用户名: 密码: 验证码:
高速动车组车体与车下设备耦合振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车体的轻量化设计使得铝合金型材在高速客车车体设计中被广泛应用,但这种轻量化往往导致车体刚度的不足,从而引起车体振动的恶化。目前,高速客车附属设备大部分采用车下悬挂的设计方式,这种设计方式必然会对车体的垂向弯曲刚度造成影响,从而大大降低车体的垂向弯曲频率。为了削弱车下设备对车体弯曲频率的影响,一种非常有效的方法就是引入车下设备弹性悬挂系统。但是如果设备弹性悬挂参数选择不合理,不但不会降低车下设备对车体振动的影响,还会在一定程度上加剧这种负面效应。因此本文围绕车体与车下设备之间的耦合振动问题,以刚柔耦合动力学理论为基础,采用仿真和试验相结合的方法重点分析了车下设备与车体之间的相互作用关系。具体的研究内容主要包括以下几个方面:
     (1)详细的介绍了车体与车下设备耦合系统二维和三维动力学模型的建模的方法。
     (2)通过简单的车体与车下设备垂向耦合振动系统模型,考虑了车体的弹性效应,详细分析了垂向耦合系统的自振特性以及随机振动响应。
     (3)建立了考虑车体和构架弹性振动的刚柔耦合动力学模型,通过仿真计算并于线路试验、滚动振动试验的结果进行对比,验证结果表明,基于弹性车体和弹性构架的刚柔耦合动力学模型仿真计算得到的车体垂向振动特性均能与线路试验、滚动振动试验的结果取得较好的一致性。
     (4)研究多刚体模型与耦合模型在具体计算结果上的差异,并界定这两种模型的使用范围。
     (5)从刚柔耦合系统动力学理论出发研究了车下设备对车辆动力学性能的影响问题,对比分析了车下设备刚性悬挂系统与弹性悬挂系统对车辆平稳性及其安全性的差异,验证了车下设备采用弹性悬挂的可行性及必要性。通过分析不同设备布置方案对车辆动力学性能的影响,提出车下设备布置的工程设计原则。同时,根据不同的车下设备研究了其对车体振动的不同影响规律,从而为车下设备悬挂系统设计提供了一定的理论参考。
     (6)以牵引变压器悬挂部件为研究目标,详细分析了弹性与刚性两种不同悬挂设计方式对其疲劳性能的影响规律。
Lightweight design of carbody makes aluminum alloy profiled materials widely used in the high-speed carbody, but lightweight design generally decreases the carbody structural stiffness and the carbody will has serious vibration. At present, the equipment mostly is suspended under the carbody. The design approaches will inevitably influence on the vertical bending stiffness of carbody and greatly reduce the vertical bending frequency of carbody. In order to reduce the influence of equipment on carbody bend frequency, a simple way is to introduce elastic suspension. However, if suspension parameters do not match with carbody structure, there are significant vibrations in carbody. This paper focuses on the coupled vibration problem between carbody and equipment, based on rigid-flexible coupling dynamic and studies interaction between carbody and equipment, using the method of combining simulation and experiments.
     (1) This paper gives a detailed description on the method, modeling two-dimensional and three-dimensional coupling model of carbody and equipment under car.
     (2) This paper has a detailed analysis of carbody oneself vibration characteristics and the random vibration response, using vertical coupling system model of carbody and equipment, including elastic vibration effect of carbody.
     (3) The simulation with rigid-flexible coupling dynamic model is compared with rolling rig test and on-line test. The result show that the rigid-flexible coupling model can simulation the vertical vibration characteristics of carbody and has better consistency with rolling rig test and on-line test.
     (4) The differences between traditional rigid dynamic model and rigid-flexible coupling model have been studied and defined usable range of them.
     (5) The influence of equipment on vehicle dynamic performance is studied based on rigid-flexible coupling dynamic theory. The difference between rigid suspension and flexible suspension on ride quality and safety are analyzed. The feasibility and necessity are validated to apply flexible suspension. By analyzing influence on the dynamic performance of vehicle of different equipment layouts, the engineering design principles are carried out. At the same time, the different influence laws of different equipments on carbody vibration are studied and the results provide a certain theoretical reference for the design of the suspension system of equipment under vehicle.
