用户名: 密码: 验证码:
水下航行器编队运动规划与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多水下航行器编队观测是实现海洋长时续、大尺度监测的有效手段,编队观测获取的同时刻不同点的环境数据可极大的提高海洋环境模型的精度。水下航行器编队的运动规划与协调控制是实现多水下航行器编队观测的理论基础,同时也是海洋动态自适应监测网络构建理论的重要分支。本文针对复杂环境下的海洋监测和探测任务,对水下航行器编队的运动规划与协调稳定性进行了研究。通过在编队的个体之间建立势能场,将水下航行器编队系统视为一个多体系统,利用人工势能场和Kane方法实现了水下航行器编队系统的运动规划,并仿真验证了多质点模型编队系统的轨迹规划和多刚体模型编队系统的方位同步,同时利用能量方法分析了旋转刚体编队系统的稳定性。本文的主要研究成果和创新点如下:
     根据水下航行器个体特征和海洋监测任务的特点,将水下航行器编队系统视为一个多刚体系统。通过在编队系统个体间建立间距势能场和方位势能场,形成了个体间的虚拟力约束,构建了水下航行器多刚体编队系统。
     采用人工势能场与多体动力学方法实现水下航行器编队的运动规划。将水下航行器视为质点,可将水下航行器多刚体编队系统简化为“质点系编队”。采用主从式控制方法协调编队内的个体,并用Kane方法求解水下航行器编队系统的动态特性,实现水下航行器编队的运动规划。
     基于人工势能场与多体动力学理论,建立了水下航行器编队系统的“多刚体系统”动力学模型。在此模型的基础上,完成了忽略移动自由度即仅考虑转动自由度的“旋转刚体编队”的协调仿真。
     针对旋转刚体组成的编队,提出了一种基于能量观点的镇定控制器设计方法,通过反馈赋予编队新的能量函数,并使其保持系统的拉格朗日结构;利用能量方法证明了旋转刚体编队系统的稳定性。
Motion planning and cooperative control of multiple autonomous underwatervehicles (AUVs) is important in the construction of dynamic adaptive oceanprediction networks. Multi-AUV formation is effective in large scale oceanobservation missions. Individual vehicle in the formation simultaneously samples inthe observation area. The sampling data obtained by the formation can be used tomodel physical processes in the ocean with a higher accuracy than those developedby sampling data from a single vehicle. This dissertation presents motion planningand stability analysis for multi-AUV formation in complicated ocean environment.The main contributions are summarized as follows:
     The multi-vehicle formation is regarded as a multi-body system and theindividual in the formation is treated as one rigid body in the multibody system.Artificial potential fields that include interactive potential and orientation potentialare introduced as functions of relative position and relative orientation betweenneighboring vehicles respectively. Virtual forces derived from the constructedartificial potential fields are used to constrain the motion of individual vehicles.
     Motion planning for the formation is conducted using the artificial potentialfield (APF) method and multibody dynamics. AUVs in the formation are treated asparticles with full actuation. The Multi-AUV formation is simplified as onemulti-particle formation by ignoring the attitude of the vehicles. The leader-followerapproach is used to coordinate individuals in the formation and Kane’s method fordynamic analysis of multibody systems is used to study the dynamic characteristicsof motion of the multi-AUV formation.
     The dynamic model of the multi-rigid-body formation is constructed based onAPF method and solved using multibody dynamics. The multi-AUV formation issimplified as a formation of spinning rigid bodies by ignoring translation of theAUVs. Coordination of the multi-spinning-body formation is investigated. Theattitude synchronization of the spinning rigid body formation implies that theindividuals in the formation have the same rotation matrices. Simulation is alsoperformed on coordination of the multi-AUV formation as a group of spinning rigid bodies.
     The stabilization control law for the multi-AUV formation is designed based onenergy shaping. A new energy function that keeps Lagrangian structure of the systemis introduced by feedback to the formation and a potential shaping function ofrelative orientations is introduced to synchronize the motion of the vehicles. Theenergy method is used to prove stability and coordinated behavior of the entireformation.
