用户名: 密码: 验证码:
日本乙型脑炎病毒E蛋白多表位基因串联表达及免疫效力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
日本乙型脑炎病毒(Japanese encephalitis virus, JEV),又称乙型脑炎病毒,简称乙脑病毒,属于黄病毒科(Flaviviridae)黄病毒属,主要引起人类或马的中枢神经系统感染以及猪的流产,能通过持续感染的蚊子传播给人,并且主要在脊椎动物宿主内存在,特别是具有较高病毒血症的猪和鸟类,在人类乙脑主要引起致死率较高的脑炎,致死率从20-50%,但是绝大多数的幸存者都具有中枢神经系统的后遗症;猪是主要中间宿主和扩散宿主,也是主要的传染源。许多研究表明,猪流行性乙型脑炎与人流行性乙型脑炎密切相关,因此预防猪感染本病是防止人患乙脑的重要措施。同时,乙脑也是猪的重大疫病之一,能引起怀孕母猪流产、死胎及弱仔,公猪睾丸炎,仔猪呈神经症状,其暴发常给养猪业带来巨大的经济损失。目前用于JEV预防的疫苗主要是传统的灭活苗和弱毒苗,乙脑弱毒疫苗和灭活疫苗等常规疫苗都具有良好的免疫原性,在预防和控制乙脑的过程中发挥着重要作用,但是鼠脑来源的乙脑灭活疫苗在过敏问题上越来越突出,而且使用灭活疫苗的一个主要问题是缺乏长效免疫,由于需要多次重复免疫,使得免疫程序繁琐。弱毒疫苗则存在病毒毒力返强的不安全因素,因此寻求稳定、安全以及新型的JE疫苗已经成为近年JE感染防治的主要研究方向。近年来,随着分子生物学技术的飞速发展,JE基因工程疫苗等多种新型的疫苗都在不断的研究开发中。
     本研究首次构建了乙脑E蛋白多表位串联基因(TEP),包括E蛋白上四个重要的B细胞表位327aa~333aa,337aa~345aa,373aa~399aa,397aa~403aa和两个T细胞表位60~68aa,436aa~445aa。为了提高免疫效力,在六个表位串联的基础上引入了组织酶原激活物信号肽序列(tissue plasminogen activator, TPA)、CpG基序和通用型辅助性T细胞表位。本研究分别以原核表达体系、真核表达体系及腺病毒表达系统表达了TEP基因,并比较了它们的免疫效力。论文的主要研究内容主要包括以下几个方面:
     1.乙脑E蛋白多表位基因串联真核质粒的构建
     人工合成含有JEV E基因的T,B细胞表位的多表位基因,插入真核表达质粒pCDNA3.0中构建重组真核质粒pCDNA-TEP。重组质粒转染293A细胞,利用间接免疫荧光证明pCDNA-TEP在真核细胞内能有效的转录和表达;Western-blot检测表明重组真核质粒的表达产物能与JEV阳性血清特异性结合,证明其具有一定的生物学活性和抗原性。
     2.乙脑E蛋白多表位基因在大肠杆菌中的融合表达
     以重组质粒pUC-TEP为模板,扩增不含TPA信号肽序列的基因片段,将其克隆至原核表达载体pET-32a(+),命名为pET-rEP。将重组质粒转化大肠杆菌(E. coli)BL21(DE3)感受态细胞,酶切鉴定的阳性菌经1mM IPTG诱导表达4h后,将大肠杆菌以6000rpm离心10min,用PBS洗两次,收集细菌,将其悬浮在PBS中,进行超声波破碎,以10,000 rpm离心20min,将上清和沉淀分别进行SDS-PAGE电泳分析,结果表明这种蛋白以包涵体形式存在。将包涵体在8M的尿素中过夜溶解,然后将上清过His Bind树亲和层析柱对重组表达产物进行纯化。结果显示融合蛋白的分子量为37kDa,Western blot表明重组蛋白具有抗JEV的特异抗原性。
     3.多表位DNA疫苗和重组蛋白疫苗对Balb/c小鼠的特异性免疫影响
     为了评价所构建的DNA疫苗和重组蛋白质疫苗的免疫效力,将6周龄Balb/c小鼠随机分成4组,每组8只,设pcDNA-TEP (1), pET-rEP (2), pcDNA-TEP+pET-rEP (3),灭活疫苗(4)共4个免疫组,同时设pcDNA3.0空载体对照组(5)。肌肉注射免疫,重组质粒的免疫剂量为50μg/只,重组蛋白的免疫剂量为200 pmol/只,灭活苗免疫组按照使用说明进行。利用微量中和试验检测免疫后的中和抗体,利用商品化的ELISA试剂盒检测免疫小鼠脾脏淋巴细胞分泌IFN-γ、IL-2及IL-4的能力,并与灭活苗进行比较。结果表明,试验构建的DNA疫苗和重组蛋白质疫苗都能诱导产生针对JEV的特异性体液免疫和细胞免疫应答。灭活苗免疫组产生了最高的中和抗体,其次由高到低依次为,pcDNA-TEP+pET-rEP, pET-rEP, pcDNA-TEP。pcDNA3.0空载体对照组没有检测到特异性针对JEV的中和抗体。通过对抗体亚型及细胞因子的测定,pET- rEP和灭活苗免疫组主要是增强Th2免疫反应,pcDNA-TEP增强Thl免疫反应,而pcDNA-TEP+pET-rEP则产生Thl/Th2混合型的免疫反应。这为研究能够更好地防制JEV感染的新型疫苗提供新的思路。
     4.表达乙脑E蛋白多表位基因重组腺病毒的构建
     将人工合成多表位基因克隆到腺病毒的穿梭载体pAdeno Vator-CMV5-IRES-GFP中。得到的阳性穿梭质粒经Pme I酶线性化后,利用电转化技术将线性化的质粒与腺病毒骨架载体pAdeno Vator△E1/E3共转化大肠杆菌BJ5183感受态细胞,使其在大肠杆菌中进行同源重组。将筛选到的重组病毒质粒经Pac I酶线性化后暴露出包装信号,通过脂质体LipofectamineTM2000转染293A细胞后得到重组病毒。利用报告基因GFP检测病毒滴度,通过PCR和wes tern-blot检测JEV多表位基因得到成功的表达并有很好的免疫原性,重组病毒rAd5-TEP的滴度为1010.59个TCID50/mL。重组病毒经过连续五代传代后效价稳定。
     5.重组腺病毒对小鼠特异性免疫的影响
     6周龄小鼠随机分为4组,每组8只。将重组病毒rAd5-TEP、灭活疫苗分别以腹腔接种的方式给小鼠进行3次免疫,同时设对照组小鼠,免疫PBS。然后通过测定IgGl、IgG2a、中和抗体和IL-4、IFN-γ水平来衡量重组病毒的免疫效果。结果表明重组病毒rAd5-TEP既能诱导细胞免疫应答又能诱导体液免疫应答,抗体亚型测定结果显示,重组病毒rAd5-TEP既能诱导IgGl的分泌又能诱导IgG2a的分泌,但以IgG2a为主。同时细胞因子ELISA试验结果进一步表明重组病毒主要刺激Thl分化(IFN-y),但与灭活苗相比,也能刺激Th2(IL-4)的分化。pcDNA-TEP+rAd5-TEP免疫组能产生最高水平的IFN-γ和IL-4,而诱导产生的中和抗体滴度略低于灭活苗免疫组。
     6.不同疫苗联合应用对猪的免疫效力研究
     为了比较pcDNA-TEP+pET-rEP和pcDNA-TEP+rAd5-TEP对猪的免疫效力,将4周龄的健康仔猪随机分4组,每组5头,设pcDNA-TEP+pET-rEP (I)、pcDNA-TEP+rAd5-TEP(Ⅱ、)与灭活疫苗(Ⅲ)3个免疫组,同时PBS空白对照组(Ⅳ)。肌肉注射免疫,重组质粒的免疫剂量为200μg/头,重组蛋白的免疫剂量为800 pmo1/头,重组病毒免疫组免疫剂量为1×1010TCID50/头,灭活苗免疫组按照使用说明进行,空白对照组每头注射2mL高压灭菌的PBS,4周后进行加强免疫。初次免疫后每隔2周采血分离血清,利用空斑抑制中和试验(PRNT)检测JEV特异性中和抗体水平;同时,在初次免疫后30、45与60天,无菌采血,分离血血清,采用ELISA定量检测细胞因子的水平。结果表明,pcDNA-TEP+rAd5-TEP免疫组在加强免疫后2周产生了可检测到的中和抗体,pcDNA-TEP+pET-rEP和灭活疫苗免疫组在加强免疫后4周检测到中和抗体,在整个试验过程中,灭活疫苗免疫组产生的中和抗体平均滴度最高;就细胞免疫而言,初次免疫后30天,各实验组细胞因子的产量没有明显差异;在初次免疫后45天,3个试验组IFN-y与IL-2的产量明显增多,pcDNA-TEP+rAd5-TEP产生最高水平的IFN-γ、IL-2和IL-4,在免疫后70d,各组IFN-γ与IL-2的产量没有明显变化,说明加强免疫后Thl型细胞因子的分泌至少可以维持3周,灭活苗免疫后,IFN-γ、IL-2都不明显,主要是IL-4的产量增加。上述研究结果表明以pcDNA-TEP作基础免疫,以rAd5-TEP加强免疫的‘"prime-boost"疫苗是一个值得深入研究的JE新型疫苗。
     综上所述:构建的重组疫苗pcDNA-TEP.pET-rEP. rAd5-TEP者能诱导产生针对JEV的特异性体液免疫和细胞免疫应答,采用"prime-boost"的免疫策略能明显提高其诱导的中和抗体水平和细胞免疫应答,以pcDNA-TEP作基础免疫,以rAd5-TEP加强免疫试验组在小鼠和猪体内获得了较高的特异性针对JEV的中和抗体和细胞免疫应答,从而为研究安全有效的乙脑新型疫苗提供了新的思路和方法。
The Japanese encephalitis virus (JEV), which belongs to the family Flaviviridae,infects the central nervous system of humans and equines, and causes stillbirthsin swine. Japanese encephalitis virus (JEV) is transmitted to humans by persistently-infected mosquitoes and. is maintained in infected vertebrate reservoirs, especially in viremia-amplifying hosts such as swine and avian. In humans, JEV causes acute encephalitis with fatality rates ranging from 20% to as high as 50% and most of the survivors display persistent neurological or psychological sequelae.Swine is an important amplifier of Japanese encephalitis virus (JEV) in the paradomestic environmen.Thus mass vaccination of swine can prevent the disease in swine and help to prevent JE epidemics in humans, In the view of economics, the pig industry suffered serious losses from the viral infection as a result of the reproduce failure in sows and death in piglets. For vaccination, both inactivated and living-attenuated JEVs have been widely used with significant success in providing first-generation vaccines in many Asian countries. However, the former is limited by poor availability, high production cost, lack of long-term immunity, and the possibility of allergic reactions. Living-attenuated vaccine has the possible risk of reverting to virulence. Thus there is an urgent need to develop more effective vaccines and to alter the strategies against this viral disease. In recent years,many studies have demonstrated the efficacy of genetically engineered vaccine for JEV.
