用户名: 密码: 验证码:
线性模型参数的约束有偏估计和预检验估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
线性模型在现代统计方法中占重要地位,是现代统计学中应用最为广泛的一类模型之一。本文主要是研究线性模型参数在等式约束和随机线性约束下的约束有偏估计以及预检验估计等相关的一些问题。
     对于等式约束下的线性模型,通过分别综合岭估计,Liu估计和约束最小二乘估计,本文提出了一类新的严格满足等式约束条件的约束岭估计和约束Liu估计,并证明了在均方误差矩阵意义下它们将分别优于传统的岭估计,Liu估计和约束最小二乘估计。此外,本文也把文献中研究较多的r-k估计和r-d估计推广到等式约束情形,即分别研究了约束r-k估计和约束r-d估计,并同样证明了在均方误差矩阵意义下,约束r-k估计和r-d估计都将分别优于r-k估计和r-d估计。而对于最近几年提出的双参数Liu-Type估计,本文对调节参数的选取及其他一些统计拟合性质做了进一步的研究。具体来讲,本文从两个角度来讨论了最优调节参数的选取问题,即最大化复相关系数和最小化广义交叉验证标准。此外,证明了在Liu-Type估计中,在通过适当选取岭参数改善设计阵的病态性带来的影响的同时,恰当地选取调节参数能够有效地改进回归的效果。而随着岭参数的增加,Liu-Type估计将比传统的岭估计更具稳健性。此外,通过实例分析,验证了得到的理论结果。对于随机约束下的线性模型,本文把传统的混合估计推广到了奇异线性模型情形,即提出了奇异混合估计,并对其均方误差矩阵优良性和两步估计分别进行了讨论。通过把奇异混合估计应用于随机约束下的Panel数据模型参数估计之中,我们导出了Panel数据模型在随机约束下固定效应的四种可行估计,并对它们之间的关系以及与相应的无约束估计之间的优良性进行了详细比较。此外,本文把奇异混合估计应用于奇异线性模型的预测理论之中,研究了奇异线性模型的最优线性非齐次无偏预测,最优线性齐次无偏预测以及随机约束下的最优线性无偏预测,并证明了它们都满足一个一般的预测通式。通过综合混合估计的思想和Liu估计,本文提出了一类新的随机约束Liu估计,并证明了在一定的条件下,它将分别优于传统的Liu估计,混合估计,并通过模拟研究和实例分析,验证了理论上得到的结果。针对文献中常见的两类错误指定模型的情况,本文进一步研究了随机约束Liu估计在这两类情形下的优良性,并对相应的经典预测的表现也进行了考察。
     对于等式约束预检验估计的研究,本文首先对文献中常见的一些检验方法进行了讨论,包括传统的F检验以及一些在计量经济类模型中应用广泛的大样本检验方法,比如Wald检验,LR检验以及LM检验。通过综合Liu估计和预检验估计的思想,本文提出了基于上述三个大样本检验的等式约束预检验Liu估计。通过对偏差进行分析,我们发现基于Wald检验的等式约束预检验Liu估计有最小的平方偏差,其次为基于LR检验和LM检验的相应估计。通过对均方误差的分析,我们发现在原假设附近,基于LM检验的预检验Liu估计有最小的均方误差,其次为基于LR检验和Wald检验的估计,而当偏离原假设时,情况刚好相反;另一方面,在Liu参数取值较小的时候,基于Wald检验的估计最优,其次为基于LR检验和LM检验的估计,而在Liu参数取值较大时,情况也恰好相反。此外,对这三个基于大样本检验的等式约束预检验Liu估计,我们还对其相对效率以及基于极大极小相对效率准则的最优显著性水平的选取问题分别进行了讨论。考虑到实际数据可能存在的厚尾情况,本文研究了文献中讨论颇多的多元t分布模型的基于大样本检验的等式约束预检验Liu估计,并同样在平方偏差和均方误差两个准则下对其优良性进行了详细比较。
     最后,本文研究了随机约束下的参数预检验估计。通过把随机约束转化成等式约束的框架下来处理,研究了基于F检验的随机约束预检验岭估计。在均方误差准则下对随机约束预检验岭估计,随机约束预检验估计以及相应的岭估计的优良性进行了系统分析,并对随机约束预检验估计的相对效率和相应最优显著性水平的选择进行了研究。
Linear models play a central part in modern statistical methods and they have become one of the most widely used classes of models in modern statistics. In this dissertation, we mainly focused on the restricted biased estimation and preliminary test estimation of parameter in linear models with equality restrictions and stochastic linear restrictions.
