用污泥堆肥对木槿生长的影响研究.农业环境科学学报.25(4):894-897.
    [46] 林远声,列璞怡.2004.降解纤维素的真菌分离、筛选及酶活测定.中山大学 学报(自然科学版).43:82-85.
    [47] 凌云,路葵,徐亚同.2007.禽畜粪便堆肥中优势菌株的分离及对有机物质降解能力的比较.华南农业大学学报.28(1):36-39.
    [48] 刘学铭,余若黔,梁世中.1998.工业水处理.11-18(6):1-3.
    [49] 鲁如坤.2000.土壤农业化学分析方法[M].北京:中国农业科技出版社.638pp.
    [50] 罗维,陈同斌,高定,等.2004.混合堆肥过程中挥发性固体含量的层次效应及动态变化.环境科学.25(3):155-159.
    [51] 孟颂东,关桂兰,覃楠.1995.PG1和PG6微生物在小麦根际的定殖对植物生长的影响.干旱区研究.12(3):85-89.
    [52] 苗则彦,赵奎华,刘长远,等.2004.健康与罹病黄瓜根际微生物数量及真菌区系研究.中国生态农业学报.12(3):156-157.
    [53] 庞宗文,董志刚,梁静娟,等.2006.高温放线菌GPL1纤维素酶的酶学性质研究.22(2):20-23.
    [54] 齐云,陈飞,袁月祥,等.2003.一株能分解纤维素的高温耐碱放线菌.应用与环境生物学报.9(3):322-325.
    [55] 钱学玲,孙义,李道棠.2001.模糊综合评价法判别堆肥腐熟度研究.上海环境科学.20(2):85-87.
    [56] 乔宏萍,宗兆锋.2004.重寄生放线菌F46和PR对灰葡萄孢的抑制作用.西北农林科技大学学报(自然科学版).32(11):23-26.
    [57] 沈雪亮,夏黎明.2002.产纤维素酶细菌的筛选及酶学特性研究.林产化学与工业.22(1):47-51.
    [58] 盛下放.2003.硅酸盐细菌NBT菌株在小麦根际定殖的初步研究.应用生态学报.14(11):1914-1916.
    [59] 宋波,羊键.2005.一株降解纤维素的放线菌的筛选及其产酶条件的研究.微生物学杂志.25(5):36-39.
    [60] 唐赟,邓晓皋.2000.利用产纤维素酶放线菌转化农作物秸秆的初步研究.四川食品与发酵.3:51-54.
    [61] 陶涛,詹德昊,芦秀青,等.2002.味精废水治理的现状及进展.环境污染治理技术与设备.3(1):69-73.
    [62] 王继文,李永兴,胡长征,等.1991.氧对固氮螺菌(Azospirillum brasilense)Yu 62固氮酶活性的调节作用.微生物学报.31(5):351-356.
    [63] 王连稹,王祯丽,黄华波.2003.白腐菌在秸秆堆肥化中的应用.石河子大学学报(自然科学版).7(2):161-164.
    [64] 王林权,周春菊,王俊儒,等.2000.粪肥堆腐过程中有机酸的变化.植物营养与肥料学报.6(4):430-435.
    [65] 王占武,李晓芝,葛建国,等.2002.拮抗菌B501在草莓根际的定殖及对其他根际微生物的影响.河北农业科学.6(3):14-18.
    [66] 王志超,陆文静,王洪涛.2006.好氧堆肥中高温纤维素分解菌的筛选及性状研究.北京大学学报(自然科学版).42(2):259-264.
    [67] 吴金义.1997.毛发载体生物膜处理味精生产废水.城市环境与城市生态.10(4):1-4.
    [68] 吴淑杭,姜震方,俞清英.2002.禽畜粪便污染现状与发展趋势.上海农业科技.(1):9-10.
    [69] 吴水胜,周秀琴,刘道康.1994.味精废水治理方案的探索.轻工环保.16(1):1-5.
    [70] 席北斗,孟伟,刘鸿亮,等.2002.垃圾堆肥高效纤维素分解菌的筛选与培育技术.环境污染与防治.24(6):339-341.