     In this study, we first constructed synthetic multi-epitope by synthesizing E epitopes (six amino acid residues 60-68,327-333,337-345,373-399,397-403 and 436-445 in E,designated TEP).The TEP were expressed in various systems:prokaryoti、eukaryotic and Adenovirus, then evaluated the abilities to induce immune responses in mice and swine.
     The contents of the paper contain five parts as following:
     1. Construction and eukaryotic expression for the multiple-epitope gene of Japanese encephalitis virus
     A synthetic multiple-epitope gene containing the critical epitopes of the Japanese encephalitis virus (JEV) envelope (E) gene was cloned into eukaryotic expression vector pcDNA3.0, named pcDNA-TEP.293 cells were then transfected with this recombinant plasmid. Recombinant protein was showed to transcript and express effectively by indirect immunofluorescence. Collect the cell supernatant after 48h transfection for Western blot, it showed the protein can interact with JEV positive anit-serum, proved its biological activity and antigenicity.
     2. The prokaryotic expression for the multiple-epitope gene of Japanese encephalitis virus
     A fragment without TPA signal peptide was amplified by PCR from plasmid pUC-TEP and cloned into pET-32a(+), named pET-rEP. Then the recombinant plasmid was transducted into BL21 Ecoli cells. Recombinant protein was purified as follow:Ecoli cells were induced by IPTG, after 4h, cells were collected by centrifugation,6000rpm 10min, washed twice by PBS, and suspended in PBS. Cells were lysed by ultrasonic, then centrifuged 10000rpm 20min. Both the supernatant and pellet was analyzed by electrophoresis. It showed that the protein was existed in form of inclusion. Dissolved the inclusion with 8M urea and purified by His-Band affinity chromatography, we got the 370Kd recombinant protein. Western blot showed the specific anti-JEV activity.
     3. The Immunogenic Efficacy for the recombinant DNA vaccine and recombinant protein vaccine on mice
     In order to investigate the immunogenic efficiency of the pcDNA-TEP and pET-rEP, forty of JEV negative mice (4-week-old, female) were randomly divided into four groups with eight of them each group. Mice in groupⅠwere inoculated intramuscularly pcDNA-TEP at a dose of 50μg; Mice in groupⅡwere injected with purified pET-rEP at a dose of 200 pmol, Mice in groupⅢwere injected with pcDNA-TEP+pET-rEP; The blank eukaryotic expression plasmid pcDNA3.0 and inactivated vaccine were used as controls. JEV specific neutralizing antibody titer was evaluated with virus neutralization test assay, furthermore, the production of JEV specific IFN-γ, IL-2 and IL-4 in splenocytes was detected with commercial ELISA Kit. Datas showed that both the recombinant protein and the DNA vaccine can induce humoral and cellular immune responses. The rank for neutralizing antibodies titers is inactive vaccine, pcDNA-TEP+pET-rEP, pET-rEP, pcDNA-TEP, and pcDNA3.0 from high to low. No neutralizing antibody was found in the pcDNA3.0 inoculation group throughout the experiment. The production of gamma interferon (IFN-γ), interleukin-2 (IL-2) and interleukin-4 (IL-4) was detected from spleen lympholeukocyte of the immunized mice at 45 and 60days post primary immunization to evaluate the cellular immune response. Results showed that the IgG1 isotype was induced by the inactivated vaccine and rEP alone. In contrast, mice immunized with pcDNA-TEP alone elicited predominantly IgG2a.These results suggest that a mixed Th1/Th2 immune response was induced by DNA priming/protein boosting vaccine regimen. Therefore, it can be an attractive candidate vaccine for preventing JEV infection.
     4.Construction of Recombinnat Adenovirus Expression multiple-epitope gene of the Japanese encephalitis virus
     A synthetic multi-epitope of Japanese encephalitis virus was expressed in adenovirus. The multi-epitope gene was cloned into pAdeno Vator-CMV5-IRES-GFP, named as pA5-TEP. pA5-TEP was Linearized by Pme I, and then Linearized pA5-TEP and pAdeno VatorAEl/E3 co-transformed into E.coli BJ5183 competent cells by electroporation. The homologous recombinant plasmids pA5-TEP was selected and Linearized by Pac I to expose the encapsidation signal. Linearized virus plasmid was transfected into 293A cells by LipofectamineTM-2000, and recombinant virus was selected and named as rAd5-TEP. Infection titer and rate were evaluated through monitoring green fluorescent protein (GFP) expression. Expression of the multi-epitopes of JEV was identified by PCR and western-blot. Results indicated that expression products had specific antigenicity. The titer of rAd5-TEP is 1010..59 TCID50/mL, and the biological characteristics for recombinant virus were stable after passaged for 5 times.