     For linear model with exact linear equality restrictions, by respectively combining the ridge estimator and Liu estimator with the restricted least squares estimator (RLSE), a new class of restricted ridge estimator and restricted Liu estimator which always satisfy the given linear restrictions are proposed. The new restricted ridge estimator is proved to be superior to the traditional ridge estimator and the RLSE, while the new restricted Liu estimator outperforms Liu estimator and the RLSE in the sense of mean squared error matrix (MSEM). In addition, this paper generalize the r-k estimator and r-d estimator proposed recently in literatures to the cases with restrictions, namely we have studied the restricted r-k estimator and restricted r-d estimator in this paper, and we similarly prove that the restricted r-k estimator and the restricted r-d estimator outperforms the r-k estimator and r-d estimator in the MSEM sense, respectively. For the Liu-Type estimator considered by many researchers in literatures recently, we have made a further discussion about the choice of the tuning parameter and some other fitting characteristics. In particular, we derived two methods to determine the optimum tuning parameter, which are to maximize the coefficient of multiple determination or to minimize the generalized cross validation (GCV) of the prediction quality. It’s proved that for the Liu-Type estimator, the ridge parameter could serve for regularization of an ill-conditioned design matrix, while the tuning parameter could be used for tuning the fit quality effectively, and as the ridge parameter increases, the Liu-Type estimator produces more robust regression models than the ridge estimator. Numerical examples are given to illustrate the theoretical results.
     For linear model with stochastic linear restrictions, in this thesis we generalize the traditional ordinary mixed estimator (OME) to singular linear model and proposed singular mixed estimator (SME). Performances of the SME in the MSEM sense and its two-stage estimator are also discussed. Applying the SME in the parameter estimation of Panel data model with stochastic linear restrictions, we derived four feasible estimators for Panel data model. The relationship among them is discussed and it’s shown that they are superior to the corresponding unrestricted estimators. Furthermore, we have studied the prediction problem in singular linear model based on the SME. The optimal heterogeneous predictor, optimal unbiased homogeneous predictor and the optimal predictor for singular linear model with stochastic linear restrictions are derived, and we find that all the three predictors satisfy a general formula for prediction. By combining the idea of mixed estimation and Liu estimator, we proposed a new stochastic restricted Liu estimator and prove that it outperforms the traditional Liu estimator, OME and some other stochastic restricted estimators under certain conditions. Simulation study and numerical example have supported the theoretical results derived. For two common types of misspecification of regression models, we have further studied the behaviors of the stochastic restricted Liu estimator in such two cases, and performances of the corresponding predictors are also examined.
     For the preliminary test estimator when exact linear restrictions are used, we have firstly discussed some common test methods in literatures, including the familiar F test and some large sample tests widely used in Econometric models such as the Wald test, Likelihood Ratio (LR) test and Lagrangian Multiplier (LM) test. By combing the idea of preliminary test and Liu estimator, we have proposed three preliminary test Liu estimators (PTLE) based on the Wald, LR and LM tests. Through the bias analysis, we find that the Wald test based PTLE has the smallest quadratic bias,followed by the PTLE based on the LR and LM tests. On the other hand, we find that when near the null hypothesis, the LM test based PTLE has the smallest risk, followed by the PTLE based on the LR and Wald tests, while when the parameter departs from the restrictions, the situation is reversed. In the meantime, when the Liu parameter is small, then the PTLE based on W test has the smallest MSE followed by the LR and LM tests, while when the Liu parameter is large and near one, the situation is just also reversed. Furthermore, the relative efficiency and the choice of optimal significance levels are also discussed. Considering the fat-tail phenomenon that may exist in practical data, we have also studied the PTLE for the multi-t distribution model based on the three large sample tests above. Performances of the estimators according to the quadratic bias and mean square error are similarly compared in detail.
     Finally, we have also considered the preliminary test estimator when stochastic restrictions are used in regression. By imbedding the stochastic linear restriction model in an exact linear restriction framework and make use of the results concerning the quality restricted estimator, we propose the stochastic hypothesis preliminary test ridge estimator (SPTRE) based on F test. Performances of the SPTRE, stochastic hypothesis preliminary test estimator and the ridge estimator in the sense of MSE are systematically analyzed. Relative efficiency of the SPRE and the corresponding optimal choice of the significance level are also discussed in this paper.
引文
[1]王松桂等.线性模型引论[M].北京:科学出版社,2006.
    [2]尹素菊.线性模型的参数估计理论与方法[D].北京:北京工业大学博士学位论文, 2005.
    [3]陈希孺,王松桂.线性模型中的最小二乘法[M].上海:上海科学技术出版社, 2003.
    [4] Rao, C.R. Unified theory of least squares. Communications in Statistics-Theory and Methods [J], 1973, 1: 1-8.
    [5] Stein, C. Inadmissibility of the Usual Estimator for Mean of Multivariate Normal Distribution [C]. Proceedings of the Third Berkley Symposium on Mathematical and Statistics Probability (Jerzy Neyman, ed), 1956, 1 (Univ of California, Rerkley): 197-206.