     (6) This paper studies the different influence law on fatigue life of suspension components between rigid suspension design and flexible suspension design.
引文
[1]沈志云.关于高速铁路及高速列车的研究.振动测试与诊断,1998,18(1):1-7.
    [2]严隽耄,傅茂海.车辆工程.中国铁道出版社,2008.
    [3]翟婉明.车辆-轨道耦合动力学.北京:科学出版社,2007.
    [4]沈之介.加速我国高速铁路的发展.中国铁路,1993,(7),1-4.
    [5]傅小日.日本新干线高速客运.国外铁道车辆,1998,3,1-9.
    [6]郭荣生.国外高速旅客列车发展概况.国外铁道车辆,1991,(1),7-11.
    [7]翟婉明.日本新干线300X高速试验列车.铁路现代化,1996,2,34-37.
    [8]樱井弘一.日本新干线技术系列介绍(三)-500系新干线高速电动车组的开发.中国铁路,1995,5,44-46.
    [9]曾根悟.日本新干线700系客车设计构想.国外铁道车辆,2000,37(1),13-18.
    [1 0]梁成谷.谱写中国铁路发展新篇章-写在京津城际铁路试运行前夕.中国铁路,2008,(7),1-5.
    [11]张卫华.机车车辆动态模拟.中国铁道出版社,2006.
    [12]任尊松.车辆动力学基础.中国铁道出版社,2009.
    [13]张曙光.高速列车设计方法研究.中国铁道出版社,2009.
    [14]张曙光.中国高速铁路技术丛书·和谐号CRH动车组技术系列:CRH2型动车组.中国铁道出版社,2006.
    [15]张曙光.中国高速铁路技术丛书·和谐号CRH动车组技术系列:CRH1型动车组.中国铁道出版社,2008.
    [16]张曙光.中国高速铁路技术丛书·和谐号CRH动车组技术系列:CRH5型动车组.中国铁道出版社,2008.
    [17]张曙光.京沪高铁系统优化研究.中国铁道出版社,2009.
    [18]谢基龙,张燕,谢云燕.铁路凹底平车凹底架动态响应及其疲劳强度.机械工程学报,2010,46(16):16-22.
    [19]姚曙光,田红旗,许平.冲击载荷作用下重载敞车结构分析.中国铁道科学,2009,30(4):63-68.
    [20]姚曙光,田红旗.重载轨道车辆非线性结构设计.交通运输工程学报,2009,9(4):43-48.
    [21]赵洪伦,愈程亮,王文斌.高速磁浮列车车体承载结构优化设计研究.铁道学报,2007,29(4):43-47.
    [22]丁彦闯,赵文忠.考虑疲劳损伤约束的车辆焊接结构轻量化设计.铁道学报,2008,30(5):109-113.
    [23]邬平波,薛世海,杨晨辉.基于弹性车体模型的高速客车动态响应.交通 运输学报,2005,5(2):4-8.
    [24]胡永生.现代轨道车辆动力学.中国铁道出版社,2009.
    [25]张雄,王天舒.计算动力学.清华大学出版社,2007.
    [26]金新灿.通过道岔时转向架结构振动与动态应力分析.北京:北京交通大学博士论文,2006.
    [27]卢耀辉.铁道客车转向架焊接构架疲劳可靠性研究.成都:西南交通大学博士论文,2011.
    [28]朴明伟.车辆动态系统协同仿真及刚柔耦合关键技术的研究与应用.大连:大连交通大学博士论文,2010.
    [29]王英杰.考虑车体柔性的车-桥动力响应分析及行车舒适性影响因素研究.北京:北京交通大学博士论文,2011.
    [30]谢云叶.D_32平车刚柔系统动态响应及凹底架疲劳强度研究.北京:北京交通大学博士论文,2009.
    [31]陆正刚.铁道车辆柔刚体系统动力学及结构振动控制研究.上海:同济大学博士论文,2005.
