用户名: 密码: 验证码:
沼泽红假单胞菌(Rhodopseudomonas palustris)生物降解2-氯苯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯苯酚类废水污染环境且难以处理,是当前国内外环境科学与环境工程领域的研究热点与难点。本论文以2-氯苯酚(o-chlorophenol,2-CP)为研究对象,从某农药厂排污口底泥中分离筛选得到一株可降解2-CP的野生菌株,对该菌株进行生化鉴定及16SrDNA系统发育分析,并对其进行紫外诱变,全面探讨了降解菌株对2-CP的毒性效应、降解特性、降解机理等多方面内容,在此基础上进行了固定化菌体细胞处理2-CP的相关试验。通过上述研究,以期为探索2-CP的生物处理方法、污染环境的生物修复及光合细菌的有效利用提供有益的参考。本研究的主要结果如下:
     1.从某农药厂排污口下游浅层底泥中富集、驯化、分离、筛选得到1株2-CP降解菌。通过对菌株菌落及细胞形态观察、活细胞紫外光谱扫描、生理生化特征试验、碳源利用试验以及16SrDNA序列同源性分析,鉴定该菌系沼泽红假单胞菌(Rhodopseudomonas palustris),为光合细菌。
     2.对降解菌株进行紫外诱变,获得诱变菌株PSB-1D。通过紫外诱变时间与致死率效应试验确定最佳诱变时间为50 s。比较诱变前后菌株对2-CP的降解效果及脱氢酶活性、安全质量浓度和半致死浓度等耐受性考察指标,结果表明,菌株经过紫外诱变处理后对2-CP的降解效果及耐受性能均得到明显改善。
     3.不同供氧光照对PSB-1D生长及2-CP降解效果的影响表明,光合细菌PSB-1D在光照厌氧和黑暗好氧两种条件下均能对2-CP共代谢降解。其中:
     在光照厌氧条件下,菌株PSB-1D的最佳培养条件为:3.0g/L丙酸钠为共代谢碳源,2.0g/L酵母膏为氮源,初始pH值为7.0,培养温度为30℃,光照度为4000 lx左右,在此条件下培养7d后,PSB-1D对2-CP降解率可达62.08%;
     在黑暗好氧条件下,菌株PSB-1D的最佳培养条件为:2.0g/L葡萄糖为共代谢碳源,0.6g/L(NH4)2S04和0.2g/L酵母膏为氮源,初始pH值为7.0,摇床转速130 r/min,在此条件下培养7d后,PSB-1D对2-CP的降解率可达74.2%。
     4.采用Andrews方程模拟得到菌株PSB-1 D在光照厌氧和黑暗好氧条件下对2-CP的降解动力学方程,分别为:光照厌氧:黑暗好氧:
     5. SDS-PAGE全细胞蛋白电泳结果表明,2-CP的降解酶是菌株PSB-1D在光照厌氧或黑暗好氧条件下,分别利用丙酸钠和葡萄糖作为生长底物提供能源和碳源时,由2-CP作为非生长底物诱导产生的,它们不同于PSB-1D利用生长底物时产生的酶。
     6.通过对降解过程中脱氯率及苯甲酸和4-羟基苯甲酸含量的分析,推断出菌株PSB-1D光照厌氧条件下降解2-CP主要是通过脱掉氯离子并生成苯甲酸的代谢途径开环完成的。
     7.对降解过程中游离氯离子浓度、菌体细胞提取液中邻苯二酚1,2双加氧酶和邻苯二酚2,3-双加氧酶的酶活性分别进行测定,推断出菌株PSB-1D好氧黑暗条件下降解2-CP的途径主要是先脱掉氯离子,之后再在邻苯二酚1,2双加氧酶的催化作用下将苯环邻位裂解开环进行的。
     8.通过不同材料对比试验,确定海藻酸钠为光合细菌PSB-1D的最佳包埋材料。利用向海藻酸钠中添加活性炭的方法可提高固定化微生物小球的性能及其对2-CP的处理效果。以2-CP降解率为考察指标的正交试验确定了固定化PSB-1D菌体细胞的最优方案:活性炭添加量为1%,海藻酸钠浓度为3%,包埋菌体量/包埋材料量为1/20。在此条件下,固定化微生物小球培养7d后对2-CP的降解率为76.5%。
     9.采用含固定化微生物小球的SBR反应器对自配2-CP废水进行试验研究,确定最佳工艺条件为:反应时间10h,固定化微生物小球投加量为20g,曝气量为100 L/h,闲置时间为1 h。在此条件下,反应器系统显示出稳定的2-CP去除性能和较好的微生物小球重复利用性。
With the known toxicological effects of correlate chlorinated phenols and their derivatives, as well as their environmental contamination with bioaccumulation, study on the treatment of chlorophenols wastewater is the present focus and challenge in research area of environmental science and engineering fields worldwide.
     In this thesis, the investigation on biodegradation of o-chlorophenol (2-CP) by the photosynthetic bacteria Rhodopseudomonas palustris was carried out. The identification and ultraviolet mutation of 2-CP-degrading bacterial, the characteristics and mechanism of 2-CP degradation and immobilization of photosynthetic bacteria were studied respectively. The results were expected to supply useful references for environmental quality evaluation and bioremediation of halogenated hydrocarbon pollution. The main results are reported as follows:
     1. A strain of bacterium named 1D with the biodegrability of 2-CP was isolated and screened from shallow substrate sludge in downstream side of the sewage outfall of an insecticide factory. Based on the colony and morphological properties, absorption spectrum analysis of living cells, general physiological biochemical characteristics and 16SrDNA, the strain 1D was identified as photosynthetic bacteria Rhodopseudomonas palustris.