     5. Recombinant Adenoviruses on Specific Immunization in Mice
     6 weeks old female BALB/c mice were randomly separated into 4 groups,8 mice per group, mice were celiac immunized with recombinant viruses(rAd5-TEP、inactivated vaccines) three times at 2 weeks intervals, and with PBS as control. Level of IgG1、IgG2a、IL-4、IFN-y and Antibody neutralization test were detected to evaluate humoral immune and cellular immune responses of recombinant viruses. ELISA test of antibody sub-type results indicated that recombinant viruses induced secretion both of IgGl and IgG2a, partial to IgG2a.The seem result elicited from cytokines ELISA test, secretion of both of Thl(y-IFN) and Th2(IL-4) were induced by recombinant viruses, partial to Thl. Furthermore, pcDNA-TEP+rAd5-TEP induces the highest level of the IFN-y and IL-4 and a stronger humoral response against JEV. the highest level of neutralizing antibodies was observed in the group inoculated with the inactive vaccine, which was slightly higher than the pcDNA-TEP+rAd5-TEP group(P>0.05). This promising candidate can be for instance in viral vectors vaccine studies. Thus provide valuable support for further development of JEV genetic engineering vaccines.
     6. The Immunogenic Efficacy on Piglets for the Combination application with various vaccines of Japanese encephalitis virus
     In order to test the immunogenic efficiency of the pcDNA-TEP+pET-rEP and pcDNA-TEP+rAd5-TEP which was constructed in the fifth chapter and the seventh chapter, twenty of JEV negative piglets (fourth-month-old) were randomly into four groups with ten of them in each group. Piglets in group one were injected (i.m.) with purified recombinant plasmid pcDNA-TEP; piglets in group two were injected with purified recombinant plasmid pcDNA-TEP, piglets in group three were injected with inactivated vaccine; piglets in group four were injected with PBS as control. Injections were done with 200μg purified plasmid via intramuscular (i.m.) route. Four weeks post the primary vaccination, the piglets were boosted with same dose of correspondence pET-rEP, rAd5-TEP, inactivated vaccine and PBS.Neutralizing antibody titers for each group were detected with virus neutralization test assay fortnightly interval after the primary vaccination for six times to evaluate the humoral immune response. The production of gamma interferon (IFN-y), interleukin-2 (IL-2) and interleukin-4 (IL-4) was detected with lympholeukocyte from blood of the immunized piglets at 30,45 and 60 days post immunization to evaluate the cellular immune response. Results showed, both pcDNA-TEP+pET-rEP and pcDNA-TEP+rAd5-TEP can induce both humoral and cellular immune responses, the inactivated vaccine obtained the highest neutralizing antibody titer,however the pcDNA-TEP+rAd5-TEP inoculation group got the earliest immune responses and the most vigorous Thl type response. The strategy of priming with the DNA vaccine and and then boosting the recombinant rAd5-TEP might be a promising JEV vaccine candidate for further.
     In summary, all the recombinant vaccines can induce humoral and cellular immune responses. The strategy of priming with the DNA vaccine and then boosting the recombinant rAd5-TEP can obtain the higher neutralizing antibody titer and induce the highest level of the IFN-γ、IL-2 and IL-4 production, which suggested that this DNA priming-recombinant rAd5-TEP boosting vaccine can produce high levels of antibody and result in significant T-cell responses both in mices and swine. It might be an attractive candidate vaccine to be tested for preventing JEV infection and the research may lead to a new approach for the generation of JE vaccines.
引文
[1]Gbler, D. J. Resurgent arboviral diseases as a global public health problem. XⅣth International Congress for Tropical Medicine and Malaric.1996, P40.
    [2]Tsai T F.New initiatives for the control of Japanese encephalitis byvaccination:minutes of a WHO/ CVI meeting, Bangkok, Thailand,13-15 October 1998[J]Vaccine,2000,18 (Suppl2):1-25
    [3]Shu-Fen Wu, Chyandang Lee, Citing-Len Liao, Raymond A. Dwek, Nicok Zitzmann, and Yi-Ling Lin. Antiviral Effects of anlminosugarDerivaliveoil Flaviviruslnfections. J.Virol,2002,76(8): 3596-3604
    [4]Tom Solomon, Haolin Ni, David W.C.Baslcy, Miquel Ekkelenkamp, Mary Jane Canlosa and Alan D.T.Barrett Origin and Evolution of Japanese Encephalitis Virus in Southeast Asia. J. Virol 2003, 77(5):3091-3098
    [5]Sang-lm Yun, Seok-Yong Kim, Woo-Young Choi, Jae-Hwan Nam, Young-Ran Ju Keun-Yong Park, Hae-Wol Cho, Young-Min Lee. Molecular characterization of the full-length genome of the Japanese encephalitis viral strain K87P39. HrusResearch,2003,96:129-140
    [6]Rey F A, Heinz F X, Mandl C, et al.The envelope glycoprotein from tick-borne encephalitis virus at 2A°resolution[J] Nature,1995,375 (6529):291-298
    [7]中国农业科学院,兽医微生物学.北京:中国农业出版社,1995
    [8]Takegami T, Miyamoto H, Nakamura H, et al. Biological activities of the structural protein of Japanese Encephalitis virus. Acta Virol 1982,26: 312~320.
    [9]Takegami T, Miyamoto H, Nakamura H, et al. Differences in biological activity of the V3 envelope protein of two Japanese Encephalitis virus strains. Acta Virol 1982,26:321~327.
    [10]Yumisashi T, Kimura T, OkunoY, et al. Genetic transition of Japanese Encephalitis virus in OSAKA prefecture, XⅣthe International Congress for Tropical Medicine and Malaria 1996, P128.
    [11]Makino Y. Molecular epidemiology of Japanese Encephalitis virus isolates in Japan. XⅣth Intermational Congress for Tropical Medicine and Makaria 1996, P128.
    [12]Igarashi A. Japanese Encephalitis and degue fever/Degue haemorrihagic fever in southeast Asia. XⅣth Intermational Congress for Tropical Medicine and Makaria 1996, P41.
    [13]Tsuchie H, Oda K, Vythilingam I, et al. Genotypes of Japanese Encephalitis virus in malaysia, Am. J. Trop. Med. Hyg 1997,56(2):153~158.
    [14]Chung YJ, MamJ H, Ban SJ, et al. Antigenic and genetic analysis of Japanese Encephalitis virus isolated from Korea. Am. J. Trop. Med. Hyg 1996,55 (1):91~97.
    [15]Hori H, Morita K, Igarashi A. Oligonucleotide fingerprint analysis of Japanese Encephalitis virus strain isolated in Japan and Thailend. Acta Virol 1986,30:353~359.
    [16]Chen WR, Tesh RB, Rico Hesse K. Genetic variation of Japanese Encephalitis virus in nature. J. Gen. Virol 1990,71:2915~2922.
    [17]Chen WR, Rico Hesse K, Tesh RB. A new Genotype of Japanese Encephalitis virus from indonesia. Am. J. Trop. Med. Hyg 1992,47(1):61~69.
    [18]Banerjee K, Ranadive S N. Oligonucleotide fingerprint analysis of Japanese Encephalitis virus strains of different geographical origin. Indian J. Mcd. Res 1989,89:201~216.
    [19]Kobayashi H,Hasegawa H, Tamai T, et al. Antigenic analysis of Japanese Encephalitis virus using monoclonal antibodies. Infect Immun 1984,44:117~123.