    [71] 肖永庆.1998.现代化养猪的粪便处理与资源化途径.农业环境保护.17(6):281-283.
    [72] 谢宪章.1990.降低味精废水COD的方法研究.上海环境化学.9(10):13-15.
    [73] 谢宪章.1991.从味精生产废液中回收核糖核酸的研究.重庆环境科学.13(4):11-13.
    [74] 辛智海,邱礼鸿,崔龙,等.2004.线虫共生菌对水稻纹枯病和稻瘟病的抑菌活性.中山大学学报(自然科学版).43(5):69-71.
    [75] 徐诚蛟,徐凤花,夏清梅,等.2005.抗生.促生多功能菌剂对稻田土壤微生物区系及氮素转化的影响.黑龙江八一农垦大学学报.17(1):27-30.
    [76] 许汉祥.1996.味精行业的污水治理(续).轻工环保.18(1):33-37.
    [77] 薛景玲,郭树范,程国华,等.1995.长期施用含氯化肥对土壤微生物区系及固氮细菌生理群的影响.土壤通报.26(3):135-138.
    [78] 杨琦,杨殿海,周群英.1996.味精废水处理方法.污染防治技术.9(3):171-173.
    [79] 杨毓峰,薛澄泽,唐新保.1999.禽畜废弃物堆肥的腐熟指标.西北农业大学学报.27(4):62-66.
    [80] 姚政,赵京音.1995.用种子发芽力作为生物指标评判鸡粪堆肥腐熟度的研究.土壤肥料.6:30-32.
    [81] 由振国.1992.稗草影响大豆根瘤固氮的机制研究之一——水分干扰机制.中国农业科学.25(5):58-64.
    [82] 郁红艳,曾光明,黄国和,等.2004.木质素降解真菌的筛选及产酶特性.应用与环境生物学报.10(5):639-642.
    [83] 郁红艳,曾光明,牛承岗,等.2005.细菌降解木质素的研究进展.环境科学与技术.28(2):104-110.
    [84] 袁虹霞,李洪连,王振跃,等.1998.利用土壤拮抗微生物防治棉花枯萎病.中国生物防治.14(4):156-158.
    [85] 张辉,杨启银,戴传超,等.2004.牛粪堆肥中好氧纤维素降解菌群及产酶条件研究.江苏农业科学.6:146-150.
    [86] 张甲耀,龚利萍,罗宇煊,等.2002.嗜碱细菌复合碳源条件下对麦草木质素的降解.环境科学.23(1):70-73.
    [87] 张军,张肇铭.1994.沼泽红假单胞菌固氮酶活性的调节.山西大学学报(然科学版).17(2):205-208.
    [88] 张丽梅,方萍,季天委.2002.高效固氮菌株W12对环境因子的适应性研究.浙江大学学报(农业与生命科学版).28(6):664-668.
    [89] 张智维,刘素英,张宏,等.2002.味精废水生物处理技术的现状及看法.西北轻工业学院学报.20(5):72-74.
    [90] 章汝平.1996.后道味精母液提取谷氨酸后废液综合利用的方法.龙岩师专学报.(6):81-83.
    [91] 赵庆良,王琨.1999.城市垃圾的再生利用.能源工程.5:24-26.
    [92] 郑玉琪,陈同斌,孔建松,等.2004.利用耗氧速率判断好氧堆肥腐熟度的探讨.环境科学学报.24(5):930-935.
    [93] 周文兵,刘大会,朱瑞卫,等.2005.不同调理剂对猪粪堆肥腐殖质特性及 元素含量变化的影响.华中农业大学学报.24(6):599-603.
    [94] 朱红惠,龙良坤,羊宋贞,等.2005.AM真菌对青枯病和根际细菌群落结构的影响.菌物学报.24(1):137-142.
    [95] 朱晓慧,唐宝英,刘佳.2004.酪酸菌对肠道有益菌的增殖作用和共生关系研究.中国微生态学杂志.16(4):193-196.