    [32]L.J.Howell. Power spectral density analysis of vehicle vibration using the NASTRAN computer program. SAE Trans V83, Section2,1974,1415-1424.
    [33]R.R.Allen and D.C.Karnopp. Semi-active control of ground vehicle structural dynamics. AIAA/ASME/SAE 16th structures, structural dynamics, and materials conference, Denver, Colo,1975.
    [34]A.Hac. Stochastic optimal control of vehicle with elastic body and active suspension. Journal of dynamic systems, measurement and control,108 (1986),106-110.
    [35]T.Yoshimura and M.Sugimoto. An active suspension for a vehicle traveling on flexible beams with an irregular surface. Journal of sound and vibration, 138(3),1991,433-445.
    [36]G.Diana, F.Cheli, S.Bruni and A.Collina. Dynamic interaction between rail vehicles and track for high speed train. Vehicle system dynamics supplement,24(1995),15-30.
    [37]G.Diana, F.Cheli, S.Bruni and A.Collina. Interaction between railroad superstructure and railway vehicle. Vehicle system dynamics supplement, 23(1994),75-86.
    [38]B.M.Eickhoff, J.R.Evans and A.J.Mininis, A review of modeling methods for railway vehicle suspension components. Vehicle system dynamics supplement,24(1995),469-496.
    [39]Y.Suzuki, K.Akutsu, E.Maebashi, M.Sasakura and T.Tomioka. Method for flexural vibration damping of rolling stock carbody. QR. Of RTRI,38(1997), 123-128.
    [40]Alexander Banerjee and Jurgen Haug. A hybrid vibration suppression strategy for improvement of riding comgort in passenger trains built as light-weight structures. The 4th International conference on railway bogies and running gears, Budapest, Hungary,21-23,1998.
    [41]T.H.Young and C.Y.Li. Vertical vibration analysis of vehicle/imperfect track systems. Vehicle system dynamics,40(2003),329-349.
    [42]曾京,罗仁.考虑车体弹性效应的铁道客车系统振动分析.铁道学报,2007,29(6):19-25.
    [43]李世亮.计及车体弹性效应的车辆动力学振动方程、振型函数和频率方程解析.铁道车辆,1998,36(7):9-12.
    [44]泷上唯夫.采用压电元件与之路减轻车体弯曲振动的研究.国外铁道车辆,2007,26-33.
    [45]黄彩虹,曾京.基于压电元件的高速客车车体弹性振动被动控制.铁道学报,2011,33(7):19-24.
    [46]黄彩虹,曾京.基于约束阻尼层的高速客车车体弯曲振动的控制.交通运输学报,2010,10(1):36-42.
    [47]黄彩虹,曾京,邬平波,罗仁.铁道客车车体弹性振动减振研究.工程力学,2010,27(12):250-256.
    [48]周劲松,宫岛,任利惠.铁道车辆弹性车体被动减振仿真分析.同济大学学报,2009,37(8):1086-1089.
    [49]周劲松,张伟,孙文静,任利惠.铁道车辆弹性车体动力吸振器减振分析.中国铁道科学,2009,30(3):86-90.
    [50]周劲松,宫岛,孙文静,任利惠.铁道客车车体垂向弹性对运行平稳性的影响.铁道学报,2009,31(2):32-37.
    [5 1]宫岛,周劲松,孙文静,顾悦嘉.下吊设备对高速列车弹性车体垂向运行平稳性影响.中国工程机械学报,2011,9(4):404-409.
    [52]Wenjing Sun, Dao Gong, Jinsong Zhou and Yangyang Zhao. Influences of Suspended Equipment under Car Body on High-speed Train Ride Quality, Procedia Engineering,16,2011,812-817.
    [53]宫岛,周劲松,孙文静,谢维达.铁道车辆弹性车体垂向运行平稳性最优控制.同济大学学报,2011,39(33):416-420.
    [54]陶泽光,李润方,林腾蛟.车辆系统振动的理论模态分析.振动与冲击,2001,20(2):74-88.
    [55]G.Diana, F.Cheli, A.Collina, R.Corradi and S.Melzi, The development of a numerical model for railway vehicles comfort assessment through comparison with experimental measurements. Vehicle system dynamics, Vol.38, No.3,2002,165-183.