    [6] Massy, W. F. Principal components regression in exploratory statistical research [J]. J.R. Stat., 1965, 60: 234-66.
    [7] Hoerl, A. E., Kennard R.W. Ridge regression: Biased estimation for non-orthogonal problems [J]. Technometrics, 1970, 12: 55-67.
    [8] Hoerl, A.E., Kennard, R.W. Ridge regression: application for non-orthogonal problems [J]. Technometrics, 1970, 12: 69-72.
    [9] Swindel, B. F. Good estimators based on prior information [J]. Comm. Statist. Theory Methods, 1976, 5: 1065-1075.
    [10] Baye, M.R., Darrell, F.P. Combing ridge and principal component regression: A money demand illustration [J]. Comm. Statist. Theory Methods, 1984, 13 (2): 197-205.
    [11] Singh, B., Y.P. Chaubey, T.D. Dwivedi. An almost unbiased ridge estimator [J]. Sankhya: The Indian Journal of Statistics, 1986, 48 (B): 342–346.
    [12] Liu, K. A new class of biased estimate in linear regression [J]. Communications in Statistics- Theory and Methods, 1993, 22: 393-402.
    [13] Akdeniz, F., Kaciranlar, S. On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE [J]. Comm.Statist.Theory Methods, 1995, 24 (7): 1789-1797.
    [14] Trenkler, G.., Toutenburg, H. Mean squared error matrix comparisons between biased estimators: an overview of recent results [J]. Statistical Papers, 1990, 31: 165-179.
    [15] Akdeniz. F., Erol. H. Mean Squared error matrix comparisons of some biased estimator in linear regression [J]. Communications in Statistics-Theory and Methods, 2003, 32 (12): 2389-2413.
    [16] Kaciranlar, S., Sakallioglu, S. Combining the Liu estimator and the principal component regression estimator [J]. Comm. Statist. Theory Methods, 2001, 30 (12): 2699-2705.
    [17] Liu, K. Using Liu-Type estimator to combat collinearity [J]. Communications in Statistics- Theory and Methods, 2003, 32 (5): 1009-1020.
    [18] Liu, K. More on Liu-Type estimator in linear regression [J]. Communications in Statistics- Theory and Methods, 2004, 33 (11): 2723-2733.
    [19] Zhang, R., McDonald, G.C. Characterization of Ridge Trace Behavior [J]. Communications in Statistics-Theory and Methods, 2005, 34: 1487-1501.
    [20] Akdeniz, F., Alan,T.K., Akdeniz, E. Generalized Liu Type estimator under Zellner’s balanced loss function [J]. Communications in Statistics-Theory and Methods, 2005, 34: 1725-1736.
    [21]贾忠贞.回归系数的组合主成分估计[J].数理统计与应用概率,1987, 2 (2): 153-158.
    [22]杨虎. Gauss-Markov模型存在复共线性时的一般主成分回归[J].重庆交通学院学报, 1988, 3: 109-115.
    [23]杨虎.单参数主成分回归估计[J].高校应用数学学报, 1989, 4 (1): 74-80.
    [24]杨虎.关于回归系数的泛岭估计类[J].重庆交通学院学报, 1991, 10 (3): 42-48.
    [25] Yang, H., Zhu, L. Adaptive Unifies Biased Estimators of Parameters in Linear Model [J]. Acta Mathematicae Applicatae Sinica, 2004, 20 (3): 425-432.
    [26]林路.回归系数的综合岭估计[J].数理统计与应用概率, 1996, 11 (3): 179-185.
    [27]陈志,高旅端.一种使用奇异值分解的岭估计[J].数理统计与应用概率,1996, 4: 355- 363.
    [28]尤进红.生长曲线模型的泛岭估计类[J].数理统计与应用概率, 1998, 13 (1): 51-55.
    [29]刘小茂,茆诗松.混合系数线性模型参数的Stein估计[J].数学物理学报, 2001, 21A (4): 453-457.
    [30]郑彭丹,杨虎.生长曲线模型下的统一有偏估计[J].工程数学学报, 2008, 25 (2): 353- 357.
    [31]王松桂,尹素菊.线性混合模型参数的一种新估计[J].中国科学(A辑), 2002, 32(5): 434-443.
    [32]杨虎,黎雅莲.线性混合模型参数的部分岭型谱分解估计[J].应用概率统计,2008, 24(3): 29-296.
    [33]贺宝龙,唐湘晋.广义线性混合模型在信度理论中的应用[J].金融经济, 2008, 20: 86- 87.
    [34]陈德英,张尚立.广义Liu估计及其优良性[J].科学技术与工程, 2008, 8 (12): 3272-3274.