    [96] 邹小鲁,宋鸿遇.1989.氨和谷氨酰胺对浑球红假单胞菌(Rhodobacter sphaeroides)固氮酶活性的调节.植物生理学报.15(4):354-359.
    [97] Abdalla M. E. and Abdel-Fattah G. M. 2000. Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt. Mycorrhiza. 10: 29-35.
    [98] Abdel-Fattah G. M. and Shabana Y. M. 2002. Efficacy of the arbuscular mycorrhizal fungus Glomus clarum in protection of cowpea plants against root rot pathogen Rhizoctonia solani. Journal of Plant Disease and Protection. 109: 207-215.
    [99] Antai S. P. and Crawford D. L. 1981. Degradation of softwood, hardwood and grass lignocelluloses by two Streptomyces strains. Applied and Environmental Microbiology. 42(2): 378-380.
    [100] Bai X. H., Li G. and Zhong W. G. 2001. A comparison study of monosodium L-glutamate wastewater treatment by activated sludge process and biofilm process. Journal of Zhejiang University (Agriculture and Life Sciences). 27(2): 205-209.
    [101] Bai Z H, Zhang H X, Qi H Y., et al. 2004. Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bioresource Technology. 95(1): 49-52.
    [102] Beffa T., Blanc M., Lyon P. F., et al. 1996. Isolation of thermus strains from hot composts 60-80℃. Applied and Environmental Microbiology. 62: 1723-1727.
    [103] Bemal M. P., Paredes C., Sanchez-Monedero M. A., et al. 1998. Maturity and stability parameters of composts prepared with a wide of organic wastes. Bioresource. Technology. 63: 91~99.
    [104] Bertoldi D. M., Vallini G. and Pera A. 1983. The biology of composting: a review. Waste Management and Research. 1: 157-176.
    [105] Bishop P. L. and Godfrey C. 1983. Nitrogen transformations during sludge composting. Biocycle. 24: 34-39.
    [106] Bolta S.V., Mihelic R., Lobnik F., et al. 2003. Microbial community structure during composting with and without mass inocula. Compost Science and Utilization. 11(1): 6-15.
    [107] Bram B., Peter W.G., Groot K., et al. 2003. A novel design approach for livestock housing based on recursive control-with examples to reduce enbironmental pollution. Livestock Production Science. 84(2): 157-170.
    [108] Capelari M. and Zadrazil R 1997. Lignin degradation and in vitro digestibility of wheat straw treated with Brazilian tropical species of white rot fungi. Folia Microbiologica. 42(5): 481-487.
    [109] Chaineau C.H., Model J.L., Oudot J., et al. 2000. Biodegradation of fuel oil hydrocarbons in rhizosphere of maize. Journal of Environmental Quality. 29: 569-578.
    [110] Chanyasak V. and Kubota H. 1981. Carbon/ organic nitrogen ratio in water extract as measure of eomposfing degradation. Journal of Fermentation Technology. 59:215-219.
    [111] Chefetz B., Hatcher P.G., Hadar Y., et al. 1996. Chemical and biological characterizeation of organic matter during composting of municipall solid waste. Journal of Environmental Quality. 25: 776-785.
    [112] Chen J.Y. 1990. Humic substances formed during the composting of organic matter. Soil Science Society of America Journal. 54(5): 1316-1323.
    [113] Cooney D.G. and Emerson R. 1964. Thermophilic microorganisms and life at high temperatures. Thermophilic Fungi. 4: 108-116.
    [114] Dix. N.J. and Webster J. 1995. Lignin modifying enzymes from selected white rot fungi: production and role in lignin degradation. Fungal Ecology. 13 : 125-135.
    [115] Eady R.R., Issack R., Kennedy C, et al. 1978. Nitrogenase synthesis in Klebsiella pneumoniae: comparison of ammonium and oxygen regulation. Journal of General Microbiology. 104(2): 277-285.
    [116] Eklind Y. and Kirchmann H. 2000. Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresource Technology. 74: 125-133.
    [117] Fang S. and Li X. 2001. A study on treatment of MG wastewater with process of adsorption and flocculation and two-stage SBR. Journal of Zhejiang University (Agriculture and Life Sciences). 27(2): 210-214.
