用户名: 密码: 验证码:
III族氮化物半导体中极化场的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ⅲ族氮化物半导体在短波长高亮度发光二极管、高功率激光器、高灵敏度光探测器、以及高温大功率电子器件等方面有着广泛的应用前景。不同于传统的Ⅲ-Ⅴ族化合物半导体,纤锌矿结构的Ⅲ族氮化物半导体具有极强的自发极化和压电极化效应。极化效应在Ⅲ族氮化物的应用中起着双刃的作用,既有其危害处也有其得利处。对Ⅲ族氮化物半导体中的极化场加以调控,避其短扬其长,是人们渴望深入了解的课题。本论文围绕Ⅲ族氮化物半导体的极化效应和极化场调控,结合第一性原理计算方法、MOVPE生长技术、材料的结构和性能测试,着重从理论设计和MOVPE外延生长两方面开展了系统的研究,主要取得如下研究成果:
     首次提出并构建了Mg和Si定位共掺GaN结构,以期实现局域极化场的调制。通过第一性原理计算模拟Mg和Si定位共掺GaN的电子结构发现,定位共掺的Mg和Si杂质做为一个整体,对导电并无贡献,而是在GaN中形成了一个局域的极化场,在一定程度上提高了Mg的溶解度,减小了Mg受主激活能。
     首次提出并构建了Mg-和Si-8共掺AlGaN/GaN超晶格结构,实现了对超晶格的能带调制。第一性原理计算模拟的Mg-和Si-δ共掺AlGaN/GaN超晶格能带结构表明,在AlGaN/GaN超晶格的界面处分别插入Mg和Si的δ掺杂层,改变了超晶格中的内建电场,导致能带弯曲程度急剧增大。根据所设计的Mg-和Si-δ共掺超晶格结构,采用MOVPE技术外延生长了Mg-和Si-δ共掺p型AlGaN/GaN超晶格。Hall效应与光致发光谱测试结果表明,相比于Mg调制掺杂超晶格结构,Mg-和Si-δ共掺超晶格结构更有效地减小了Mg受主激活能,提高了Mg掺杂效率。进一步将该超晶格结构应用于深紫外LED的p型导电层,成功制备了Ⅰ-Ⅴ特性良好、电致发光主波长短至213 nm,且发光较强的深紫外发光二极管。
     提出并构建了Mg掺杂的InGaN/GaN量子阱结构,通过掺杂实现了对量子阱极化场乃至量子能级的调制。第一性原理计算模拟Mg掺杂的InGaN/GaN量子阱的能带结构表明,在InGaN阱区内掺入Mg杂质,削弱了量子阱中的极化场,导致导带与价带边的弯曲均有不同程度的减小,量子阱有效禁带宽度从0.98 eV“恢复”至1.09 eV。根据理论设计,采用MOVPE技术外延生长了未掺杂和Mg掺杂InGaN/GaN多量子阱。通过电致发光谱的研究厘清了InGaN/GaN多量子阱的量子能级间的电子跃迁发光机制。在高注入电流情况下,InGaN/GaN多量子阱中出现了电子势阱中第一电子能级到空穴势阱中第一重空穴能级(1e-1hh)和第二重空穴能级(1e-2hh)的两电子跃迁发光峰。进一步将Mg掺杂InGaN量子阱应用于蓝光LED中,有效地减小了极化场,调节了量子能级位置,进而改变了量子阱发光波长,提高了波长稳定性。
Ⅲ-nitride semiconductors are very promising materials for their applications in optoelectronic devices(both emitters and detectors) and high power/temperature electronic devices.Being non-centro-symmetric and high degree ionicity,wurtziteⅢ-nitrides exhibit strong spontaneous and piezoelectric polarization effects,which influence carrier distributions,electric fields,and consequently a wide range of optical and electronic properties ofⅢ-nitrides and devices.In order to study the polarization effect onⅢ-nitrides,and to exploit the polarization field to advantage in nitride semiconductors and device engineering,comprehensive theoretical designs and heteroepitaxial growth of structuralⅢ-nitrides have been performed by the first-principles simulation and MOVPE technique.