    [35]胡宏昌,游雪肖,徐侃.线性模型的泛最小二乘法[J].测绘科学, 2008, 33 (2): 101-105.
    [36] Rao, C.R., Toutenburg, H., Shalabh, Heumann, C. Linear Models and Generalizations: Least Squares and Alternatives, 3rd ed [M]. NewYork: Springer, 2008.
    [37] Fomby, T.B., Johnson, S.R. Advanced Econometric Methods [M]. NewYork: Springer-Verlag, 1984.
    [38] Chipman, J.S., Rao, M.M. The treatment of linear restrictions in regression analysis [J]. Econometrica, 1964, 32: 198-209.
    [39] Kakwani, N.C. Note on the use of prior information in forecasting with a linear regression model [J]. Sankhya, 1965, A27 (1): 101-104.
    [40] Toutenburg, H. Linear restriction in linear regression models [J]. Biometrische Zeitschrift, 1973, 12: 261-273.
    [41] Toutenburg, H. Prediction in Linear Models [M]. Berlin: Akademie-Verlag, 1975.
    [42] Yancey, T.A., Judge, G.G., Bock, M.E. Wallace’s weak means square error criterion for testing linear restrictions in regression: A tighter bound [J]. Econometrica, 1973, 41: 1203- 1206.
    [43] Rao, C. R. Linear Statistical Inference and Its Applications [M]. NewYork: John Wiley & Sons, Inc., 1973.
    [44] Toutenburg, H., Shalabh. Predictive Performance of the Methods of Restricted and Mixed Regression Estimators [J]. Biometrical Journal, 1996, 38 (8): 951-959.
    [45] Shalabh, Ram, Chandra. Prediction in restricted regression models [J]. Journal of Combinatorics, Information & System Science, 2002, 29 (1): 229-238.
    [46] Sarkar, N. A new estimator combining the ridge regression and the restricted least squares methods of estimation [J]. Communications in Statistics-Theory and Methods, 1992, 21, 1987- 2000.
    [47] Kaciranlar, S., Sakallioglus, S., Akdeniz, F. Mean squared error comparisons of the modified ridge regression estimator and the restricted ridge regression estimator [J]. Comm. Statist. Theory Methods, 1998, 27 (1): 131-138.
    [48] Jurgen, G. Restricted ridge estimation [J]. Statistics & Probability Letters, 2003, 65: 57-64.
    [49] Zhong, Z., Yang, H. Ridge Estimation to the Restricted Linear Model [J]. Commu. Stat.- Ther. Meth., 2007, 36 (11): 2099-2115.
    [50] Kaciranlar, S., S. Sakallioglu, F. Akdeniz, G.P.H. Styan, H.J. Werner. A new biased estimator in linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement [J]. Sankhya: The Indian J. of Stat. 1999, 61 (B)3: 443-459.
    [51] Torigoe, N., Ujiie, K. On the Restricted Liu Estimator in the Gauss-Markov Model [J]. Communications in Statistics-Theory and Methods, 2007, 35 (9): 1713-1722.
    [52]归庆明,张建军.附有条件的参数平差模型的有偏估计[J].测绘工程,2000, 9 (1): 26-30.
    [53]史建红.约束线性回归模型回归系数的条件岭型估计[J].山西师范大学学报(自然科学版), 2001, 15 (4): 10-16.
    [54] Zhang, C., Yang, H. The conditional ridge-type estimation in singular linear model with linear equality restrictions [J]. Statistics, 2007, 41 (6): 485-494.
    [55] Yang, H., Zhang, C. The Research on two kinds of Restricted Biased Estimators based on Mean Squared Error Matrix [J]. Commu. Stat. -Ther. Meth, 2008, 37 (1): 70-80.
    [56] Durbin, J. A note on regression when there is extraneous information about one of the coefficients [J]. Journal of the American Statistical Association, 1953, 48: 799-808.
    [57] Theil, H., A.S. Goldberger. On pure and mixed statistical estimation in economics [J]. International Economic Review, 2: 65–78.
    [58] Theil, H. On the use of incomplete prior information in regression analysis [J]. Journal of the American Statistical Association, 1963, 58: 401–414.
    [59] Bibby, Toutenburg, H. Prediction and Improved Estimation in Linear Models [M]. NewYork: John Wiles & Sons Ltd, 1977.
    [60] Toutenburg, H., Shalabh. Improved Predictions in Linear Regression Models with Stochastic Linear Constraints [J]. Biometrical Journal, 2000, 42 (1): 71-86.
    [61] Pliskin, L.J. A ridge-type estimator and good prior means [J]. Communications in statistics, 1987, 16: 3427-3429.
    [62] Crouse, R.H., Chun, Jin. Unbiased ridge estimation with prior information and ridge trace [J]. Commun.Statist-Theory and Methods, 1995, 24 (9): 2341-2354.