     2. In order to obtain 2-CP degrading mutant with high efficiency, the strain 1D was mutated by ultraviolet. According to the ultraviolet mutation time and lethality effect curve, the optimizing mutation time was determined as 50 s. The mutant strain was named as PSB-1D. The degradation rate of 2-CP by the mutant strain PSB-1D was up to 67%, which was over 98% higher than that of the original strain 1D. The results of the dehydrogenase activity tests, the lowest observed effect of 2-CP concentrations (LOEC) tests and the 96 h median lethal concentration (96-LCso) tests demonstrated that the mutant strain PSB-1D performed higher tolerance to 2-CP than that of the original strain 1D, being regarded as the better strain in term of the 2-CP degradation.
     3. Influence on strain PSB-1D growth and 2-CP degradation under various conditions of illumination and oxygen was investigated. The results showed strain PSB-1D was capable of degrading 2-CP, based on cometabolism mechanism, under the illuminated anaerobic condition or dark aerobic condition.
     Under the illuminated anaerobic condition, the optimizing condition in term of the degradation efficiency was initial 2-CP concentration at 50 mg/L,3.0 g/L sodium propionate as cometabolism carbon substrate,2.0 g/L yeast extract as nitrogen sources, initial pH value at 7.0, culture temperature at 30℃, intensity of illumination at about 4000 lx and culture time at 7 d, with the degradation rate of 2-CP by strain PSB-1D being 62.08%.
     Under the dark aerobic condition, the optimizing condition in term of the degradation efficiency was initial 2-CP concentration at 50 mg/L,2.0 g/L glucose as cometabolism carbon substrate,0.6 g/L (NH)2SO4 and 0.2 g/L yeast extract as nitrogen sources, initial pH value at 7.0, rotation speed 130 r/min and culture time at 7 d, with the degradation rate of 2-CP by strain PSB-1D being 74.2%.
     4. Under the illuminated anaerobic condition and dark aerobic condition, the degradation kinetic data fitted the Andrews model well. The biodegradation process of 2-CP can be well described by enzymatic reaction of high concentration inhibition. The 2-CP degradation kinetics equation is: Illuminated anaerobic: Dark aerobic:
     5. With the total cellular proteins electrophoresis being analyzed by SDS-PAGE, induction mechanism of the key cometabolism degradation enzyme of 2-CP was studied under the illuminated anaerobic condition and dark aerobic condition, which showed that the specific degrading enzyme for 2-CP degradation were induced by 2-CP itself when sodium propionate and glucose were served as the growth substrate respectively.
     6. Analysis of degradation products of 2-CP testes under the illuminated anaerobic condition showed that benzoic acid was produced in the degradation process. The probable degradation pathway of 2-CP by Rhodopseudomonas palustris PSB-1D taken in the illuminated anaerobic condition was that 2-CP was dechlorinated and passed through benzoic acid routes for aromatic ring cleavage.
     7. The results of free state chloride ion concentration tests, catechol 1,2-dioxygenase activities and catechol 2,3-dioxygenase assays showed that the probable degradation pathway of 2-CP by Rhodopseudomonas palustris under the aerobic dark condition was 2-CP being dechlorinated initially, and then ortho ring cleavage being catalyzed by catechol 1,2-dioxygenase.
     8. Rhodopseudomonas palustris PSB-1D being immobilized with sodium alginate as immobilizing carrier and activated carbon as additive material, the optimal conditions of immobilized cell preparation had been determined through orthogonal experiments. The results showed that the optimum conditions for the immobilization were as follows:activated carbon concentration 1%, sodium alginate concentration 3%, immobilized cells/investment materials 1/20. Under the chosen conditions, the biodegradation rate of 2-CP by the immobilized photosynthetic bacteria was 76.5% after 7 days culture.
     9. The immobilized photosynthetic bacteria were added to the Sequencing Batch Reactor (SBR). The effects of reaction parameters(immobilized cells addition, aeration time, aeration rate, and so on) on 2-CP degradation efficiency in the reactor were studied. The results showed that, under dark aerobic condition, the optimum technological conditions for the bioreactor with effective volume 5 L were as follows:aeration time 10 h, immobilized cells addition 20 g, aeration rate 100 L/h, idle time 1 h. Under this condition, bioreactor system could treat the 2-CP wastewater effectively and steadily, with the removal rate of 60% or so.
引文
[1]钱易.重点有机染物生物降解性能评价[J],环境科学,1986,7(2):86-93.
    [2]杜连柱.氯酚污染地下水的强化原位生物修复技术[D],长春:吉林大学,2008.
    [3]胡俊,王建龙.H202对4-氯酚辐射降解动力学的影响[J],清华大学学报(自然科学版),2009,49(9):110-113.
    [4]丛燕青.氯酚的电化学降解行为及治理研究[D],杭州:浙江大学,2005.
    [5]Yuan S H, Lu X H. Comparison treatment of various chlorophenols by electro-Fenton method:relationship between chlorine content and degradation[J], Journal of Hazardous material,2005,118:85-92.