引文
[1] Costanza R. The ecological, economic, and social importance of the oceans.Ecological Economics,1999,31(2):199-213
    [2]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1998
    [3]朱光文.提升国家海洋技术总体实力推进我国海洋强国建设.海洋技术,2002,21(1):4-6
    [4] Yuh J. Design and control of autonomous underwater robots: a survey.Autonomous Robots,2000,8(1):7-24
    [5] Manley J E, Weirich J B. Deep frontiers: technology for ocean exploration.Sea Technology,2005,46(4):10-15
    [6]赵进平.发展海洋监测技术的思考与实践.北京:海洋出版社,2005
    [7]朱光文.我国海洋监测技术研究与开发的现状和未来发展.海洋技术,2002,21(2):27-32
    [8]陈煦蔚,冯正平.移动式水下观测网络的队形稳定性.海洋工程,2010,2:122-127
    [9]谭民,王硕,曹志强.多机器人系统.北京:清华大学出版社,2005
    [10]张毅,罗元,郑太雄.移动机器人技术及其应用.北京:电子工业出版社,2007
    [11]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [12] Wood S, Allen T, Kuhn S, et al. The development of an autonoumousunderwater powered glider for deep-sea biological, chemical and physicaloceanography. OCEANS’07Europe conference proceedings,2007,18(21):1-6
    [13] Chen Y Q, Wang Z M. Formation control: a review and a new consideration.IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:3664-3670
    [14] Martial F V. Coordinating plans of autonomous agents. New York: Springer-verlag,1992
    [15]徐玉如,李彭超.水下机器人发展趋势.自然杂志,2011,33(3):125-133
    [16]李晔,常文田,孙玉山,苏玉民.自治水下机器人的研发现状与展望.机器人技术与应用,2007,(1):25-31
    [17]徐玉如,庞永杰,甘永,孙玉山.智能水下机器人技术展望.智能系统学报,2006,1(1):9-16
    [18] Curtin T B, Bellingham J G, Catipvic J, Webb D. Autonomousoceanographic sampling networks. OCEANOGRAPH,1993,6(3):86-95
    [19]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004,(4):43-47
    [20]朱海,莫军.水下导航信息融合技术.北京:国防工业出版社,2002:19-112
    [21]李德仁,闫军.水下目标卫星导航定位修正技术研究.武汉大学学报,2008,33(11):1101-1105
    [22]闫军.小型拖曳浮标若干关键技术研究.武汉大学博士后出站报告,武汉大学,2006
    [23]马伟锋,胡震. AUV的研究险种与发展趋势.火力与指挥控制,2008,33(6):10-13
    [24]许真珍,封锡盛.多UUV协作系统的研究现状与发展.机器人,2007,29(2):186-193
    [25]杨波,方华京.大规模群体系统的现状研究.武汉理工大学学报,2007,29(1):1-6
    [26] Healey A J. Application of formation control for multiple vehicle roboticminesweeping. In: Proceedings of the IEEE CDC–2001, Orlando, FL,2001
    [27] Healey A J, Kim Y. Control and random searching with multiple robots. In:Proceedings IEEE CDC–2000, Sydney, Australia,2000
    [28] Atwood D K, Leonard J J, Bellingham J G, Moran B A. An acousticnavigation system for multiple vehicles. In: Proceedings InternationalSymposium on Unmanned Untethered Submersible Technology, NewHampshire,1995:202-208
    [29] Bellingham J G. New oceanographic uses of autonomous underwatervehicles. Marine Technology Society Journal,1997,31(3):34-47
    [30] Yilmaz N K, Evangelinos C, Lermusiaux P F J, et al. Path planning ofautonomous underwater vehicles for adaptive sampling using mixed integerlinear programming. IEEE Journal Oceanic Engineering,2008,30(4):522-537
    [31] Kuroda Y, Ura T. Vehicle control architecture for operating multiple vehicles.In: Proceedings of IEEE Symposium on Autonomous Underwater VehicleTechnology AUV94,1994:323-329
    [32] Glenn S, Schofield O. Observing the ocean from the COOL room: ourhistory, experience and opinions. Oceanography,2003,16(4):37-52