    [56]H.Netter G.Schupp W.Rulka. New Aspects of Contact Modeling and Validation within Multibody System Simulation of Railway Vehicle. Vehicle system dynamics (supplement),1998,28.
    [57]Carlbom, P. Combining MBS with FEM for Rail Vehicle Dynamics Analysis. Multibody System Dynamics,2001,6:291-300.
    [58]A.Stribersky, F.Moser, W.Rulka. Structural dynamics and ride comfort of a rail vehicle system. Advances in Engineering Software,2002,33:541-552
    [59]程海涛.长大货物列车制动动力学及车辆柔性动力学研究.北京:铁道科学研究院博士论文,1999,10.
    [60]缪炳荣,肖守讷,张卫华,金鼎昌,胡文辉.动载作用下柔性车体结构疲劳寿命的仿真.西南交通大学学报,2007,42(2):217-222.
    [61]缪炳荣,张卫华,肖守讷,金鼎昌,何建清.基于多体动力学和有限元法的车体结构疲劳寿命仿真.铁道学报,2007,29(4):36-42.
    [62]T.Tomioka, T.Takigami, Y.Suzuki. Numerical analysis of three-dimensional flexural vibration of railway vehicle car body. Vehicle System Dynamics (supplement),2006,44:272-285.
    [63]陆正刚,胡永生.高速车辆结构振动的独立模态空间控制.控制理论与应用,2007,24(6):879-885.
    [64]Austrell P-E, Olsson A K. A method to analyze the non-linear dynamic behavior of carbon-black-filled rubber components using standard FE-codes. Proceedings of the Second Conference on Constitutive Models for Rubbers, Hannover, Germany,2001,231-235.
    [65]Payne a R. Reinforcement of elastomers. G.Kraus, Ed, New York: Interscience,1965.
    [66]潘孝勇.橡胶隔振器动态特性计算与建模方法的研究.杭州:浙江工业大学博士论文,2009.
    [67]Mullins L. Softening of rubber by deformation. Rubber Chemical Technology,1969,42:339-362.
    [68]Stefano Bruni and Andrea Collina. Modelling the Viscoelastic Behaviour of Elastomeric Components:An Application to the Simulation of Train-Track Interaction. Vehicle System Dynamics,34(2000),283-301.
    [69]Kai Sedlaczek, Sven Dronka and Jochen Rauh. Advanced modular modeling of rubber bushing for vehicle simulations. Vehicle System Dynamics, 2010,49(5):741-759.
    [70]M.Siberg.On dynamic properties of rubber isolators. KTH Stockholm,2002.
    [71]N.Gil-Negrete, J.Vinolas, L.Kari. A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code. Journal of sound and vibration,296(2006),757-776.
    [72]Tian Ran Lin, Nabil H. Farag, Jie Pan, Evaluation of frequency dependent rubber mount stiffness and damping by impact test. Applied Acoustics, 66(2005),829-844.
    [73]M.J. Garcla Tarrago, L.Kari, J.Vinolas, N.Gil-Negret. Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings. Polymer Testing,26(2007),629-638.
    [74]W.Thaijaroen, A.J.L.Harrison, Nonlinear dynamic modeling of rubber isolators using six parameters based on parabolic spring,springpot,and smooth-slip friction element. Polymer Testing,29(2010),857-865.
    [75]Stefano Bruni, Jordi Vinolas, Mats Berg, Oldrich Polach and Sebastian Stichel. Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics,2011,49(7):1021-1072.
    [76]吴杰,上官文斌,潘孝勇.采用超弹性-粘弹性-弹塑性本构模型的橡胶隔振器动态特性计算方法.机械工程学报,2010,46(14):109-114.
    [77]吴杰,上官文斌.采用粘弹性分数导数模型的橡胶隔振器动态特性的建模及应用.工程力学,2008,25(1):161-166.
    [78]潘孝勇,柴国钟,上官文斌.含有橡胶隔振器振动系统时域响应的测试与计算分析.振动与冲击,2007,26(12):32-35.