    [6]Lee C Y, Lee Y P. Degradation of 4-chlorophenol by enriched mixed cultures utilizing phenol and glucose as added growth substrate[J], World Journal of Microbiology and Biotechnology,2007,23:383-391.
    [7]E.I. Atuanya, T. Chakrabarti. Biotreatability and kinetics of UASB reactor to mixtures of chlorophenol pollutants[J], Environmental Monitoring and Assessment,2003,83:283-294.
    [8]A. Tarighian, G. Hill, J Headley, S. Pedras. Enhancement of 4-chlorophenol biodegradation using glucose[J], Clean Technology Environmental Policy,2003,5:61-65.
    [9]Wang Guoying, Wen Jianping, Yu Guanghai. Anaerobic biodegradation of phenol by Candida albicans PDY-07 in the presence of 4-chlorophenol[J], World Journal of Microbiol Biotechnol,2008,24:2685-2691.
    [10]Haigler R.E., et al. Biodegradation of mixtures of substituted benzenes by Pseudomonas sp. Strain JS150[J], Applied of Environment Microbiology,1992,68(7):2237-2244.
    [11]李淑彬,陈振军.微生物降解酚类化合物的研究进展[J],华南师范大学学报,2005,4(11):136-142.
    [12]戴树桂.环境化学[M],北京:高等教育出版社,1996.
    [13]陈静生.水环境化学[M],北京:高等教育出版社,1987.
    [14]O.赫茨英格.环境化学手册第四分册——反应和过程(二)[M],北京:中国环境科学出版社,1989.
    [15]戴树桂,王菊先.王义.2,4,6-三氯酚在土壤-小麦生态系统中的迁移、降解[J],中国环境科学,1995,15(3):204-207.
    [16]金相灿.有机化合物污染化学——有毒有机物污染化学[J],北京:清华大学出版社,1990.
    [17]Armenante P M. Kafkwitz, D, Lewandowski. et al. Anaerobic-aerobic treatment of halogenated phenolic compounds[J], Water Research,1999,33:681-692.
    [18]Campbell L M, Muir D C, Whittle D M, et al. Hydroxylated PCBs and other chlorinated phenolic compounds in lake trout (Salvelinus namaycush) blood plasma from the great lakes region[J], Environmental Science & Technology,2003,37(9):1720-1725.
    [19]Eder, Harrod, Eder G Influence of grassland on soil erosion, aggregate stability and water quality[J],16th General Meeting of the European Grassland Federation Grado Italy Eder,1996:683.
    [20]Grazia B, Lucia C, Priscilla F, et al. Chlorophenol removal from suspensions:effects of a specialized microbial inoculum and a degradable analogue[J], Biodegradaion,2004,15: 153-160.
    [21]Grazia B, Lucia C, Priscilla F. Chlorophenol removal from soil suspensions:effects of a specialized microbial inoculum and a degradable analogue[J], Biodegradation,2004,15: 153-160.
    [22]Atuanya E I, Chakrabarti T. Biotreatability and kinetics of UASB reactor to mixtures of chlorophenol pollutants[J], Environmental Monitoring & Assessment,2003,83: 283-294.
    [23]Younes M. Specific issues in health risk assessment of endocrine disrupting chemicals and international activities[J], Chemosphere,1999,39(8):1253-1257.
    [24]陆光华,耿亮.取代芳烃对藻类毒性与结构参数之间的定量关系研究[J],环境科学研究,2004,17(6):73-75.
    [25]常浩.五氯酚的内分泌干扰作用研究进展[J],环境与健康杂志,2002,19(3):279-281.
    [26]Miyazaki A, Amano T, Saito H, et al. Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere,2002,47(1):65-69.
    [27]张大仁.酚取代衍生物的QSAR研究[J].环境科学,1995,16(2):4-6.
    [28]United States Environmental Protection Agency. Report EPA 822-R-02-047 [M], Washington. D C:National recommended water quality criteria:2002.
    [29]WHO (World Health Organization). Environmental health criteria for pentachloro-phenol [M]. Supplement Draft, WHO:Geneva,1986.
    [30]薛军.辐射分解处理氯酚类有机污染物的研究[J],北京:清华大学,2007.
    [31]刘红,李安婕,全向春等.生物活性炭降解2,4-二氯酚的特性[J],环境科学,200,25(6):80-84.
    [32]王京平,刘斌,费正皓等.超高交联吸附树脂对氯苯酚生产废水的吸附去除研究[J],离子交换与吸附,2007,23(5):433-441.
    [33]李勇,张伯友,肖贤明等.氯酚化合物在活性炭上的吸附[J],水处理技术,2006, 32(3):19-22.
    [34]覃业贤.2,4-而氯酚废水处理的试验研究[J],安全与环境工程,2006,13(4):43-44,49.
    [35]立本英机,安部郁夫.活性炭的应用技术——其维持管理及存在问题[M],2002,7.
    [36]张光辉,郝爱玲,陆彩霞等.膜生物反应器对水源水中微量二氯酚的去除[J],化工学报,2007,58(2):471-475.
    [37]张鹏辉.壳聚糖/活性碳纤维/TiO2复合膜去除水中2,4-二氯苯酚[D],大连:大连理工大学,2009.