    [33] Greed E, Glenn S, Schofield O, et al. LEO-15observatory–the nextgeneration. In: Oceans2005Proceedings of MTS/IEEE,2005,1:657-661
    [34] Glenn S M, Schofield O M, Chant R, et al. The LEO-15coastal cabledobservatory-Phase II for the next evolutionary decade of oceanography. In:SSC06-Scientific Submarine Cable2006, Dublin Castle, Dublin, Ireland,2006:1-6
    [35] Jones C, Greed E, Glenn S, et al. Slocum Gliders–a component ofoperational oceanography. In: Proceedings of the UUST2005Conference,New Hampshire,2005:20-25
    [36]王延辉.水下滑翔器动力学行为与鲁棒控制策略研究:[博士学位论文],天津:天津大学,2007
    [37] Davis R E, Eriksen C C, Jones C P. Autonomous buoyancy-drivenunderwater gliders. Technology and Applications of AutonomousUnderwater Vehicles, London,2002:37-58
    [38] Fratantoni D, Davis R. Autonomous underwater glider performance duringAOSN-II. Trans. AGU, Ocean Sci. Meeting,2003,84(52): AbstractOS22D-01
    [39] http://spray.ucsd.edu/
    [40] http://www.princeton.edu/~dcsl/aosn/documents/ExperimentPlan7.doc
    [41] http://www.princeton.edu/~dcsl/aosn/documents/AOSN_Charter.doc
    [42] http://www.princeton.edu/~dcsl/asap/
    [43] Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV control and adaptivesampling in Monterey Bay. IEEE Journal Oceanic Engineering,2006,31(4):935–948
    [44] Paley D, Leonard N, Sepulchre R. Collective motion: bistability andtrajectory tracking. In: Proc.43rd IEEE Conference on Decision and Control,New York,2004:1932-1937
    [45] Savage E. Cooperative control of autonomous underwater vehicles. PhDthesis, Texas A&M University,2003
    [46] Ogren P, Fiorelli E, Leonard N. Cooperative control of mobile sensornetworks: adaptive gradient climbing in a distributed environment. IEEETransactions on Automatic Control,2004,49(8):1292-1302
    [47] Zhang F M, Leonard N E. Generating contour plots using multiple sensorplatforms. In: Proc. IEEE Swarm Intelligence Symposium, Indianapolis,Indiana,2005:309-316
    [48] Bhatta P, Fiorelli E, Lekien F, et al. Coordination of an underwater gliderfleet for adaptive ocean sampling. In: Proc. International Workshop onUnderwater Robotics, Int. Advanced Robotics Programmed (IARP), Genoa,Italy,2005:61-69
    [49] Godin M, Bellingham J, Rajan K, et al. A collaborative portal for oceanobservatories. In: Proceedings of Oceans '06, MTS/IEEE, Boston, U.S.A.,2006:1-5
    [50] Paley D, Zhang F M, Leonard N E. Cooperative control for ocean sampling:The glider coordinated control system. IEEE Transactions on ControlSystems Technology,2008,16(4):735-744
    [51] Howe B M, McGinnis T, Boyd M L. Sensor network infrastructure:moorings, mobile platforms, and integrated acoustics. In: Symp. UnderwaterTech. and Workshop on Scientific Use of Submarine. Japan,2007:47-51
    [52] Schulz B, Hobson B, Kemp M, et al. Field results of multi-UUV missionsusing ranger micro-UUVS. In Proc. MTS/IEEE Conf. OCEANS,2003,2:956-961
    [53] Schulz B, Hobson B, Kemp M, et al. Field result s of multi2UUV missionsusing rangermicro2UUVS. Oceans Conference Record. Piscataway, NJ,USA,2003:956-961