    [63] Sakallioglu, S., Akdeniz, F. Unbiased Liu estimator with prior information [J]. International Journal of Mathematical Sciences, 2003, 2 (1): 205-217.
    [64] Shalabh, Toutenburg, H. Estimation of Linear Regression Models with Missing Data: The Role of Stochastic Linear Constraints [J]. Communication in Statistics-Theory and Methods, 2005, 34: 375-387.
    [65] Harry, H., Walter, Oberhofer. Stochastic response restrictions [J]. Journal of Multivariate Analysis, 2005, 95: 66-75.
    [66] Hubert, M.H., Wijekoon, P. Improvement of the Liu estimator in linear regression model [J]. Statistical Papers, 2006, 47: 471-479.
    [67] Ozkale, M.R., Kaciranlar, S. Comparisons of the unbiased ridge estimation to the other estimations [J]. Communications in statistics-Theory and methods, 2007, 36: 707-723.
    [68]杨婷,杨虎.椭球约束与广义岭型估计[J].应用概率统计, 2003, 19 (3): 232-236.
    [69]杨莲,杨虎.椭球约束下线性模型的强影响分析[J].工程数学学报, 2007, 24 (1): 60-64.
    [70] Searle, S.R. Extending some results, proofs for the singular linear model [J]. Linear Algebra and Its Application, 1994, 210: 139-151.
    [71] Puntanen, S., Scott, A.J. Some further remarks on the singular linear model [J]. LinearAlgebra and Its Applications, 1996, 237: 313-327.
    [72] Zhang, W.P., Wei, L.S. On Bayes linear unbiased estimation of estimable functions for the singular linear model [J]. Science in China Ser.A Mathematics, 2005, 48 (7): 898-903.
    [73]马铁丰,杨虎. Bayes估计的进一步研究及其Pitman最优性[J].应用数学学报,2006, 29 (3): 428-435.
    [74] Bancroft, T.A. On biases in estimation due to use of preliminary tests of significance [J]. Annals of Mathematical Statistics, 1944, 15: 190-204.
    [75] Bennett, B.M. Estimation of means on the basis of preliminary tests of significance [J]. An. Inst. Stat. Math. 1952, 4: 31-43.
    [76] Huntsberger, D.V. A generalization of a preliminary test procedure of pooling data [J]. An. Math. Stat. 1955, 26: 734-743.
    [77] Bennett, B.M. On the use of preliminary tests in certain statistical procedures. [J] An. Inst. Stat. Math. 1956, 8: 45-57.
    [78] Bancroft, T.A. Analysis and inference for incompletely specified models involving the use of preliminary test of significance [J]. Biometrics, 1964, 20: 427-442.
    [79] Han, C.P., Bancroft, T.A. On pooling means when variance is unknown [J]. Journal of the American Statistical Association, 1968, 63: 1333-1342.
    [80] Saleh, A.K.Md.E., Sen, P.K. Non-parametric estimation of location parameter after a preliminary test on regression [J]. Annals of Statistics, 1978, 6: 154-168.
    [81] Sen, P.K. On the asymptotic distribution risks of shrinkage and preliminary test versions of maximum likelihood estimators [J]. Sankhya, 1986, A48: 354-371.
    [82] Sen, P.K., Saleh, A.K.Md.E. On some shrinkage estimators of multivariate location [J]. An. Statist. 1985, 13: 172-281.
    [83] Sen, P.K., Saleh, A.K.Md.E. On preliminary test and shrinkage M-estimation in linear models [J]. An. Statist. 1987, 15 (4): 1580-1592.
    [84] Ali, M.Abdunnabi. Interface of preliminary test approach and empirical Bayes approach to shrinkage estimation [D]. Ottawa: Carleton University, 1990.
    [85] Ali, M.Abdunnabi., Saleh, A.K.Md.E. Preliminary test and empirical Bayes approach to shrinkage estimation of regression parameters [J]. J. Jpn. Statist. Soc. 1991, 21 (1): 401-416.
    [86] Kibria, B,M.G., Saleh, A.K.Md.E. Performance of shrinkage preliminary test estimator in regression analysis [J]. Jahangirnagar Review, 1993, A17: 133-148.
    [87] Tabatabaeu. S.M. Preliminary test approach estimation: regression model with spherically symmetric errors [D]. Ottava: Carleton university , 1995.
    [88] Benda, N. Pre-test estimation and design in linear model [J]. J. Statist. Plan and Infer. 1996,52: 225-240.
    [89] Kibria, B.M.G. On preliminary test ridge regression estimator for the restricted linear model with non-normal disturbances [J]. Communications in Statistics-Theory and Methods, 1996, 25: 2349-2369.
    [90] Khan, S., Saleh, A.K.Md.E. Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate Student’s t errors [J]. Biomed. J. 1997, 2: 131-147.