    [38]皮运正,王建龙.臭氧氧化水中2,4,6-三氯酚的反应机理研究[J],环境科学学报,2005,25(12):1619-1623.
    [39]庞素艳,江进,马军等.Mn02催化KMnO4氧化降解酚类化合物[J],环境科学,2010,31(10):2331-2335.
    [40]石荣.高级氧化技术与难降解毒性有机物污染处理[J],辽宁师专学报,2005,7(1):96-96,103.
    [41]曹国民,丁伟,杨国平等. Fenton试剂法降解废水中的芳香类化合物[J],华东理工大学学报(自然科学版),2008,34(6):830-833,886.
    [42]孙红旗,程友萍,金万勤等.镧、碳共掺杂Ti02的制备及其可见光催化性能[J],化工学报,57(7):1570-1574.
    [43]曹世晖.超声波/零价铁联合降解2,4-二氯酚的特性研究[J],杭州化工,2009,2:18-21.
    [44]Sofer S S, Lewandowsk G A, Lodaya M P, et al. Degradation of 2-chlorophenol by immobilized cell[J].Water Pollu Control Fed,1990,62(1):73-80.
    [45]Bouchard B, Beaudet R,Villemur R, et al. Isolation and characterization of Desulfitobacterium frappieri sp. nov, an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol[J], International Journal of Systematic Bacteriology, 1996,46(4):1010-1015.
    [46]MENG Wei, LIU Zheng-tao, FAN Wei. Study on pollutant characters of main estuary of Bohai Bay[J], Research of Environmental Sciences,2004,17(6):66-69.
    [47]Siddique M H, Pierre C C S, Bewtra J K, et al. Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution[J], Water Research,1993,27:883-890.
    [48]Steinle P, Stettler G, Stettler R, et al. Aerobic mineralization of 2,6-dichlorophenol byralstonia sp. Strain RK1[J], Applied and Environment Microbiology,1998.64:2566-2571.
    [49]JongT, Parry D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale uptlow anaerobic packed bed reactor runs[J], Water Research,2003, 27:3379-3389.
    [50]TIIROLA M A. M ANN1ST O M K. PUHAKKA J A, et al. Isolation and characterization of novosphingobium sp. strain MT1 adominant polychlorop-henol-degrading strain in a groundwater bioremediation system [J], Applied and Environment Microbiology, 2002,68:173-180.
    [51]Helen W. Oil refineries:a review of their ecological impactson the aquatic environment[J], Coastal and Shelf Science,2005,62:131-140.
    [52]HU Zhong-cheng. Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilized flavobacterium[J], Environmental Science and Technology,1994, 28:491-496.
    [53]SCHENK T, MULLER R, MORSBERGER F, et al. Enzymatic deha-logenation of pentachlorophenol by extracts from arthrobacter sp. strain ATCC 33790 [J]. Journal of Bacteriology,1989,171(10):5487-5491.
    [54]陈勇生,蔡宝立.2,4-二氯酚降解菌的分离及其特性[J],环境科学学报,1999,19(1):28-32.
    [55]Fava F, Armenante P M, Kakewitz D. Aerobic degradation and dechlorination of 2-chlorophenol,3-chlorophenol and 4-chlorophenol by a Pseudomonas pickettii strain[J], Letters in Applied Microbiology,21(5):307-312.
    [56]Neilson A H, Allard A S, Hynning P A, et al. Bacteria methylation of chlorinated phenols and guaiacols:formation of veratrols from guaiacols and high-molecular weight chlorinated lignin[J], Applied and Environment Microbiology,1983,45:774-783.
    [57]Spokes J R, Walker N. Chlorophenol and chlorobenzoic acid cometabolism by different genera of soil bacteria[J], Archives of Microbiology,1997,44:1421-1427.
    [58]Knackmuss H J, Heilwig M. Utilization and Co-oxidation of Chlorinated phenols by Pseudomonas sp.B 13 [J], Archives of Microbiology,1978,117:1-7.
    [59]Horvath R S. Cometabolism of methyl and chlorosubstituted catechols by an Achromobacter sp. Possessing a new mete-cleaving oxygenase[J], Biochemical Journal,1970, 119:870-876.
    [60]Park J H, ZhaoX, Voice T C. Comparison of biodegradation kinetic parameters for naphthalene in Batch and Sand Column Systems by Pseudomonas putida[J], Environmental Progress,2001,20(2):93-102.
    [61]阙秋妮,陈中豪.漂白废水中有机氯化物的生物降解[J],纸和造纸,1999,2:54.
    [62]彭丹,曾光明,陈耀等.白腐真菌生物技术降解氯酚污染物[J],生态学杂志,2007,26(10):1657-1664.
    [63]Walter M, Boyd-Wilson K S H, McNaughton D. et al. Laboratory trials on the bioremediation of aged pentach lorophenol residues. International Biodeterioration & Biodegradation,2005,55(2):121-130.
    [64]张业录,赵华,孙希雯,等.木素降解菌的筛选和氯酚生物降解研究[J],天津轻工业学院学报,2000,4:17-20,35.
    [65]安淼,周琪,李晖.混合菌降解氯苯酚类化合物[J],工业水处理,2003,23(8):23-25.
    [66]崔静,陆光华.高效复合菌对氯代苯酚类化合物的微生物修复研究[J],现代生物医学进展,2008,8(3):465-467.