    [54] Byrne R, Eskridge S, Hurtado J, et al. Algorithms and analysis forunderwater vehicle plume tracing. DARPA, USA,2003
    [55]陈玮,吴泽伟,吴晓锋. UUV协同探测的现状与发展前景.舰船电子工程,2009,29(2):6-10
    [56] www.locean-ipsl.upmc.fr/gliders
    [57]常文君.基于神经网络技术的多水下机器人协调控制方法研究:[博士毕业论文],哈尔滨:哈尔滨工程大学,2004
    [58]梁建宏,王田苗,魏洪兴,刘淼,王晓君.水下仿生机器鱼的研究进展IV—多仿生机器鱼协调控制研究.机器人,2002,24(5):413-417
    [59] Roberson D G. Environmental tracking and formation control for anautonomous underwater vehicle platform with limited communication. PhDthesis, Virginia Polytechnic Institute and State University,2008
    [60] Fax J A. Optimal and cooperative control of vehicle formations. PhD thesis,California Institute of Technology,2002
    [61] Emrani S, Dirafzoon A, Talebi H A, et al. An adaptive leader-followerformation controller for multiple AUVs in spatial motions. IECON2010-36th Annual Conference on IEEE Industrial Electronics Society,2010:59-64
    [62] Balch T, Arkin, RC. Behavior-based formation control for multi-robot teams.IEEE Trans. Robotics and Auton,1998,14(6):926-939
    [63] Su Z B, Lu J L. Formation feedback applied to behavior-based approach toformation keeping. Journal of Beijing Institute of Technology,2004,13(2):190-193
    [64] Reynolds CW. An evolved, vision-based behavioral model of coordinatedgroup motion. Proc.2nd International Conference on Simulation of AdaptiveBehavior (SAB92), Meyer, Cambridge, Massachusetts,1993:384-392
    [65] Kwok N M, Ha Q P, Fang G. Motion Coordination for Construction Vehiclesusing Swarm Intelligence. International Journal of Advanced RoboticSystems.2007,4(4):469-476
    [66]王佳,吴晓蓓,徐志良.多机器人系统的互联控制问题讨论.控制工程,2007,14(5):527-532
    [67] Finke J, Passino K M, Ganapathy S, et al. Modeling and analysis ofcooperative control systems for uninhabited autonomous vehicles. LectureNotes in Control and Information Sciences, Berlin,2005,309:427-430
    [68] Giulietti F, Pollini L, Innocenti M. Autonomous formation flight. IEEEControl Systems Magzine,2000,20(6):34-44
    [69] Reif J H, WANG H.Social potential fields: A distributed behaviora1controlfor autonomous robots. Robotics and Autonomous Systems,1999,27(3):171-194
    [70] Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents PartII: Dynamic Topology.In:Proceedings of the IEEE Conference on Decisionand Control, Maul, HI, United States,2003:2016-2021
    [71] Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents PartI: Fixed Topology.In: Proceedings of the IEEE Conference on Deeision andControl, Maul, HI, United States,2003:2010-20l5
    [72] Fiorelli E, Bhatta P, Leonard N E. Adaptive sampling using feedback controlof an autonomous underwater glider fleet. Proc.13th International Symp. onUnmanned Untethered Submersible Technology(UUST), Durham, NH USA,2003:1-16
    [73] Fiorelli, E A. Cooperative vehicle control, feature tracking and oceansampling. PhD thesis, Princeton University,2005
    [74] Howard A, Mataric M J, Sukhatme G S. Mobile sensor network deploymentusing potential fields: A distributed, scalable solution to the area coverageproblem. Distrib Auton Robot Syst.2002:299-308