    [91] Ohtani, K. Pre-test double k-class estimators in linear regression [J]. Journal of Statistical Planning and inference, 2000, 87: 287-299.
    [92] Ohtani, K. MSE dominance of the pre-test iterative variance estimator over the iterative variance estimator in regression [J]. Statistics & Probability Letter, 2001, 54: 331-340.
    [93] Khan, S., Saleh, A.K.Md.E. On the comparison of pre-test and shrinkage estimators for the univariate normal mean [J]. Statistical Papers, 2001, 42 (4): 451-473.
    [94] Ohtani, K. Exact distribution of a pre-test estimator for regression error variance when there are omitted variables [J]. Statistics & Probability Letter, 2002, 60: 129-140.
    [95] Chiou, P.C., Saleh, A.K.Md.E. Preliminary test confidence sets for the mean of a multivariate normal distribution [J]. J. Prop. Prob. Statist. 2002, 2: 177-189.
    [96] Khan, S, Hoque, Z., Saleh, A.K.Md.E. Estimation of the slope parameter for linear regression model with uncertain prior information [J]. J. Stat. Res. 2002, 36 (2): 55-74.
    [97] Kim, H.M., Saleh A.K.Md.E. Preliminary test estimators of the parameters of simple linear model with measurement error [J]. Metrika, 2003, 57: 223-251.
    [98] Kibria, B.M.G., Saleh, A.K.Md.E. Effect of W, LR and LM tests on the performance of preliminary test ridge regression estimators [J]. J. Jpn. Stat. Soc. 2003, 33: 119-136.
    [99] Bock, M.E., Yancey, T.A., Judge, G..G.. The statistical consequences of preliminary test estimators in regression [J]. J. Amer. Statist. Assoc. 1973, 68: 109-116.
    [100] Judge, G.G., Bock, M.E. The statistical implications of pre-test and Stein-rule estimators in Econometrics [M]. Amsterdam: North-Holland Publishing Company, 1978.
    [101] Saleh, A.K.Md.E. Theory of preliminary test and Stein-type estimation with applications [M]. New York: John Wiley, 2006.
    [102] Saleh, A.K.Md.E., Kibria, B.M.G. Performances of some new preliminary test ridge regression estimators and their properties [J]. Communications in Statistics-Theory and Methods, 1993, 22 (10): 2747-2764.
    [103] Akdeniz, F. More on the pre-test estimator in ridge regression [J]. Communications in Statistics-Theory and Methods, 2002, 31 (6): 987-994.
    [104] Wald, A. Tests of Hypotheses concerning several parameters when the number ofobservations is large [J]. Transactions of the American Mathematical Society, 1943, 54: 426-482.
    [105] Aitchison, J., Silvey, D. Maximum Likelihood Estimation of parameter subject to restraints [J]. Annals of Mathematics Statistics, 1958, 29: 813-828.
    [106] Rao, C.R. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation [C]. Proceedings of Cambridge Philosophical Society, 1947, 44: 50-57.
    [107] Savin, N.B. Conflict among testing procedures in a linear regression model with autoregressive disturbances [J]. Econometrica, 1976, 44: 1303-1315.
    [108] Berndt, E., Savin, N.E. Conflict among criteria for testing hypothesis in the multivariate linear regression model [J]. Econometrica, 1977, 45: 1263-1278.
    [109] Evans, G.B., Savin, N.E., Conflict among the criteria revisited; the W, LR and LM tests [J]. Econometrica, 1982, 50: 737-748.
    [110] Ullah, A., Zinde-Walsh. On the robustness of LM, LR and Tests in Regression Model [J]. Econometrica, 1984, 52: 1055-1066.
    [111] Khan, S., Hoque, Z. Preliminary test estimators for the multivariate normal mean based on the modified W, LR and LM tests [J]. Journal of Statistical Research, 2003, 37: 43-55.
    [112] Billah, B., Saleh, A.K.Md.E. Performance of the PTE based on the conclicting W, LR and LM tests in regression model [M]. Advances on Methodological and applied aspects of probability and statistics, Gordon and Breach Science Publishers, 2003.
    [113] Billah, B., Saleh, A.K.Md.E. Conflict between pretest estimators induced by three large sample tests under a regression model with Student t-error [J]. Statistician, 1998, 47 (4): 593-606.
    [114] Kibria, B.M.G. Performance of the shrinkage preliminary test ridge regression estimators based on the conflicting of W, LR and LM tests [J]. Journal of Statistical Computation and Simulation, 2004, 74 (11): 703-810.
    [115] Kibria, B.M.G., Saleh, A.K.Md.E. Preliminary test ridge regression estimators with student’s t errors and conflicting test statistics [J]. Metrika, 2004, 59: 105-124.