    [67]温桂照,陈敏.高效优势混合菌降解废水中的氯代芳香族化合物[J],上海环境科学,2000,19(8):379-381.
    [68]姜梅,牛世全,展惠英等.氯酚类化合物的微生物降解研究进展[J],应用生态学报,2003,14(6):1003-1006.
    [69]Guthrie M A. Pentachlorophenol biodegradation-Ⅱ Anaerobic[J], Water Resource,1984,18(4):451-461.
    [70]瞿福平.氯代芳香化合物的生物降解性研究进展[J],环境科学,1997,18(2):74-78.
    [71]Koh S C, Mccullar M V, Focht DD. Biodegradation of 2,4-dichlorophenol through a distal meta-fission pathway[J], Applied and Environment Microbiology,1997,63:2054-2057.
    [72]Hollender J, Dott W, Hopp J. Regulation of chloro-and methylphenol degradation in Comamomas testosterone JH5[J], Applied and Environment Microbiology,1994, 60:2330-2338.
    [73]Hollender J, Hopp J, Dott W. Degradation of 4-chlorophenol via the meta cleavage pathway by Comamonas testosterone JH5[J], Applied and Environment Microbiology,1997, 63:4567-4572.
    [74]Kiyohara H, Hatta T, Ogawa Y, et al. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols[J], Applied and Environment Microbiology,1992,58:1276-1283.
    [75]陈勇生,庄源益,戴树桂.氯化芳香化合物的微生物降解研究[J],1997,5(2):17-25.
    [76]Deng-Yu L, Eberspacher J, Wager B, et al. Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1[J], Applied and Environment Microbiology,1991,57:1920-1928.
    [77]刘兴平.氯酚类有机污染物的生物降解研究进展[J],水资源保护,2008,24(4):58-62,82.
    [78]JONG T, PARRY D L. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs[J], Water Research,2003, 27:3379-3389.
    [79]Fantroussi S, Naveau H, Agathos S N. Anaerobic dechlorinating bacteria[J], Biotechnology Progress,1998,14(2).167-188.
    [80]Loffler F E, Tiedje J M, Sanford R A. Fraction of electrons consumed in electron acceptor reduction and hydrogen thresholds as indicators of halorespiratory physiology[J], Applied and Environment Microbiology,1999,65(9):4049-4056.
    [81]王建龙,Hegemann W.微生物群落对多氯酚的脱氯特性及机理研究[J],中国科学(B辑),2003,33(1):47-53.
    [82]Bhatnagar L, Fathepure B Z. Mixed culture in detoxification of hazardous waste in Zerkus J G(Eds.),Mixed cultures in biotechnology[M], NY:Mc Graw-Hill Book Co, 1995:293-340.
    [83]Wood S L, Ferguson J F, Benijgamin M M. Characterization of Chlorophenol and chloromethoxy benzene biodegration during anaerobic treatment[J], Environmental Science and Technology,1989,23(1):32-68.
    [84]陈元彩,蓝惠霞.固定化好氧菌和厌氧颗粒污泥在不同供氧条件下降解氯酚的研究[J],环境科学学报,2005,25(2):171-174.
    [85]Wanna C, Piyarat T, Jarin T, at al. Identification and cultivation of photosynthetic bacteria in wastewater from a concentrated latex processing factory [J], Biotechnology Letters, 2002,24:1055-1058.
    [86]WANG Jianqiu, GUAN Yuntao, TENG Fei. Accumulation of single cell protein by purple non-sulfur photosynthetic bacteria in starch wastewater treatment[J], Journal of Tsinghua University (Science & Technology),2007,47(3):348-351.
    [87]宋志文,郭本华,曹军.光合细菌及其在化工有机废水方面的应用[J],化工环保,2003,23(4):209-212.
    [88]R.E希坎南.伯杰氏细菌鉴定手册(第8版)[M],北京科学出版社,1984:257-309.
    [89]Chart Chiemchaisri, Lumpoon Jaitrong, Ryo Honda,et al. Application of photosynthetic bacteria treatment system for recovery of organic Carbon from Noodle Processing Wastewater[J], The Journal of General and Applied Microbiology,2005,5(12):24-30.
    [90]Getha K, Vikineswary S, Chong V C. Isolation and growth of the phototrophic bacterium Rhodopseudomonas Palustuis strain B1 in Sago-starch-processing wastewater[J], World Journal of Microbiolog&Biotechnology,1998,14:505-511.
    [91]Shipman R H, Fan L T, Kao I C. Single-cell protein production by photosynthetic bacteria[J], Applied Microbiology,1977,21:161-183.
    [92]武书彬,梁文芷.无机含硫化合物对光合细菌生物处理过程抑制作用的研究[J].中国造纸学报,1996,11(增刊):57-60.
    [93]Michiharu Kobayashi. Microbial Energy Conversion (Edited bySchlegel H. G. & Barnea J.) [M], New York:Pergamon Press.1977:443-453.
    [94]M. Kobayashi. Advances in Agricultural Microbiology (Edited by Rao N S S) [M], London:Butterworth Scientific,1982:643-661.
    [95]小林正泰.光合细菌处理高浓度有机废水[J],发西酵与工业,1978,36(9):753-760.