    [75] Kim D H, Wang H, Shin S. Decentralized control of autonomous swarmsystems using artificial potential functions: analytical design guidelines. JINTELL ROBOT SYST,2006,45(4):369–94
    [76] Kowalczyk W, Kozlowski K. Artificial potential based control for a largescale formation of mobile robots.4th IEEE International Workshop onRobot Motion and Control,2004:285-291
    [77] Leonard NE, Fiorelli E. Virtual leader, artificial potentials and coordinatedcontrol of groups.40th IEEE Conference on Decision and Control, Orlando,Florida,2001:2968-2974
    [78] Saaj C M, Lappas V, Gazi V. Spacecraft swarm navigation and control usingartificial potential field and sliding mode control. IEEE InternationalConference on Industrial Technology, Mumbai,2006:2646–2651
    [79]孟宪松.多水下机器人系统合作与协调技术研究:[博士毕业论文],哈尔滨:哈尔滨工程大学,2006
    [80]蒋新松,封锡盛,王棣棠.水下机器人.辽宁:辽宁科学技术出版社,2000
    [81] Nilsson N J. Artificial Intelligence: a new synthesis.北京:机械工业出版社,1999
    [82] Arkin R C. Motor schema-based mobile robot navigation. The InternationalJournal of Robotics Research,1989,8(4):92-112
    [83]姜大鹏.多水下机器人协调控制技术研究:[博士毕业论文],哈尔滨:哈尔滨工程大学,2011
    [84] Ridao P, Yuh J. On AUV control architecture. Proc. International Conferenceon Intelligent Robots and Systems,2000,15(7):855-860
    [85] Brooks R A. A robust layered control system for a mobile robot. IEEEJournal of Robotics and Automation,1996,2:14-23
    [86]武建国.混合驱动水下滑翔器系统设计与性能分析:[博士毕业论文],天津:天津大学,2010
    [87]侯巍,王树新,温秉权,何漫丽,刘卫京.小型自治水下机器人控制系统研究开发.机器人,2005,(4):354-357
    [88]谭民.机器人群体协调与控制的研究.自动控制领域发展战略研讨会论文集,1999:185-190.
    [89] Rausch W A, Levi P. Type of cooperation in the distributed robot systemCoMRoS. Intelligent robots: sensing, modeling and planning.1997:340-355
    [90] Muller J P. The design of intelligent agents: a layered approach. New York:Springer-Verlag,1996
    [91] Donald B R, Jennings J, Rus D. Analyzing teams of cooperating mobilerobots. IEEE ICRA,1994:1896-1903
    [92]史忠植.高级人工智能.北京:科学出版社,1997
    [93]王晓鸣.水下自航行器运动控制研究:[硕士毕业论文],天津:天津大学,2007
    [94]何真,陆宇平,刘燕斌.基于虚拟结构的分布式编队控制方法.应用科学学报,2007,25(4):387-392
    [95]雷艳敏,冯志彬,宋继红.基于行为的多机器人编队控制的仿真研究.长春大学学报,2008,18(4):40-45
    [96] Leonard N E, Paley D, Lekien F, et al. Collective motion, sensor networks,and ocean sampling. Proceedings of the IEEE, special issue on the emergingtechnology of networked control systems,2007,95:48-74
    [97] Kim J O, Khosla P K. Real time obstacle avoidance using harmonicpotential functions. IEEE Transactions on robotics and automation,1992,8(3):338-350
    [98] Brooks R A. Solving the find-path problem by representing free space asgeneralized cones. MIT, Cambridge, MA,1982.
    [99] Barraquand J, Langlois B, Latombe J C. Robot motion planning with manydegrees of freedom and dynamic constraints. Proceeding of The fifthinternational symposium on Robotics research, MIT Press Cambridge, MA,USA,1990:435-444
    [100]王佳,吴晓蓓,徐志良.一种基于势能函数的多智能体编队控制新方法.信息与控制,2008,37(3):263-269
    [101] Kane T R. Dynamics of nonholonomic system. Journal of AppliedMechanics,1961,28:574-578.