    [79]潘孝勇,上官文斌,柴国钟,徐驰.基于超弹性、分数导数和摩擦模型的炭黑填充橡胶隔振器动态建模.振动与冲击,2007,26(10):6-15.
    [80]潘孝勇,上官文斌,柴国钟,黄志.橡胶隔振器动态特性计算方法的研究.振动工程学报,2009,22(4):345-351.
    [81]陈莲,周海亭.计算橡胶隔振器静态特性的数值分析方法.振动与冲击,2005,24(3):120-123.
    [82]姜洪源,敖宏瑞,李瑰贤,董春芳,夏宇宏.金属橡胶隔振器动力学模型与分析.湖南科技大学学报,2004,19(3):23-27.
    [83]上官文斌,吕振华.汽车动力总成橡胶隔振器弹性特性的有限元分析.内燃机工程,2003,24(6):50-55.
    [84]赵广,刘健,刘占生.橡胶隔振器非线性动力学模型理论与实验研究.振动与冲击,2010,29(1):173-177.
    [85]Enelund M, Mahler L. Runesson K, Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. International Journal of Solids and Structures,1999,36:4447-4472.
    [86]Sjoberg M. Nonlinear isolator dynamics at finite deformations:an effective hyperelastic, fractional derivative, generalized friction model. Nonlinear Dynamics,2003,33:323-336.
    [87]P.K.Freakley and A.R.Payne. Theory and Practice of Engineering with Rubber, Applied Science Publishers Ltd, London,1978.
    [88]J.D.Ferry. Viscoelastic Properties of Polymers. Wiley, New York,1980.
    [89]P.E.Austrell, Mechanical Properties of Carbon Black Filled Rubber Vulcanizates. Proc. Of Rubbercon Goteborg,1995.
    [90]J.Nicolin and T.Dellmann. Uber die modellhafte Nachbildung der dynamischen Eigenschaften einer Gummifeder, ZEV-Glas.Ann.109(1985)
    [91]H.Peeken and S.Lambertz. Nichtlineares Materialmodell zur beschreibung des Spannungs-Dehnungs verhaltens gefullter kautschuk-Vulkanisate. Spring-Verlag,1994.
    [92]M.Berg. A rubber spring model for dynamic analysis of rail vehicles, TRITA-FKT Report, KTH Railway Technology,1995
    [93]M.Berg. A model for rubber springs in the dynamic analysis of rail vehicles. Proc.Inst.Mech.Eng.F,211(1997),95-108.
    [94]M.Berg. A non-linear rubber spring model for rail vehicle dynamics analysis. Vehilce System Dynamics,30(1998),197-212.
    [95]P.Allen, A.Hameed and H.Goyder. Measurement and modeling of carbon black filled natural rubber components. International Journal Vehicle System Model Test,2007,2(4):315-344.
    [96]R.K.Luo, B.L.Gabbitas and B.V.Brickle. Fatigue life evaluation of a railway vehicle bogie using an integrated dynamic simulation. Proc. Instn Mech Engrs, vol(208),1994,23-132.
    [97]R.K.Luo, B.L. Gabbitas and B.V.Brickle. Fatigue damage evaluation for a railway vehicle bogie using appropriate sampling frequencies. Vehicle System Dynamics,1998, (28):405-415.
    [98]Stefan Dietz, Helmuth Netter and Sachau. Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle System Dynamics,1998, (29):385-402.
    [99]Su Hong. Automotive CAE Durability Analysis Using Random Vibration Approach. MSC 2nd Worldwide Automotive Conference, Dearborn, MI, Oct. 2000.
    [100]王成国,孟光伟,原亮明,刘敬辉.新型高速客车构架的疲劳寿命数值仿真分析.中国铁道科学,2001,22(3):91-95.
    [101]孟光伟,王成国,刘敬辉,原亮明.用虚拟疲劳样机技术分析8A型转向架侧架的疲劳寿命.中国铁道科学,2002,23(4):6-11.
    [102]刘德刚,侯卫星,王凤州.基于有限元技术的构件疲劳寿命计算.铁道学报,2004,26(2):47-51.