    [96]曾宇,成华.光合细菌(Photosynthetic Bacteria)法处理酒槽废水[J],四川大学学报(自然科学版),2002,39(2):382-384.
    [97]王有志,王凤君,鲍利等.光合细菌处理中药废水的试验研究[J],东北农业大学学报,2005,36(5):579-583.
    [98]杨涛,方德华,辜建平等.紫色非硫细菌的培养及处理酿酒废水的研究[J],环境科学与技术,2003,26(增刊):69-71.
    [99]艾翠玲.光合细菌对高浓度味精废水处理效果的影响[J],环境科学与管理,2008,33(10):123-126.
    [100]管希夷.利用光合细菌处理柠檬酸废水[J],环境保护,1995,7:28-30.
    [101]Megrath J E, Harfoot CG. Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas[J], Applied and Environment Microbiology,1997,63(8):3333-3335.
    [102]郭冉冉,向少能,夏婷等.光合细菌对氯氰菊酯的降解作用[J],四川农业大学学报,2009,27(4):471-474.
    [103]Mongtomey L, Vogel T M. Dechlorination of 2,3,5,6-tetrachlorobiphenyl by a phototrophic enrichment culture[J], Biotechnology Letters,1992,73(3):247-250.
    [104]王玉芬.光合细菌球形红细菌(Rhodobacter sphaeroides)降解氯苯类化合物的研究[D],沈阳:东北大学,2007.
    [105]Harwood C S, Gibson J. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris[J], Applied and Environment Microbiology,1988,543:712-717.
    [106]Wright G E, Madigan M T. Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodopseudomonas vannielii[J], Applied and Environment Microbiology, 1991,57(7):2069-2073,
    [107]Blasco R, Castillo F. Light-dependent degradation nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1[J], Applied and Environment Microbiology,1992, 58(2):690-695.
    [108]赵亮,李兰生,刘金雷.海洋光合细菌对五种活性染料的脱色研究[J],海洋湖沼通报,2006,3:73-78.
    [109]宋智勇,周集体,王竞等.一株红假单菌对偶氮染料的脱色研究[J],环境污染治理技术与设备,2004,5(3):44-47.
    [110]张松柏,张德咏,刘勇等.一株菊酯类农药降解菌的分离鉴定及其降解酶基因的克隆[J],微生物学报,2009,49(11):1520-1526.
    [111]刘桂萍,魏剑峰,刘长风等,固定化细胞流化床处理含酚废水的研究[J],环境科学与技术,2010,33(5):147-150.
    [112]袁利娟,姜立春,彭正松等.高效降酚菌Bacillus sp. JY01的固定化及降解特性研究[J]、环境科学与技术,2010,33(4):49-56.
    [113]韩庆祥,钱新民.固定化光合细菌处理催化裂化与加氢废水[J],化工环保,1998,18(2):67-73.
    [114]毛雪慧,徐明芳,刘辉等.光合细菌固定化及其处理含油废水的研究[J],农业环境科学学报,2009,28(7):1494-1499.
    [115]马英,林志高. Removal of 2-chlorophenol from wastewater using the ultrasonic/fenton process[J],中国环境工程学刊,1998,8(3):215-226.
    [116]曾前东,朱明华.苏州河底质中有机污染物对河水影响的估价和预测[J],中国环境科学,1993,13(2):112-116.
    [117]刘元麟.高锰酸钾复合药剂对水中邻氯酚去除效能的研究[J],化学工程师,2006,126(3):12-14.
    [118]R E布坎南,NE吉本斯.伯杰氏细菌鉴定手册[M],北京:中国科学院微生物研究所《伯杰氏细菌鉴定手册》翻译组译(第8版),1984.
    [119]东秀珠,蔡妙英.常见细菌系统鉴定手册[M],北京:科学出版社.2001,
    [120]周洪波,刘飞飞,邱冠周.一株光合细菌的分离鉴定及污水处理能力研究[J],生态环境,2006,15(5):901-904.
    [121]朱旭芬.基因工程实验指导[M],北京:高等教育出版社,2006.
    [122]Kumar S, Tamura K, Nei M. MEGA3:Integrated software for molecular evolutionary genetics analysis and sequence alignment[J], Brief Bioinform,2004,5(2):150-163.
    [123]刘宏芳,张肇铭.沼泽红假单胞菌降解苯酚的动力学研究[J],科学情报开发与经济,2008,18(12):136-137.
    [124]张德咏,谭新球,罗香文等.一株能降解有机磷农药甲胺磷的光合细菌HP-1的分离及生物学特性的研究[J],生命科学研究,2005,9(3):247-253.
    [125]张松柏,张德咏,罗香文等.一株降解苄嘧磺隆光合细菌的分离鉴定及其降解特性[J],2008,17(5):1774-1777.
    [126]CzaPliclca M. Sources and transfomations of chlorophenols in the natural environment[J], Science of the Total Environment,2004,322:1-39.
    [127]Kramer C M. Bacteria that degrade p-chlorophenol isolated from a continuous culture system[J], Can.J Microbiol,1992,38(1):34-37.
    [128]李玉梅,陆光华.氯代苯类化合物对江水细菌的毒性及QSAR研究[J],环境科学研究,2005,18(6):116-119.
    [129]洪华嫦,周海云,蓝崇鲸.五氯酚对斜生栅藻的毒性效应研究[J],环境科学研究,2003,16(6):23-28.