    [102] Kane T R. Dynamics. Holt, Rinehart and Winston, New York,1968
    [103]休斯敦,刘又午.多体系统动力学.天津:天津大学出版社,1991
    [104]宋轶民,余跃庆,张策,马金盛.柔性机器人动力学分析与振动控制研究综述.机械设计,2003,(4):1-5
    [105] Davis R E, Leonard N E, Fratantoni D M. Routing strategies for underwatergliders. Deep Sea Research II,2009,56:173–187
    [106] Edwards D B. A leader follower algorithm for multiple AUV formations.Autonomous Underwater Vehicles,2004:40-46
    [107]王晓鸣.混合驱动水下自航行器动力学行为与控制策略研究:[博士学位论文],天津:天津大学,2009
    [108] Yang Y., Wang S X, Wu Z L, et al. Motion planning for multi-HUGformation in an environment with obstacles. OCEAN ENGINEERING,2011,38(17-18):2262-2269
    [109] Yang Y, Wang S X, Wu Z L. Multi-AUV coordination in the underwaterenvironment with obstacles. OCEANS2010IEEE–Sydney,2010:1-6
    [110] Ge S S, Cui Y J. New potential functions for mobile robot path planning.IEEE Trans on Robotics and Automation,2000,16(5):615-620
    [111] Ge S S, Cui Y J. Dynamic motion planning for mobile robots using potentialfield method. AUTON ROBOT,2002,13:207-222
    [112] Fiorelli E A. Cooperative vehicle control, feature tracking and oceansampling. PhD thesis, Princeton University,2005
    [113] Bajodah A H, Hodges D H, Chen Y H. New form of kane’s equations ofmotion for constrained systems. J GUID CONTROL DYNAM,2003,26(1):79-88
    [114] Smith T R, Han mann H, Leonard N E. Orientation control of multipleunderwater vehicles with symmetry-breaking potentials. Proc40th IEEEConf Decision and Control. Orlando, Florida,2001:4598-4603
    [115] Nair S, Leonard N E. Stabilization of a coordinated network of rotating rigidbodies. Proc.43rd IEEE Conf. Decision and Control,2004:4690-4695
    [116] Hanssmann H, Leonard N E, Smith T R. Symmetry and reduction forcoordinated rigid bodies. European Journal of Control,2006,12(2):176-194
    [117] Sarlette A, Sepulchre R, Leonard N E. Autonomous rigid body attitudesynchronization. Automatica,2009,45:572-577
    [118] Scardovi L, Leonard N E, Sepulchre R. Stabilization of three-dimensionalcollective motion. Communication in Information and Systems,2008,8(4):473-500
    [119] Sepulchre R, Paley D A, Leonard N E. Stabilization of planar collectivemotion with limited communication. IEEE Transactions on AutomaticControl,2008,53(3):706-720
    [120] Sllotine J E, Li W P,应用非线性控制.北京:机械工业出版社,2006:186-209
    [121] Kumar V, Leonard N E, Morse A S. Cooperative Control. New York:Springer-Verlag Berlin Heidelberg,2005
    [122]刘金琨.先进PID控制及其Matlab仿真.北京:电子工业出版社,2003
    [123]严卫生,张福斌,高剑.新型远程自主水下航行器侧向滑模变结构控制.鱼雷技术,2007,15(3):19-23
    [124]孙秀军.混合驱动水下滑翔器动力学建模及运动控制研究:[博士毕业论文],天津,天津大学,2011
    [125] Graver J G. Underwater gliders: dynamics, control and design. PhD thesis,Princeton University,2005
    [126] Wang S X, Sun X J, Wang Y H, et al. Dynamic modeling and motionsimulation for a winged hybrid-driven underwater glider, CHINA OCEANENGINEERING,2011,25(1):97-112
    [127] Wang S X, Sun X J, Wu J G, et al. Motion characteristic analysis of ahybrid-driven underwater glider. OCEANS2010IEEE-Sydney,2010:1-9
    [128]李天森.鱼类操纵性.北京:国防工业出版社,1999
    [129] Wu J G, Chen C Y, Wang S X. Hydrodynamic effects of a shroud design fora hybrid-driven underwater glider. Sea Technology,2010,51(6):45-47