    [116] Arashi, M., Tabatabaey, S.M.M, Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression [J]. Statistics & Probability Letters, 2008, doi:10.1016/j.spl.2008.02.003.
    [117] Giles, J.A. Pre-testing for linear restrictions in a regression model with spherically symmetric disturbances [J]. Journal of Econometrics, 1991, 50: 377-398.
    [118] Giles, J.A. Estimation of the error variance after a preliminary test of homogeneity in aregression model with spherically symmetric disturbances [J]. Journal of Econometrics, 1992, 53: 345-361.
    [119] Ohtani, K., Giles, J.A. Testing linear restrictions on coefficients in a linear regression model with proxy variables and spherically symmetrics disturbances [J]. Journal of Econometrics, 1993, 57: 393-406.
    [120] Anderson, J., Giles, J.A. Pre-test estimation of the regression scale parameter with multivariate Student-t errors and independent sub-samples [J]. Sankhya, 1994, 56: 334-343.
    [121] Kibria, B.M.G. On shrinkage ridge regression estimators for restricted linear models with multivariate t disturbances [J]. Student, 1996, 1 (3): 177-188.
    [122] Khan, S., Saleh, A.K.Md.E. Shrinkage pre-test estimator of the intercept parameter for a regression model with multivariate Student-t errors [J]. Biometrical Journal, 1997, 39: 1-17.
    [123] Khan, S. Likelihood inference on the mean vectors of two multivariate Student-t populations with unknown diagonal covariance matrix [J]. Journal of Statistical Studies, 2001, 21: 13- 29.
    [124] Khan, S. A Note on an Optimal Tolerance Region for the Class of Multivariate Elliptically Contoured Location-Scale Model [J]. Journal of Calcutta Statistical Association Bulletin, 2002, 53: 125-131.
    [125] Khan, S., Saleh, A.K.Md.E. Stein-type estimators for mean vector in two-sample problem of multivariate Student-t populations with common covariance matrix [J]. International Journal of Statistical Sciences, 2003, 1: 1-19.
    [126] Khan, S. The role of the shape parameter in the estimation of the mean vector in multivariate Student-t population [J]. International Journal of Statistical Sciences, Special Volume in Honour of Emeritus Professor M. S. Haq, Edited by Bikas K. Sinha, 2004, 3: 69-89.
    [127] Tabatabaey, S.M.M., Saleh, A.K.Md.E., Kibria, B.M.G. Estimation strategies for parameters of the linear regression model with spherically symmetric distributions [J]. Journal of Statistical Research, 2004, 38 (1): 13-31.
    [128] Khan, S., Kabir, E. Distribution of future location vector and residual sum of squares for multivariate location-scale model with spherically contoured errors [J]. Journal of Statistical Theory and Application, 2005, 5 (2): 91-104.
    [129] Khan, S. Estimation of parameters of the multivariate regression model with uncertain prior information and Student-t errors [J]. Journal of Statistical Research, 2005, 39 (2): 79-94.
    [130] Khan, S. Optimal Tolerance Regions for Some Functions of Multiple Regression Model with Student-t Errors [J]. Journal of Statistics & Management Systems, 2006, 9 (3): 699- 715.
    [131] Khan, S., Hoque, Z., Billah, B. Edgeworth size corrected W, LR and LM test in theformation of the preliminary test estimator [J]. Journal of Statistical Research, 2006, 40 (2): 55-64.
    [132] Khan, S. Optimal tolerance regions for future regression vector and residual sum of squares of multiple regression model with multivariate spherically contoured errors [J]. Statistical Papers, 2008, In Press.
    [133] Khan, S., Saleh, A.K.Md.E. Estimation of slope for linear regression model with uncertain prior information and Student-t error [J]. Communications in Statistics-Theory and Methods, 2008, 37 (16), In Press.
    [134] M. Arashi, S.M.M. Tabatabaey, Khan, S. Estimation in multiple regression model with elliptically contoured errors under MLINEX loss [J]. Journal of Applied Probability and Statistics, 2008, 3 (1): 23-36.
    [135] Yang, Z.H., Fang, K.T., Kotz, S. On the Student’s t-distribution and the t-statistic [J]. Journal of Multivariate Analysis, 2007, 98: 1293-1304.
    [136] Rahman, A., Khan, S. Prediction distribution for linear regression model with multivariate Student-t errors [J]. Far East Journal of Theoretical Statistics, 2008, 24 (1): 35-48.
    [137] Baksalary, J.K., R. Kala., Partial orderings between matrices one of which is of rank one [J]. Bulletin of the Polish Academy of Science, Mathematics, 1983, 31: 5-7.
    [138]王松桂,吴密霞,贾忠贞.矩阵不等式-第二版[M].北京:科学出版社, 2006.