    [20]Banerjee K. Centain Characteristics of Japanese Encephalitis virus strains by neutralization test. Indian J. Med. Res 1986,83:243~250.
    [21]Vaughn DW, Hoke CH. The epidemiology of Japanese encephalitis:prospects for prevention [J]. Epidemiol Rev,1992,14:197~221.
    [22]李林村,张颜平,郭万中,等.流行性乙型脑炎[M].北京:气象出版社.1996,51.
    [23]Wuryadi S, Suroso Tl. Japanese encephalitis in Indonesia [J].South-east Asian J Trop Med Public Health,1989,20:575~580.
    [24]Innis BL. Japanese encephalitis In: Porterfield J S, Exotic viral infections [M] London: Chapman and Hall,1995:147~173.
    [25]Solomon T, Dung MN, Kneen R, et al. Japanese encephalitis [J]. J Neurology, Neurosurgery and Psychiatry,2000,68:405~415.
    [26]Buescher EL, Schere WF.Ecological studies of Japanese encephalitis in Japan. Ⅸ.Epidemiological correlations and conclusions [J].Am J Trop Med Hyg,1959,8:644~722.
    [27]Ahihara S, RaO CM, Yu YX. et al.1991. Identification of mutation that occurred
    on the genome of Japanese encephalitis virus during the attenuation process. Virus Genes.5:95~120
    [28]Lin YL, Chen LK. Liao CI. et al.1998. DNA immunization with Japanese encephalitis Virus nonstructural protein NS1 elicits protective imunity in mice. Journal of Virology.72(1):191-21
    [29]Deubel V, Kinng llM, Trent DW.1988. Nucleotide sequence and deduced amino acid sequences of the nonstructural proteies of dengue type Ⅰ virus. Jamaica genotype:comparatire analysis of the full-length genome. Virology 165:234-245
    [30]Konishi E, Piocus S, Fonseca BAL, et al.1993. Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires consythesis with premembrane protein J.Virol.67(6):1672~ 1693
    [31]Konishi E, Piocus S, Paoletti E. et al.1992.Mice immunized with a subvural particle containing the Japanese encephaliti S virus PrM/M and E proteins are protected from Lethal JEV Infection. Virology 188:741-760
    [32]Kolaskar AS, Urmi la KK.1999. Prediction of three-dimensional structural and mapping of conformational epitopes of envelope glycoproteio of Japanese encephalitis virus. Virology.261: 31~44
    [33]Nowak T. Wengler G.1987 Analysis of disufides Proteins of the west nile flayivirus. Virology 156:127~134
    [34]Lobuge M, Dalaruno L, Schelsinger JJ, et al.1987. Location of a neutralization determinat in the E-protein of YelloW virus(17D vaccine sreain). Virology.161:474~488
    [35]Allison SL, Schalich J, Stiasny k, et al.1995. Oligometic rearrangement of Tick-borne encephalitis virus envelope proteins induced by an acidic pH. J.Virol.69:695-707.
    [36]Sato T, Takamura C, Yasuda A, et al.1993. High-level expression of the Janpanese encephalitis virus E protein by recombinant vaccinia virus and enhancement of its extracel lular release by the NS3 gene product. Virology.192:483~499
    [37]Flamand M. Expression and secretion of Japanese Encephalitis virus on structural protein NS1 by insect cell using a recombinant baculovirus. Virology 1992,191:826~836.
    [38]Takegami T, Sakamuro D, Forukawa T.1995. Japanese encephalitis Virus nonstrucrural protein NS3 has RNA binding and ATPase nctiVities. Virns Genes 9(2):L05~112
    [39]Eva Lee, Mario Lobigs. Sugbstitution at the Putative Receptor-Binding Site of an Encephalitis Flavivims Alter Virulence and Host Cell Tropism and Reveal a Role for Glycosaminoglycans in Entry. J.Virol,2000,74(19):8867-8875
    [40]Malancha Ta, Sudhanshu Vrati. Mov34 Protein from Mouse Brain Interacts with the 3'Noncoding Region of Japanese Encephalitis Virus. J. Virol,2000.74(11):5108-5115
    [41]Konishi E, Yamaoka M, Kuranel, et al. J. Virol.2000,268(1)49~55
    [42]InniS BL.1995.Japanese encephalitis, In.J.S.Porterfeild(ed)ExotiC viral infectionS. Chjapman& hall, London, United kingdom.147~174
    [43]赵中大,郭进军,申慧敏,等1滴金免疫法快速检测流行性乙型脑炎血清特异性IgM[J]中国人兽共患病杂志,1998,14(6):441
    [44]王虹,王省良,万成松,等1微板核酸杂交-EL ISA方法对肝炎病人血清中HBV-DNA的定量检测与分析[J]第一军医大学学报,1999,19(4):354-3561
    [45]任瑞文,方美玉,洪文艳,等1微孔杂交快速检测黄热病及乙型脑炎病毒方法的建立[J]1中 华检验医学杂志,2004,27(12):8401
    [46]Meiyu F, Huosheng C, Xiaodong T, et al 1Detection of fla-viriruses by reverse transcrip tase-polymerase chain reaction with the universal primer set[J] Microbiol Immunol,1997,41 (3): 2091
    [47]宋红丽,祝英华,王家琳,等1逆转录聚合酶链反应检测流行性乙型脑炎病毒[J]中华医学检验杂志,1997,20(6):3521
    [48]丁淑军,余光开,张建军,等1逆转录-聚合酶链反应在乙型脑炎诊断中的建立[J]中国人兽共患病杂志,2003,19(1):86-881
    [49]欧阳松应,杨冬,欧阳红生,等1实时荧光PCR技术及其应用[J].生命的化学,2004,24(1):74-761
    [50]Jeong HS, Shin JH, Park YN, et all Development of real-time RT-PCR for evaluation of JEV clearance during purification of HPV type 16L1 virus-like particles [J] Biological,2003,31 (3):223-2291
    [51]刘卫滨,付士红,宋宏,等1乙型脑炎病毒TaqMan PCR检测方法的建立及初步应用[J]中华微生物学和免疫学杂志,2005,25(8):656-6621
    [52]李凌,马文丽1DNA芯片技术研究进展[J]1中国生物化学与分子生物学报,2000,16(4):151-1551
    [53]张海燕1乙型脑炎病毒及黄热病病毒寡核苷酸检测芯片初步研究第一军医大学硕士学位论文
    [54]张焕容伪狂犬病病毒、猪细小病毒和流行性乙型脑炎病毒检测基因芯片的构建及检测技术研究1四川农业大学博士学位论文.
    [55]Konishi E, Yamaoka MK, Khin-Sane-Win, et al. J. Virol.,1999,73(7)5527-5534.
    [56]Igarashi A.World Health Stat Q,1992,45 (2~3):299~305.
    [57]Aizawa C, Hasegawa S, Chih-Yuan C, et al. Appl Environ Micobiol,1980,39(1)54~57.
    [58]The Advisory Committee on Immunization Practice. MMWR Morb MortaWkly Rep,1993, 42(RR~1):1~15.
    [59]Kurane I, Takasaki T. Vaccine,2000,18(suppl2):33~35.
    [60]Gowal D, Tahlan AK. Indian J. Med. Res.,1995,102:267~271.
    [61]Wills MR, Singh BK, Debnath NC, et al. Vaccine,1993; 11(7):76~6.
    [62]Raengsakulrach B, Nisalak A, Gettayacamin M, et al. Am. J. Trop.Med. Hyg.,1999,60(3): 343~349.
    [63]Ramakrishna C, Desai A, Shankar SK, et al. Vaccine,17(23~24):3102~3108.
    [64]Tartaglia J, Cox WI, Pincus S, et al. Dev. Biol. Stand.1994,82:125~129.
    [65]Kanesa-thasan N, Smucny JJ, Hoke CH, et al. Vaccine,2000,19(4~5):483~491.