    [130]陆光华,孙哲,耿这.水中氯代酚类化合物的生物降解研究[J],中国给水排水, 2008,4(11):80-88.
    [131]王剑秋,管运涛,腾飞.光合细菌法降解淀粉废水积累菌体蛋白的研究[J],清华大学学报(自然科学版),2007,2007,47(3):348-351.
    [132]金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用[M],北京:化学工业出版社,2006.
    [133]申泰铭,谢庆林,李艳红等.物理诱变育种技术在环境工程中的发展及运用[J],环境科学与管理,2008,33(6):53-55.
    [134]Pfeifer G P, YOU Y H, Besaratinia A. Mutations induced by ultraviolet light[J]. Mutation Research,2005,571(1/2):19-31.
    [135]Salar J, TrePat M, Evans W C. The meta cleavage of catechol by Azotobacter species [J], European Journal of Biochemistry,1971,20:400-413.
    [136]尹军,谭学军,张立国等.测定脱氢酶活性的萃取剂的选择[J],中国给水排水,2004,20(7):96-98.
    [137]李今,吴振斌,贺锋.生物膜活性测定中TTC-脱氢酶活性测定法的改进[J],吉首大学学报(自然科学版),2005,26(1):37-39.
    [138]周永欣,章宗涉.水生生物毒性实验[M],北京:农业出版社,1998,109-120.
    [139]Liu Wan, Zhou Qixing, Li Peijun, et al. Toxic effects of 1,2,4-trichlorobenzene stress on chromosomal aberration and cell division of root-tip cells in broadbean (Vicia faba) seedlings[J], Bull Environ Contam Toxicol,2003,71(4):689-697.
    [140]AU W W, OBERHEITMANN B, HARMS C. Assessing DNA damage and health risk using biomarkers [J], Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2002,509(1/2):153-163.
    [141]阎海,叶常明,雷志芳.酚类化合物抑制斜生栅藻生长的毒性效应[J],环境化学,1998,2(3):56-59.
    [142]钟文辉,孙明,何国庆等.降解2,4-二氯酚微生物的分离及其2,4-二氯酚羟化酶基因的克隆和表达[J],生物工程学报,2004,20(2):209-214.
    [143]黄艺,敖晓兰,赵曦.五氯酚生物降解机理与外生菌根真菌对五氯酚可降解性[J],2006,15(5):1080-1085.
    [144]苏现伐,李怡帆,罗业红等.UV诱变技术在废水生物处理中的应用研究进展[J],2010,30(5):1-4.
    [145]曹友声,刘仲敏.现代工业微生物学[M],长沙:湖南科学技术出版社,1998.
    [146]微生物诱变育种编写组.微生物诱变育种[M],北京:北京科学出版社,1973.
    [147]吴雪昌,汪志芸,周婕婕等.提高产抗生素链霉菌紫外诱变正变率的研究[J],遗传,2004,26(4):499-504.
    [148]Xie S, Liu J X. Li L. et al. Biodegradation of malathion by Acinetobacter johnsonii MA19 and optimization of cometabolism substrates[J], Journal of Environmental Science, 2009,21:76-82.
    [149]Leadbetter E R, Foster J W. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonasm ethanica[3], Archives of Biochemistry and Biophysics,1959,82(2): 491-492.
    [150]Fakhruddin A N M, Quilty B. The influence of glucose and fructose on the degradation of 2-chlorophenol by Pseudomonas putida CP1[J], World Journal of Microbiology and Biotechnology,2005,21:1541-1548.
    [151]Kafkewitz D, Fava F, Armenante P M. Effect of vitamins on the aerobic degradation of 2-chlorophenol,4-chlorophenol, and 4-chlorobiphenyl[J], Applied Microbiology and Biotechnology,1996,46:414-421.
    [152]刘兴平.氯酚类有机污染物的生物降解研究进展[J],水资源保护,2008,24(4):58-62.
    [153]中华人民共和国国家标准——食品中山梨酸、苯甲酸的测定GB/T 5009.29-2003[S],中华人民共和国卫生部,中国国家标准化管理委员会发布.
    [154]A chimlack, Georg Fuchs. Carboxylation of phenyphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism[J], Journal of Bacteriology,1992, 175(6),3629-3636.
    [155]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J],应用生态学报,1997,8(2):194-198.
    [156]安淼,周琪,李晖,等.2,4-二氯代酚的共代谢降解研究[J],中国给水排水,2005,21(12):53-55.
    [157]夏柳荫,孙永利,田庆玲,等.混合固定化耐受菌共代谢降解五氯苯酚[J],化学工业与工程,2008,25(2):138-142.
    [158]Speece R E. Anaerobic biotechnology for industrial wastewater[M]. Arche Press Pub: 1996.
    [159]耿亮,陆光华.利用共代谢机制降解水体中的氯代芳烃[J].四川环境,2006,25(1):70-73.
    [160]Anke Neumann.Tetrachloroethene metabolism of Dehalospirillum multivorans[J], Archives of Microbiology,1994,162:295-301.
    [161]Glass C, Silverstein J. Denitrification of high-nitrate, high-salinity wastewater[J]. Water Research,1999,33:223-229.
    [162]Zheng C L, Zhou J T, Wang J, et al. Isolation and characterization of a nitrobenzene degrading yeast strain from activated sludge [J], Journal of Hazardous Materials,2008,160: 194-199.