    [118] Garcia C, Ayuso M, Ayuso M., et al. 1992. Evaluation of maturity of municipal waste compost using simple chemical parameters. Communications in soil science and plant analysis. 23: 1501-1512.
    [119] Garcia C, Henandez T., Costa F., et al. 1992. Phytoxicity due to the agricultural use of urban waste: Germination experiments. Journal of the Science of Food and Agriculture. 59:313-319.
    [120] Garcia C, Hernandez T. and Costa F. 1991. Changes in carbon fractions during composting mid maturation of organic wastes. Environmental Management. 15: 433-439.
    [121] Garcia C, Hernandez T., Costa F., et al. 1992. A chemical-structural of organic wastes and their humic acids during composting by means of pyrolysis-gas chromatography. The Science of the Total Environment. 119: 157-168.
    [122] Garcia C, Hernandez T., Costa F., et al. 1992. Phytoxicity due to the agricultural use of urban wastes, Germination experiments. Journal of Science Food Agriculture. 59:313-319.
    [123] Gordon J.K. and Brill W.J. 1974. Derepression of nitrogenase synthesis in the presence of excess NH_4~+. Biochemical and Biophysical Research Communications. 59(3): 967-971.
    [124] Gulati S.L. and Gaur A.C. 1988. Enzymatic hydrolysis of cellulose from agricultural and industrial wastes. Biological Wastes. 25(4): 309-313.
    [125] Harada Y., Inoko A., Todati M, et al. 1981. Maturing process of city refuse compost during piling. Soil Science and Plant Nutrition. 27: 357-364.
    [126] Hartley, A.E. and Schlesinger, W.H. 2002. Potential environmental controls on nitrogenase activity in biological crusts of the northern Chihuahuan Desert. Journal of Arid Environments. 52: 293-304.
    [127] Hartmann A. and Burris R.H. 1987. Regulation of nitrogenase activity by
    [162] Sugahara K., Harada Y. and Inoko A. 1979. Color change of city refuse during composting process. Soil Science and Plant Nutrition. 25 :197-208.
    [163] Tseng S.K. and Lin M.R. 1990. Treatment of monosodium glutamate fermentation wastewater with Anaerobic Biological Fluidized Bed process. Water Science and Technology. 22(9): 149-155.
    [164] Tuomela M., Vikman M., Halakka A., et al. 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology. 72(2): 169-183.
    [165] Vance, E. D., Brookes, P. C. and Jenkinson, D. S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry. 19: 703-707.
    [166] Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant andSoil. 255:571-586.
    [167] Waksman S.A., Umbreit W.W. and Cordon T.C. 1939. Thermophilic Actinomycetes and Fungi in Soils and in Composts. Soil Science. 47: 37-61.
    [168] William T.P. and James C.Y. 1995. Stability measurement of Biosolids compost by aerobic respirometry. Compost Science and Utilization. 3(2): 16-24.
    [169] Yang Q., Yang M., Hei L., et al. 2003. Using ammonium-tolerant yeast isolates: Candida halophila and Rhodotorula Glutinis to treat high strength fermentative wastewater. Environmental Technology. 24(3): 383-390.
    [170] Yiao H. 1988. Single-cell protein from wastewater of monosodium glutamate manufacture. Process Biochemistry. 12: 176-177.
    [171] Zheng J.Q. 2003. Application of modified AB biochemical method in monosodium glutamate-wastewater treatment. Environmental Pollution and Control. 25(5): 312-313.
    [172] Zhou J.B., Jiang M.M. and Chen GQ. 2007. Estimation of methane and nitrous oxide emission from livestock and poultry in China during 1949-2003. Energy Policy. 35(7): 3759-3767.
    [173] Zucconi F., Forte M., Monac A., et al. 1981. Biological evaluation of compost maturity. Biocycle. 22: 27-29.
    [174] Zucconi F., Pera A., Forte M, et al. 1981. Evaluating toxicity of immature compost. Biocycle. 22: 54-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700