    [103]何宇强,刘作义,毛宝华.我国铁路零笨货物运输安全管理对策研究.中国安全科学学报,2004,14(9):60-63.
    [104]李金森.提高高速客车动力学性能的对策.中国铁道科学,1997,18(2):54-60.
    [105]宋佃全,梁绍敏.ND5型机车轮缘偏磨简析.内燃机车,1996,10:25-27.
    [106]荣林,卢均发,王飞宽.SS4B型机车轮对偏磨分析及预防措施.电力机车与城轨车辆,2004,27(5):76-80.
    [107]杨振祥.关于机车轮重偏差的分析和研究.铁道机车车辆,1997,3:59-61.
    [108]崔培兴.地铁车辆轮重分布问题研究.铁道车辆,1997,35,1:14-18.
    [109]J.Evans and M.Berg, Challenges in simulation of rail vehicle dynamics. Veh.Syst.Dyn.47(2009), pp.1023-1048.
    [110]N.K.Cooperrider and E.H.Law, A survey of rail vehicle testing for validation of theoretical dynamic analyses. J.Dyn.Syst. Meas.Control 100(1978), pp.236-251.
    [111]PrEN 15827 Railway applications-Bogies and running gear. Railway applications-Bogies and running gear, Draft, September,2009.
    [112]UIC Code 518:Testing and approval of railway vehicles from the point of view of their dynamic behaviour-Safety-Track fatigue-Running behaviour, International Union of Railways, Septemper 2009.
    [113]EN 14363 Railway Applications-Testing for the Acceptance of Running Characteristics of Railway Vehicles-Testing of Running Behaviour and Stationary Tests, CEN, Brussels,2005.
    [114]张立民CRH2铝合金车体模态台架试验报告.成都:西南交通大学.
    [115]ANSYS Release 12.1, ANSYS Inc., Canonsburg, PA, USA.
    [116]Intec GmbH. SIMPACK Users Manuals.
    [117]张曙光.CRH动车组试验研究报告.北京:中国铁道科学研究院.
    [118]GB 5599-85.铁道车辆动力学性能评定和试验鉴定规范.1985.
    [119]UIC Code 515:Passenger rolling stock Traller bogies-Running gear. International Union of Railways, Septemper 1993.
    [120]UIC 513-1994.铁路车辆乘坐舒适性评估.1994.
    [121]池茂儒,张卫华,曾京.偏载对车辆稳定性的影响.交通运输工程学报,2010,10(5):36-41.
    []22]池茂儒,张卫华,曾京等.偏载对转臂定位转向架运行安全性的影响.中国铁道科学,2009,30(3):81-85.
    [123]M.Esmailzadeh, A.A.Lakis, M.Thomas, L.Marcouiller. Three-dimensional modeling of curved structures containing and submerged in fluid. Finite Elements in Analysis and Design,2008,44:334-345.
    [124]R.Livaoglu, A.Dogangun. Simplified seismic analysis procedures for elevated tanks considering fluid-structure-soil interaction. Journal of fluids and structures,2006,22:421-439.
    [125]R.Livaoglu. Investigation of seismic behavior of fluid rectangular tank soil/foundation systems in frequency domain. Soil dynamics and earthquake engineering,2008,28:132-146.
    [126]C Vera, J Paulin, B Suarez and M Gutierrez. Simulation of freight trains equipped with partially filled tank containers and related resonance phenomenon. J. Rail and Rapid Transit,2005,219:245-259.
    [127]Abramson, H.N. The dynamic behavior of liquids in moving containers-with applications to space vehicle technology. National Aeronautics and Space Administration,1966.
    [128]Aliabadi, S., Johnson, A., and Abedi, J. Comparison of finite element and pendulum models for simulation of sloshing. Comput. Fluids,2003, 32:535-545.
    [129]T.Tomioka, T.Takigami and K.Aida. Modal Vibration Characteristics of Flexural Vibration in Railway Vehicle Carbodies. The First International Conference on Railway Technology:Research, Development and Maintenance.2012, Spain.
    [130]丁文镜.减振理论.清华大学出版社,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700