    [139] Gruber, M.H.J. Improving Efficiency by Shrinkage: The James Stein and Ridge Regression Estimators [M]. New York: Marcel Dekker, 1998.
    [140] Lipovetsky, S. Two-parameter ridge regression and its convergence to the eventual pairwise model [J]. Mathematical and Computer Modelling, 2006, 44: 304-318.
    [141]刘金山. Wishart分布引论[M].北京:科学出版社, 2005.
    [142] Serge, B. Provost. On Craig’s theorem and its generalizations [J]. Journal of Statistical Planning and Inference, 1996, 53: 311-321.
    [143] Kakwani, N.C. Note on the Unbiasedness of a Mixed Regression Estimator [J]. Econometrica, 1968, 36: 3-4.
    [144]王松桂,范永辉. Panel模型中两步估计的优良性[J].应用概率统计, 1998, 14 (2): 177- 184.
    [145] Srivastava, M.S., Dietrich von Rosen. Regression models with unknown singular covariance matrix [J]. Linear algebra and its applications, 2002, 354: 255-273.
    [146] Wang, G.R., Wei, Y.M., Qiao, S.Z. Generalized Inverses: Theory and Computations [M]. Beijing: Science Press,, 2004.
    [147] Woods, Hubert, Steinour, Harold H. and Starke, Howard R. Effect of composition ofPortland cement on heat evolved during hardening [J]. Industrial and Engineering Chemistry, 1932, 24: 1207-1241.
    [148] Madhulika, D. Mixed regression estimator under inclusion of some superfluous variables [J]. Test, 1999, 8 (2): 411-417.
    [149] Kadiyala, K. Mixed regression estimator under misspecification [J]. Econom. Lett. 1986, 21: 27-30.
    [150] Trenkler, G. Wijekoon, P. Mean squared error matrix superiority of the mixed regression estimator under misspecification [J]. Statistica, 1989, 44: 65-71.
    [151] Wijekoon, P., Trenkler, G. Mean squared error matrix superiority of estimators under linear restrictions and misspecification [J]. Econom. Lett. 1989, 30: 141- 149.
    [152] Hubert, M. H., Wijekoon, P. Superiority of the stochastic restricted Liu estimator under misspecification [J]. Statistica, 2004, 64 (1): 153-162.
    [153] Dube, M., Srivastava, V.K., Toutenburg, H., Wijekoon, P. Stein-rule estimator under inclusion of superfluouf variables in linear regression models [J]. Commun. Stat., Theory Methods, 1991, 20 (7): 2009-2022.
    [154] Srivastava, V. K., Dube, M., Singh, V. Ordinary least squares and Stein-rule predictions in regression models under inclusion of some superfluous variables [J]. Stat. Pap. 1996, 37 (3): 253-265.
    [155] Sarkar, N. Mean square error matrix comparison of some estimators in linear regressions with multicollinearity [J]. Statist. Probab. Lett. 1996, 30: 133–138.
    [156] Ozkale, M.R., Kaciranlar, S. Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion [J]. Statistics & Probabiity Letters, 2007, 77: 438- 446.
    [157] Baksalary, J. K., Trenkler, G. Nonnegative and positive definiteness of matrices modified by two matrices of rank one [J]. Linear Algebra Appl. 1991, 151: 169-184.
    [158]王松桂,杨振海.广义逆矩阵及其应用[M].北京:北京工业大学出版, 1996.
    [159] Yuksel, G., Akdeniz, F. Properties of some new preliminary test Liu estimators and comparisons with the usual preliminary test estimator [J]. Journal of Statistical Research, 2001, 35 (2): 45-56.
    [160] Anderson, T. W. An introduction to Multivariate Statistical Analysis, 2nd ed [M]. New York: John Wiley, 1984.
    [161] Yancey, T.A., Judge, G.G.., Bock, M.E. A mean square error test when stochastic restrictions are used in regression [J]. Commun. Stat., Theory Methods, 1974, 3 (8): 755-768.
    [162]王松桂,贾忠贞. Pitman准则的若干新发展[J].应用概率统计, 1996, 12 (4): 429-438.
    [163] Pitman, E. The closest estimates of statistical parameters [C]. Proceeding of the Cambridge Philosophical Society, 1937, 33: 312-322.
    [164] Rao, C.R., Keating, J.P., Mason, R.L. The Pitman nearness criterion and its determination [J]. Commu. Stat. Theory-Meth. 1986, 15: 3137-3191.
    [165] Sen, P.K., Kubokawa, T., Saleh, A.K.Md.E. The Stein paradox in the sense of the Pitman measure of closeness [J]. Ann. Stat. 1989, 17: 1375-1386.
    [166]王松桂,杨虎. Pitman准则下的线性估计[J].科学通报, 1994, 39: 1444-1447.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700