    [66]Konishi E, Pincus S, Paoletti E, et al. Virology,1992,190(1):454~458.
    [67]Monath TP, Soike NK, Levenbook I, et al. Vaccine,1999,17(15~16).
    [68]Chambers TJ, Nestorwic ZA, Mason PW, et al. J. Virol.,1999,73(4):3095~3101.
    [69]McCown J, Cochran M, Putnak R, et al. Am. J.Trop. Med. Hyg.,1900,42(5):491~499.
    [1]殷震,刘景华.动物病毒学,第二版.北京:科学出版社,1997
    [2]Wickham TJ Cell 1993;73:309
    [3]W. C. Russell.Update on adenovirus and its vectors. J Gen Virol 2000;81:2573-2604.
    [4]Graham, F. L., Smiley, J., Russell, W. C.& Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. Journal of General Virology 1977,36, 59-72.
    [5]Hehir, K. M., Armentano, D., Cardoza, L. M., et al Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence. Journal of Virology.1996,70,8459-8467.
    [6]Gao, G. P., Engdahl, R. K.& Wilson, J. M. A cell line for high-yield production of E1-deleted adenovirus vectors without the emergence of replication-competent virus. Human Gene Therapy.2000,11,213-219.
    [7]Lusky, M., Grave, L., Dieterle, A., et al. Regulation of adenovirus-mediated transgene expres-sion by the viral E4 gene products: requirement for E4 ORF3. Journal of Virology.1999, 73,8308-8319.
    [8]Morral, N., O'Neal, W., Rice, K., et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proceedings of the National Academy of Sciences, USA 96,1999,12816-12821.
    [9]Hardy, S., Kitamura, M., Harris-Stansil, T., et al. Construction of adenovirus vectors through Cre-lox recombination. Journal of Virology.1997,71,1842-1849.
    [10]Kumar-Singh, R.& Chamberlain, J. S. Encapsidated adenovirus minichromosomes allow delivery and expression of a 14 kb dystrophin cDNA to muscle cells. Human Molecular Genetics 1996,5,913-921.
    [11]Lieber, A., Steinwaerder, D. S., Carlson, C. A. & Kay, M. A. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. Journal of Virology, 199973,9314-9324.
    [12]Morsy, M. A., Gu, M., Motzel, S., Zhao, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proceedings of the National Academy of Sciences, USA 95,1998,7866-7871.
    [13]Steinwaerder, D. S., Carlson, C. A.& Lieber, A. Generation of adenovirus vectors devoid of all viral genes by recombination between inverted repeats. Journal of Virology.1999,73, 9303-9313.
    [14]Fukuda K, bei M, Ugai H, E1A, EI B double-restrict adenovirus for oncolytic gene therapy of gallbladder cancer. Cancer Res 2003,63 4434-4440
    [15]N Cheshenko, N Krougkiak, RC Eisensmith, A novel system for the production of fully deleted adenovirus vectors that dose not require helper adenovirus Gene Therapy 2001,8:846-854
    [16]Huang TG, Savontaus MJ, Shinozaki K, Telomerase-dependent oncolytic adenovirus for cancer treatment. GeneTher,2003,10:1241-1247
    [17]KL Sargent, P Ng, C Evelegh Development of a size-restricted P 9-deleted helper virus for amplification of helper-dependent adenovirus vectors. Gene Ther 2004,11:504-511
    [18]Frits JF, Nnno K, Steve JC, Characterization of 911:A New Helper Cell Line for the Titration and Propagation of Early Region 1-Deleted Adenoviral Vectors Hum.Gene Ther 1996.7:215-222
    [19]Fallaux FJ, BoutA, Vander VI New helper cells and matched early region 1998:1909-1917
    [20]ImLer JL, Chztrier C, Dreyer D Novel Complementation cell lines derived from Human Lung Carcinoma A549 cells support the growth of E-1 Deleted Adenovirus Vectors 1996,3:75-84
    [21]Koizumi N, Mizuguchi H, Sakurai F. Reduction of natural adenovirus tropism to mouse liver by fiber-shaft exchange in combinant with both CAR-and alpha integrin-binding ablation. J Virol. 2003:7713062-13072
    [22]Contreras JL, Wu H, Smyth CA, Double genetic modification of adenovirus fiber with RGD polylysine motifs significantly enhances gene transfer to isolated human pancreatic islets. Transplantation,2003,76:252-261
    [23]Romanczuk H Hum Gene Ther 1999; 10 2615
    [24]Douglas JT Nat Biotechnol 1996 14 1574
    [25]Haisma HJ Gene Ther 1999;6;1649
    [26]Tsukuda K, Wiewrodt R, Molnar Kimber K An E2F-responsive replication selective adenovirus targeted to the defective cell cycle in cancer cells: potent antitumoral efficacy but no toxicity to normal cell. Cancer Re,2002,62,:3438-3447
    [27]Huang TG, Savontaus MJ, Shinozaki K, Telomerase-dependent oncolytic adenovirus for cancer treatment. GeneTher,2003,10:1241-1247
    [28]X Danthinne, E Werth. New tools fjor the generation of E12 and or E substituted adenoviral vectors Gene Therapy 2000 7 80-87
    [29]G Gao, X Zhou, MR Alvira, High throughput creation of recombinant adenovirus vectors by direct cloning green-white selection and mediated rescue of circular adenovirus plasmids in 293 cells. Gene Therapy 2003,10:1926-1930
    [30]Lee JH, Welsh MJ. Gene Ther, 1999:6
    [1]Sette A, Fikes J. Epitope2based vaccines:an update on epitope identification, vaccine design and delivery [J].Curr Opin Immunol,2003,15 (4):461
    [2]Schirle M, Weinschenk T, Stevanovic S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens [J]. J Immunol Methods,2001,257 (122):1216.
    [3]La Rosa C, Wang Z, Brewer JC, et al. Preclinical development of anadjuvant-free peptide vaccine with activity against CMV pp65 in HLA transgenic mice[J].Blood,2002,100:3681-3689.
    [4]Caro-Aguilar I, Rodriguez A, Calvo2Calle JM, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens[J]. Infectlmmun,2002, 70:3479-3492.
    [5]Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lym-phocytes[J]. Nature, 1996,383:787-793.
    [6]Nardin EH, Calvo2Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types[J]. JImmunol,2001,166:481-489.
    [7]Arnon R, Tarrab2Hazdai R, Steward M. A mimotope peptide-based vaccine against Schistosoma mansoni:synthesis and characterization [J]. Immunology,2000,101:555-562.