    [163]张杏青,朱妙军,胡勤海,等.甲基叔丁基醚(MTBE)降解菌株的分离鉴定及降解动力学研究[J],坏境科学,2009,30(6):1785-1790.
    [164]Harwood, C.S., et al. Anaerobic and aerobic metabolism of diverse aromatic compounds by the Photosynthetic bacterium Rhodopseudomonas Palustris.[J], Applied Environment Microbiology,1988,54(3),712-717.
    [165]Jim Spain C, Shirley Nishino F. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. [J], Applied and Environmental Microbiology,1987,53(5):1010-1019.
    [166]Bauer M J, Hemnann R. Estimation of the environmental contamination by phthalieaei esters leaehing from household wastes[J], Science of the Total Environment,1997,208(1-2): 4-57.
    [167]汪家政,范明.蛋白质技术手册[M],北京:科学技术出版社,2002.
    [168]Wang S J and Loh K C. Facilitation of cometabolic degradation of 4-chlorophenol using glucose as an added growth substrate[J], Biodegradation,1999,10(4):261-269.
    [169]Duetz W A, Marques S, de Jong C, et al. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWWO) growing on succinate in continuous culture:Evidence of carbon catabolite repression control[J], Journal of Bacteriology,1994,176(8):2354-2361.
    [170]瞿福平,张晓健,吕听等.氯代芳香化合物的生物降解性研究进展[J],环境科学,1997,18(2):74-78.
    [171]吴松刚.微生物工程[M],北京:科学出版社,2000.
    [172]Tsurmura Y, Ishimitu S, Saito I, et al. Eleven phthalate esters and di(2-ethylhexyl) adipate in one-week duplicate diet samples obtained from hospitals and their estimated daily intake[J], Food Additives and Contaminants,2001,18(5):449-460.
    [173]田鑫,廖强,张攀,王永忠等.光合细菌生物膜反应器葡萄糖降解及产氢特性试验[J],化工学报,2008,59(9):2346-2350.
    [174]刘桂萍,魏剑锋,刘长风等.固定化细胞流化床处理含酚废水的研究[J],环境科学与技术,2010,33(5):147-150.
    [175]袁利娟,姜立春,彭正松等.高效降酚菌Bacillus sp. JY01的固定化及降解特性研究[J],环境科学与技术,2010,33(4):49-56.
    [176]李乐,李兰生,孙涛等.固定化光合细菌降解氧化乐果[J],农业环境科学学报,2006,25(B09):721-724.
    [177]丁成.固定化光合细菌对含酚废水的生物降解实验[J],固定化光合细菌对含酚废水的生物降解试验[J],水资源保护,2008,24(6):93-100.
    [178]李峰,吕锡武.序批式反应器中运用固定化细胞技术处理氨氮废水[J],给水排水,2000,26(1):63-68.
    [179]缘鑫.粉煤灰联合光合细菌处理焦化废水的研究[J],科技情报开发与经济,2008, 18(15):136-138.
    [180]沈耀良,黄勇等.固定化微生物污水处理技术[M],北京:化学工业出版社,2002.
    [181]刘影.光合细菌的增值培养及其处理城市污水中氮磷的研究[D],中国海洋大学,2006.
    [182]章鸣.光合细菌处理染料废水[D],南京理工大学,2004.
    [183]Muhr A H, John M V. Diffusion in gel[J], Poymer,1982,23:1012.
    [184]巴淑丽.光合细菌固定化包埋颗粒产氢特性实验研究[D],重庆大学,2007.
    [185]谷妮娜.固定化微生物技术处理含油废水的研究[D],东北大学,2006.
    [186]张杰,郭妮妮,张代佳等.复相乳化法制备海藻酸钙微球及其释放行为[J],过程工程学报,2006,6(6):964-968.
    [187]宋昊,何泽超.降酚菌株的固定化细胞处理含酚废水的性能研究[J],环境污染治理技术与设备,2005,6(9):37-40.
    [188]宋志文,郭本华,曹军.光合细菌及其在化工有机废水处理方面的应用[J],化工环保,2003,23(4):209-212.
    [189]刘桂萍,魏剑锋,刘长风等.固定化细胞流化床处理含酚废水的研究[J],环境科学与技术,2010,33(5):147-150.
    [190]王建龙.生物固定化技术与水污染控制[M],北京:科学出版社,2002:9.
    [191]Krkrrj Dietmar, Pieper H. Engineering bacteria for bioremediation[J], Currentopinion in iotechnology,2000, 11(5):262-270.
    [192]黄霞,俞毓馨,王蕾.固定化细胞技术在废水处理中的应用[J],环境科学,1993,14(1):41-48.
    [193]郭兴要,王璋,刘新征.高含油废水预处理微生物菌种的分离筛选[J],精细与专用化学品,2002,8(增刊):203-206.
    [194]全向春,施汉昌,王建龙等.固定化细胞降解2,4-二氯酚的动力学及其对SBR系统强化效果研究[J],环境科学,2002,23(1):36-39.
    [195]王亚娥,刘宝堂,李杰.包埋固定化微生物强化SBR工艺脱氮性能研究[J],环境科学与技术,2009,32(12):164-167.
    [196]买文宁.生物化工废水处理技术及工程实例[M],北京:化学工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700