    [130] Nickell C L, Woolsey C A, Stilwell D J. A low-speed control module for astreamlined AUV, OCEANS05MTS-Washington, DC,2005:1680-1685
    [131] Webb D. Design of a mobile and bottom-resting autonomous underwatergliding vehicle. In: Proceedings of the unmanned underwater submersiblestechnology conference, Durham, NH,2003
    [132] Sun X J, Wang Y H, Yang Y. Neural networks based parking control ofdeep-sea hydrothermal plume explorer. International Conference onMechatronics and Automation (IEEE ICMA), Jilin,2009:4458-4462
    [133]田献军.多机器人体系结构与轨迹跟踪的研究:[硕士学位论文],武汉:武汉理工大学,2009
    [134]王积伟,陆一心,吴振顺.现代控制理论与工程.北京:高等教育出版社,2003
    [135] Hassan K K.非线性系统(英文版Nonlinear System).北京:电子工业出版社,2007
    [136] Takegaki M, Arimoto S. A new feedback method for dynamic control ofmanipulators. Journal of Dynamic Systems, Measurement, and Control,1981,103(2):119-125
    [137] Nair S, Leonard N E. Stabilization of a coordinated network of rotating rigidbodies. In Proc. IEEE Conf. Decision and Control,2004:4690–4695
    [138] Takegaki M, Arimoto S. A new feedback method for dynamic control ofmanipulators. Journal of Dynamic Systems, Measurement, and Control,1981,103(2):119-125
    [139] Bloch A M, Leonard N E, Marsden J E. Stabilization of mechanical systemsusing controlled Lagrangians. In: Proceedings of the36th IEEE Conferenceon Decision and Control, San Diego, USA,1997:2356-2361
    [140]吴凡,耿志勇.受控拉格朗日函数方法综述.自动化学报,2012,38(2):145-156
    [141]李茂青.基于受控拉格朗日函数的Pendubot镇定控制器设计.控制与决策,2010,25(5):663-668
    [142]李茂青.基于受控拉格朗日函数的垂直起降飞机控制器设计.控制理论与应用,2010,27(6):688-694
    [143] Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and thestabilization of mechanical systems I: the first matching theorem. IEEETransactions on Automatic Control,2000,45(12):2253-2269
    [144] Lewis A D. Notes on energy shaping. In: Proceedings of the43rd IEEEConference on Decision and Control, Nassau, Bahamas,2004:4818-4823
    [145] Lewis A D. Potential energy shaping after kinetic energy shaping. In:Proceedings of the45th IEEE Conference on Decision and Control. SanDiego, USA,2006:3339-3344
    [146] Nair S, Leonard N E. Stable Synchronization of rigid body networks.Networks and Heterogeneos Media,2007,2(4):595–624
    [147] Cendra H, Marsden J E, Ratiu T S. Lagrangian reduction by stages. Memoirsof American Mathematical Society,2001:152-521
    [148] Hanssmann H, Leonard N E, Smith T R. Symmetry and reduction forcoordinated rigid bodies. European Journal of Control,2006,12:176–194
    [149] Sarlette A, Sepulchre R, Leonard N E. Autonomous rigid body attitudesynchronization. In Proceedings of the46th IEEE Conference on Decisionand Control, New Orleans, LA,2007:2566-2571
    [150] Bloch A M, Leonard N E, Marsden J E. Controlled Lagrangians and thestabilization of Euler-Poincare mechanical systems. International Journal ofRobust and Nonlinear Control,2001,11(3):191-214
    [151] VanDyke M C. Decentralized coordinated attitude control of a formation ofspacecraft. Master's thesis, Virginia Polytechnic Institute and StateUniversity, Blacksburg, VA,2004
    [152] Marsden J E. Lectures on mechanics. New York: Cambridge UniversityPress,1992
    [153] Nair S. Stabilization and synchronization of networked mechanical systems.PhD thesis, Princeton University, Princeton, NJ,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700