    [8]Hou Y, Gu XX. Development of peptide minotopes of lipooligosaccharide f rom nontypeable haemophilus influenzae as vaccine candidates[J]. J Immunol,2003,170 (8):4373
    [9]Frank HG, Bose P, Albieri2Borges A, et al. Evaluation of fusogenic t rophoblast surface epitopes as target s for immune cont raception[J]. Cont raception,2005,71 (4):282
    [10]Le Doussal JM, Piqueras B, Dogan I, et al. Phage display of peptide/ major histocom patibility complex [J]. J Immunol Methods,2000,241 (2):147
    [11]Scheibenbogen C, Sun Y, Keilholz U, et al. Identification of known and novel immunogenic T-cell epitopes f romtumor antigens recognized by peripheral blood T cells from patients responding to IL22based t reatment [J]. Int J Cancer,2002,98 (3):409
    [12]Panigada M, Sturniolo T, Besozzi G, et al. Identification of a promiscuous T2cell epitope in Mycobacteriumtuber-culosis Mce proteins[J]. Infect Immun,2002,70 (1):79
    [13]Del Guercio MF, Alexander J, Kubo RT, et al. Potent immunogenic short linear peptide const ruct s composed of B cell epitopes and Pan DR T helper Epitopes (PADRE) forantibody responses in vivo[J]. Vaccine,1997,15 (4):441
    [14]Nardin EH, Calvo2Calle JM, Oliveira GA, et al. A totallysynthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicitsimmune responses in volunteers of diverse HLA types [J].J Immunol,2001,166 (1):481
    [15]Livingston BD, Newman M, Crimi C, et al. Optimization of epitope processing enhances immunogenicity of DNA vaccines[J].Vaccine,2001,19 (32):4652
    [16]Livingston B, Crimi C, Newman M, et al. A rational st rategy to design multiepitope immunogens2based multiple HTL epitopes[J]. J Immunol,2002,168 (11):5499
    [17]Velders MP, Weijzen S, Eiben GL, et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope st ring DNA vaccine[J]. J Immunol,2001,166 (9):5366
    [18]Partidos C, stanley C, steward M. The influence of orientation and number of copies of T and B cell epitopes on the specificity and affinity of antibodies induced by chimeric peptides[J]. Eur J Immunol,1992,22 (10):2675
    [19]Deliyannis G, Jackson DC, Ede NJ, et al. Induction of Long-term memory CD8R T cells for recall of viral clearing responses against influenza virus[J]. J Virol,2002,76(9):4212
    [20]BenMohamed L, Wechsler SL, Nesburn AB. Lipopeptide vaccines:yesterday, today, and tomorrow[J]. Lancet Infec Dis,2002,2 (7):425
    [21]Kawamura KS,Su RC, Nguyen LT, et al. In vivo generation of cyto toxic T cells from epitopes displayed on peptide-based delivery vehicles [J]. J Immunol,2002,168
    [22]何畏,史常旭,梁志清,等.多价精子抗原表位多肽-免疫刺激复合物的抗生育作用研究。重庆医学,2002,31(7):555
    [23]Alexander J, Oseroff C, Dahlberg C, et al. A decaepitope polypeptide primes for multiple CD8R IFNy and Th lymphocyte responses:evaluation of multiepitope poly pep-tides as a mode for vaccine delivery[J]. J Immunol,2002,168 (12):6189
    [24]Zwaveling S, Ferreira Mota SC, Melief CJ, et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides[J]. J Immunol,2002,169 (1):350
    [25]Barton GM, Medzhitov R. Toll21ike receptor signaling pathways[J]. Science,2003,300 (5625):1524
    [26]La Rosa C, Wang Z, Diamond DJ, et al. Preclinical development of an adjuvant free peptide vaccine with activity against CMV pp65 in HLA t ransgenic mice [J]. Blood,2002,100 (10):3681
    [27]Chikh GG, Kong S, Bally MB, et al. Efficient delivery of antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells result s in the activation of CD8R T cells[J]. J Immunol,2001,167 (11):6462
    [28]Leifert JA, Harkins S, Whitton JL. Full21engthproteins attached to the HIV tat protein t ransduction domain are neither t ransduced between cells, nor exhibit enhanced immunogenicity[J]. Gene Ther,2002,9 (21):1422
    [29]Patarroyo ME, Amador R, Clavijo P, et al. A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmid iumfalciparumi malaria [J].Nature,1988, 332:158-161.
    [30]Caro-Aguilar I, Rodriguez A, Calvo-Calle JM, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens[J]. Infect Immun,2002, 70:3479-3492
    [31]Nardin EH, Oliveira GA, Calvo2Calle JM, et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes [J].J Infect Dis,2000, 182:1486-1496.
    [32]Nardin EH, Calvo2Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types[J]. J Immunol,2001,166:481-489
    [33]Yang W, Jackson DC, Zeng Q, et al. Multi2epitope schistosome vaccine candidates tested for protective immunogenicity in mice[J]. Vaccine,2000,19:103-113.
    [34]Argiro L, Henri S, Dessein H, et al. Induction of a protection against S. mansoni with a MAP containing epitopes of Sm372GAPDH and Sm102DLC. Effect of coadsorption with GM2CSF on alum[J]. Vaccine,2000,18:2033-2038.
    [35]Arnon R, Tarrab2Hazdai R, Steward M. A mimotope peptide-based vaccine against Schistosoma mansoni:synthesis and characterization[J].Immunology,2000,101:555-562.
    [36]Efferson CL, Schickli J, Ko BK, et al. Activation of tumor antigen specific cytotoxic T lymphocytes (CTLs) by human dendritic cells infected with an attenuated influenza A virus expressing a CTL epitope derived from the HER2/neu proto-oncogene[J].J Viro12003,77 2:7411-7424.
    [37]Huebener N, Lange B, Lemmel C, et al. Vaccination with minigenes encoding for novel'self'antigens are effective in DNA-vaccination against neuroblastoma[J]. Cancer Lett,2003,197:2112217
    [38]Dakappagari NK, Pyles J, Parihar R, et al. A chimeric multi-human epidermal growth factor receptor-2 B cell epitope peptide vaccine mediates superior antitumor responses[J]. J Immunol 2003,170:424224253.
    [39]Li WM, Dragowska WH, Bally MB, et al. Effective induction of CD8+T2cell response using CpGoligodeoxynucleotides and HER-2/neu2derived peptide coencapsulated in liposomes[J]. Vaccine,2003,21:3319-3329.
    [40]BenMohamed L, Wechsler SL, Nesburn AB. Lipopeptide vaccines yesterday, today, and tomorrow[J]. Lancet Infect Dis,2002,2:425-431.
    [41]Celis E. Getting peptide vaccines to work:just a matter of quality control [J]. J Clin Invest 2002,110:1765-1768
    [1]殷震,刘景华.动物病毒学(第2版)[M].北京:科学出版社,1997,6312640.
    [2]Scherer, W.F., Moyer, J.T., Izumi, T., Gresser, I., Mccown, J.Ecologic studies of Japanese encephalitis virus in Japan. VI. Swine infection. Am. J. Trop. Med. Hyg.1959,8:698~ 706.
    [3]Rey F. A., Heiz, F. X., Mandle, C., et al. The envelope glycoprotein from Tick-Borne Encephlitis virus at 2A resolution. Nature 1995,375:291~298.
    [4]Mandl C W, Guirakhoo F, Holzmanu H, et al. Antigenic structure of the flavivirus envelope protein E at the molecular level using Tick-borne Encephalitis virus as a Model. J Virol 1989,63: 564~571.
    [5]Wu, S.-C., Lin, C.-W. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain Ⅲ of the Japanese encephalitis virus envelope protein. Virus Research 2001; 76:59-69.
    [6]Kolaska, A.S., Kulkarni-Kale, U.. Prediction of three-dimensional structure and mapping of conformational epitopes. Virology 1999;261:31-42.
    [7]Seif, S.A., Morita, K., Matsuo, S., Hasebe, F., Igarashi, A. Finger mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system.Vaccine1995;13:1515-1521.
    [8]Takada, K., Masaki, H., Konishi, E. Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+ cytotoxic T lymphocytes. Archives of Virology 2000; 145:523-534.
    [9]M. Kutubuddin, A. S. Kolaskar, S. Galande, M. M. Gore, S. N. Ghosh and K. Banerjee.Recognition of helper T cell epitopes in envelope (E) glycoprotein of japanese encephalitis, West Nile and Dengue viruses. Molecular Immunology.28,1991,149-154
    [10]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆试验指南[M],第二版,1999,24-28
    [11]罗玉均,张桂红,陈建红,廖明,任涛,罗开健.猪日本脑炎病毒的致病机理研究进展.动物医学进展,2005,26(11):28-32
    [12]陈义锋,金宁一,贾雷等H3、H5、H7、Hg亚型流感病毒通用多表位核酸疫苗构建及表达研究.中华微生物学和免疫学杂志2007;27(2);1136-1138
    [13]Mundrigri S. Ashok, Pundi N. Rangarajan, etal. Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences: studies in a murine intracerebral virus challenge model. Vaccine,2002; 20:1563-1570.
    [14]Alexander J, Fikes J, Hoffman S, etal. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunol Res,1998; 18:79-92.
    [15]Yi A K, Chace J H, Cowdery J S, etal. IFN-y promotes IL-6 and IgM secretion in response to CpG motifs in bacterial DNA and oligodeoxy nucleotide. J. Immunol,1996; 156:558-564.
    [16]Yu D, Zhao Q, Kandimalla E R, etal. Accessible 5'-end of CpG-contaioning phosphorothioate oligodeoxynucleo tides is essential for immunostimulatory activity. Bioorg Med Chem Lett,2000; 10:2585-2588.
    [17]RisiniD. W, M J. M cClusk ie, Yu Xu, et al. CpG DNA induces stronger immune responses with less toxicity than other adjuvant. Vaccine,2000; 18:1755-1762
    [1]Sumiyoshi H, Mori C, Fuke I, et al. Complete nucleotide sequence of t he J apanese encephalitis virus genome RNA[J].Virology.1987,161:497-510.
    [2]Markino Y, Tadano M, Apaleakis, et al. Potential use of baculovirus expressed degus 4E protein as diagnostic antigen regions endemic for dengue and J apanese Encephalitis [J]. Am JTrop Med Hyg,1991,45:631-643.
    [3]Kolaskar A S, Kulkarni-kale U. Prediction of there-dimensional structure and mapping of conformational epitopes of envelope glycoprotein Japanese Encephalitis virus. [J]. Virology, 1999,261:31-42.
    [4]Sato T, Takamura C, Yasuda A, et al.1993. High-level expression of the Janpanese encephalitis virus E protein by recombinant vaccinia virus and enhancement of its extracel lular release by the NS3 gene product. Virology.192:483-499
    [5]Poland J D, Cropp C B, Craven R B, et al. Evaluation of t hepotency and safety of inactivated J apanese encephalitis vaccine in US inhabitants [J]. J Infect Dis,1990,161: (5):8782882
    [6]Kolaska, A.S., Kulkarni-Kale, U.. Prediction of three-dimensional structure and mapping of conformational epitopes. Virology 1999;261:31-42.
    [7]Seif, S.A., Morita, K., Matsuo, S., Hasebe, F., Igarashi, A. Finger mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system.Vaccine1995;13:1515-1521.
    [8]Takada, K., Masaki, H., Konishi, E. Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+cytotoxic T lymphocytes. Archives of Virology 2000; 145:523-534.
    [9]张惠展.基因工程概论[M].武汉:华中理工大学出版社.1999,220.
    [10]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南,第二版,1999:845-888.
    [11]M. Kutubuddin, A. S. Kolaskar, S. Galande, M. M. Gore, S. N. Ghosh and K. Banerjee.Recognition of helper T cell epitopes in envelope (E) glycoprotein of japanese encephalitis, West Nile and Dengue viruses. Molecular Immunology.28,1991,149-154
    [1]Shope, R. E. Medical significance of togaviruses:An overview of diseases caused by togaviruses in man and in domestic and wild vertebrate animals. In aThe Togaviruseso(R. W. Schlesinger, Ed.). Academic Press, New York,1980,47~82.
    [2]Monath, T. P. Pathobiology of the flaviviruses. In aThe Togaviridae and Flaviviridaeo(S. Schlesinger and M. J. Schlesinger, Eds.), Plenum, New York.1986,375~440.
    [3]Scherer, W. F., Moyer, J., et al, J. Ecologic studies of Japanese encephalitis virus in Japan. VI. Swine infection. Am. J. Trop. Med. Hyg.1959,8:698~706.
    [4]Konno, J., Endo, K., Agatsuma, et al. Cyclic outbreaks of Japanese encephalitis among pigs and humans. Am. J. Epidemiol.1966,84:292~300.
    [5]Oya, A. The role of mammals as primary and supplementary hosts. Jpn. J. Med. Sci. Biol. Suppl. 1967,20:26~30.
    [6]Igarashi, A. Japanese encephalitis: Virus, infection, and control.In aControl of Virus Diseaseso (E. Kurstak, Ed.),2nd ed.,1992,309~342.
    [7]Fujisaki, Y., Sugimori, T., Morimoto, et al. Development of an attenuated strain for Japanese encephalitis live virus vaccine for porcine use. Natl. Inst. Anim. Health Q. Tokyo.1975,15:15~ 23.
    [8]Inoue, Y. K. An attenuated Japanese encephalitis vaccine. Prog. Med. Virol.1975,19:247~256.
    [9]Kurata, K. Outline of vaccines for animal use. Ⅳ. Japanese encephalitis live vaccine. J. Vet. Med. Sci.1980a,33:85~.
    [10]Kurata, K. Outline of vaccines for animal use. V. Japanese encephalitis inactivated vaccine. J. Vet. Med. Sci.1980b,33:132~134.
    [11]Yamagishi, A. Japanese encephalitis vaccine. J. Vet. Med.1989,820:14~18.
    [12]Yoshida, I., Takagi, M., Inokuma, E., et al. J. Establishment of an attenuated ML-17 strain of Japanese encephalitis virus. Biken J.1981,24:47~67.
    [13]Poland J D, Cropp C B, Craven R B, et al. Evaluation of t hepotency and safety of inactivated J apanese encephalitis vaccine in US inhabitant s[J]. J Infect Dis,1990,161 (5):8782882
    [14]Rey F. A., Heiz, F. X., Mandle, C., et al. The envelope glycoprotein from Tick-Borne Encephlitis virus at 2A resolution. Nature 1995,375:291~298.
    [15]Mandl C W, Guirakhoo F, Holzmanu H, et al. Antigenic structure of the flavivirus envelope protein E at the molecular level using Tick-borne Encephalitis virus as a Model. J Virol 1989,63: 564~571.
    [16]Wu, S.-C., Lin, C.-W. Neutralizing peptide ligands selected from phage-displayed libraries mimic the conformational epitope on domain Ⅲ of the Japanese encephalitis virus envelope protein. Virus Research 2001; 76:59-69.
    [17]Kolaska, A.S., Kulkarni-Kale, U.. Prediction of three-dimensional structure and mapping of conformational epitopes. Virology 1999;261:31-42.
    [18]Seif, S.A., Morita, K., Matsuo, S., Hasebe, E., Igarashi, A. Finger mapping of neutralizing epitope(s) on the C-terminal of Japanese encephalitis virus E-protein expressed in recombinant Escherichia coli system.Vaccine1995;13:1515-1521.
    [19]Takada, K., Masaki, H., Konishi, E. Definition of an epitope on Japanese encephalitis virus (JEV) envelope protein recognized by JEV-specific murine CD8+ cytotoxic T lymphocytes. Archives of Virology 2000; 145:523-534.
    [20]M. Kutubuddin, A. S. Kolaskar, S. Galande, M. M. Gore, S. N. Ghosh and K. Banerjee.Recognition of helper T cell epitopes in envelope (E) glycoprotein of japanese encephalitis, West Nile and Dengue viruses. Molecular Immunology.28,1991,149-154
    [21]Venugopal, K. and Gould, F.A. Towards a new generation of flavivirus vaccines. Vaccine 12. 1994,966~975.
    [22]Mathur, A., Arora, K.L. and Chaturvedi, U.C. Host defense mechanisms against Japanese encephalitis virus infection in mice..1. Gen. Virol.1983,64:805~811.
    [1]Woan R C. Robert B T, Rebaca R R H. Genetic Variation of Japanese encepha-litis virus in Nature [J]. J Gen Virol.1990.71:2915.
    [2]Konish E. Pincus S. Paoletti E et al. Avipoxvirus2vectored JEV vaccine[J]. Vaccine,1994,12 (7):633.
    [3]陈焕春.规模化养猪场疫病控制与净化[M].北京:中国农业出版社,2000,187.
    [4]黄庆生,马文煜,姜绍谆,等.逆转录-半套式-聚合酶链反应在乙脑早期诊断中的应用[J].细胞与分子免疫学杂志,1998,14(4):258.
    [5]赵书广,中国养猪大成[M],北京;中国农业出版社,2001,936.
    [6]吴玉水,马文煜,朱忠勇.日本脑炎病毒基因疫苗研究进展[J].细胞与分子免疫学杂志,2002,18(5):5122514.
    [7]W. C. Russell.Update on adenovirus and its vectors[J]. J Gen Virol 2000,81:2573-604.
    [8]Strihley J M, Rehman K S, Niu H R, et al. Gene therapy and reproductive medicine. Fertil and Steril,2002,77:645-657
    [9]Chia, S.C., Leung, P.S.C., Liao, C.P., Haung, J.H., Lee, S.T. Fragment of Japanese encephalitis virus protein produced in E. coli protects mice from virus challenge. Microbial Pathogenesis2001; 31:9-19.
    [10]Ge, F., Qiu, Y., Gao, X., Yang, Y., Chen, P. Fusion expression of major antigenic segment of JEV E protein-hsp70 and the identification of domain acting as adjuvant in hsp70. Veterinary Immunology and Immunopathology 2006; 113:288-296.
    [11]Lin, Y., Chen, L., Liao, C., Yeh, C., et al. Immunization with Japanese Encephalitis Virus Nonstructural Protein NS1 Elicits Protective Immunity in Mice. Journal of Virology, Jan.1998, 191-200
    [12]M.S. Ashok, P.N. Rangarajan. Immunization with plasmid DNA encoding the envelope glycoprotein of Japanese Encephalitis virus confers signifcant protection against intracerebral viral challenge without inducing detectable antiviral antibodies. Vaccine 18 (2000) 68-75
    [13]Chang Jer Wu a, b, Tsung Lin Li, Hui Wen Huang, Mi Hua Tao, Yi Lin Chan. Development of an effective Japanese encephalitis virus-specific DNA vaccine. Microbes and Infection xx (2006) 1-9
    [14]Yasuda, A., Kimura-Kuroda, J., Ogimoto, M., Miyarmito, J., Sata, T., Sato, T. Induction of protective immunity in animals vaccinated with recombinant vaccinia viruses that express preM and E glycoproteins of Japanese encephalitis virus. Journal of Virology 1990;64:2788-2795.
    [15]McCown, J., Cochran, M., Putnak, R., Feighny, R., Burrons, J., Henchal, E.Protection of mice against lethal Japanese encephalitis with a recombinant baculovirus vaccine. American Journal of Tropical Medicine and Hygiene 1990;42:491-499.
    [16]Mohan Babu Appaiahgari, Manisha Saini, Manish Rauthan, Jyoti, Sudhanshu Vrati. Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes and Infection 8 (2006) 92-104
    [17]Crouzet J, Naudin L, Orsinic C, et al. Recombinational construction in Escherichia coli of infections adenovirual genomes[J].Proc Natl Acad Sci USA,1997,94:14
    [18]He TC, Zhou S, Costa LT, et al. A simplified system for generating recombinant adenovirnses[J]. Proc Natl Acad Sci USA,1998,95:2509-2514.
    [1]W. C. Russell.Update on adenovirus and its vectors. J Gen Virol 2000;81:2573-2604.
    [2]殷震,刘景华.动物病毒学,第二版.北京:科学出版社,1997
    [3]Poland J D, Cropp C B, Craven R B, et al. Evaluation of t hepotency and safety of inactivated J apanese encephalitis vaccine in US inhabitant s[J]. J Infect Dis,1990,161 (5):8782882
    [4]Scherer, W.F., Moyer, J.T., Izumi, T., Gresser, I., Mccown, J.Ecologic studies of Japanese encephalitis virus in Japan. Ⅵ. Swine infection. Am. J. Trop. Med. Hyg.1959,8:698~ 706.
    [5]彭丽英,汪明.猪日本乙型脑炎病毒NS1基因重组腺病毒的构建及表达中国兽医科学2007,37(07):593-596
    [6]Kolaska, A.S., Kulkarni-Kale, U.. Prediction of three-dimensional structure and mapping of conformational epitopes. Virology 1999;261:31-42.
    [7]F.-F. Ge, Y.-F. Qiu, Y.-W. Yang and P.-Y. Chen.An hsp70 fusion protein vaccine potentiates the immune response against Japanese encephalitis virus. Arch Virol (2007) 152:125-135
    [8]Mohan Babu Appaiahgari, Manisha Saini, Manish Rauthan, Jyoti, Sudhanshu Vrati. Immunization with recombinant adenovirus synthesizing the secretory form of Japanese encephalitis virus envelope protein protects adenovirus-exposed mice against lethal encephalitis. Microbes and Infection 2006:(8)92-104
    [9]Ashok, M.S., Rangarajan, P.N. Protective efficacy of a plasmid DNA encoding Japanese encephalitis virus envelope protein fused to tissue plasminogen activator signal sequences:studies in a murine intracerebral virus challenge model. Vaccine 2002;20:1563-1570.
    [1]WUSF, LEE CJ, LIAO C L, et al. Antiviral effect s of an imi nosugar derivative on flavivirus infections[J]. J Virol,2002,76 (8):359623604.
    [2]Scherer, W.F., Moyer, J.T., Izumi, T., Gresser, I., Mccown, J.
    Ecologic studies of Japanese encephalitis virus in Japan. VI. Swine
    infection. Am. J. Trop, Med. Hyg.1959,8:698~706.
    [3]Monath, T. P. Pathobiology of the flaviviruses. In aThe Togaviridae and Flaviviridae0 (S. Schlesinger and M. J. Schlesinger, Eds.), Plenum, New York. 1986,375~440.
    [4]Mandl C W, Guirakhoo F, Holzmanu H, et al. Antigenic structure of the flavivirus
    envelope protein E at the molecular level using Tick-borne Encephalitis virus as a Model. J Virol 1989,63:564~571.
    [5]Seder.R.A, Hill. A.V. Vaccines against intracellular infections requiring cellular immunity. Nature,2000; 406:793-798
    [6]Ramshaw I.A., Ramsay A.J. The prime-boost strategy:exciting prospects for improved vaccination. Immunol Today,2000; 21:163-165
    [7]McShane, H. Prime-boost immunization strategies for infectious diseases. Curr Opin Mol Ther,2002; 4:23-27
    [8]Estcourt M.J. Prime-boost immunization generates a high frequency, high-avidity CD8+ cytotoxic T lymphocyte population. Int. Immunol,2002; 14:31-37
    [9]Shedlock. D. J, Shen. H. Requirement for CD4+T cell help in generating functional CD8+T cell memory. Science,2003; 300:337-339
    [10]Sun. J.C, Bevan. M.J. Defective CD8+T cell memory following acute infection without CD4+T cell help. Science,2003; 300:339-342
    [11]Robinson. H. L. Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant poxvirus booster immunizations. Nat.Med,1999; 5: 526-534
    [12]Hanke T, Samuel RV, Blanchard TJ, et al. Effective induction of simian immunodeficiency virus-specific cytotoxic T lymphocytes in macaques by using a multiepitope gene and DNA prime-modified vaccinia virus Ankara boost vaccination regimen. J Virol,1999; 73:7524-7532.
    [13]Amara, R.R. Different patterns of immune responses but similar control of a simian-human immunodeficiency virus 89.6P mucosal challenge by modified vaccinia virus Ankara (MVA) and DNA/ MVA vaccines. J Virol,2002; 76:7625-7631
    [14]SchneiderJ. S. C, GilbertT.A.V. Enhanced immunogenicity for CD8+T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med,1998; 4:397-402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700