     The site-selective codoped configurations have been designed and simulated for the first time by the first-principles calculation method to modify the polarization field in GaN.As indicated by the calculated electronic structures,the site-selective codoped Mg and Si dopants induce a localized polarization field in GaN,which will enhance the Mg concentration and reduce the activation energy of Mg acceptor.
     Mg- and Si-δ-codoped AlGaN/GaN superlattices(SLs) have been proposed and designed for the first time to modify the polarization field.The simulated results of the SLs structures show that conspicuous band bending occurs in the Mg- and Si-δ-codoped SLs,which indicates that the polarization field in SL has been intensified.Accordingly, the Mg- and Si-δ-codoped p-type AlGaN/GaN SLs have been grown by MOVPE.The hole concentrations and mobilities in the Mg- and Si-δ-codoped SLs have been measured to be larger than that of modulation-doped SL by Hall effect.Furthermore,by applying the Mg- and Si-δ-codoped SLs as the p-type layers,we have successfully fabricated deep UV-LED with superior current-voltage characteristics and high electroluminescence(EL) intensities of the wavelength down to 213 nm.
     Mg doped InGaN/GaN quantum well(QW) has been designed to modify the polarization field and the quantized levels in QW.The decrease band bending and the enlargement of the effective band gap in Mg-doped QW indicate that the polarization field has been reduced by Mg dopant.Accordingly,the undoped and Mg doped InGaN/GaN MQWs have been grown by MOVPE.At high injection-current level,two distinct EL emission peaks associated with the quantized level transitions are investigated in both undoped and Mg doped MQWs.Moreover,the energies of both two peaks in Mg-doped MQWs are higher,while the energy separation between them is smaller than that in undoped MQWs.These facts indicate that the quantized levels are modified by Mg dopant due to the reduction of polarization field.
引文
[1] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto. Optical bandgap energy of wurtzite InN [J]. Appl. Phys. Lett.,2002, 81:1246-1248.
    [2] S. C. Jain, M. Willander, and J. Narayan. Ill-nitrides: Growth, characterization, and properties [J]. J. Appl. Phys., 2000, 87: 965-1006.
    [3] R. Juza, and H. Hahn.Uber die kristallstrukturen von Cu_3N, GaN und InN [J]. Anorg. Allgem. Chem., 1938,239:282-287.
    [4] H. P. Maruska, and J. J. Tietjen. The preparation and properties of vapor deposited single-crystal-line GaN [J]. Appl. Phys. Lett., 1969,15: 327-329.
    [5] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser. Electroluminescence in GaN [J]. J. Lumin., 1971,4: 63-66.
    [6] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer [J]. Appl. Phys. Lett., 1986,48:353-355.
    [7] S. Nakamura. GaN growth using GaN buffer layer [J]. Jpn. J. Appl. Phys., 1991, 30: L1705-L1707.
    [8] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI) [J]. Jpn. J. Appl. Phys., 1989,28-.L2112-L2114.
    [9] S. Nakamura, T. Mukai. M. Senoh, and N. Iwasa. Thermal annealing effects on p-type Mg-doped GaN films [J]. Jpn. J. Appl. Phys., 1992, 31: L139-L142.
    [10] S. Nakamura, T. Mukai, and M. Senoh. Candela-class high-brightness InGaN/AlGaN double heterostructure blue-light-emitting diodes [J]. Appl. Phys. Lett., 1994,64:1687-1689.
    [11] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai. High-brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structures [J]. Jpn. J. Appl. Phys., 1995, 34: L797-L799.
    [12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai. Superbright green InGaN single-quantum-well-structure light-emitting diodes [J]. Jpn. J. Appl. Phys., 1995, 34: L1332-L1335.
    [13] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto. InGaN-Based muti-quantum-well-structure laser diodes [J]. Jpn. J. Appl. Phys., 1996, 35: L74-L76.
    [14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho. High-power, long-lifetime InGaN/GaN/AlGaN- based laser diodes grown on pure GaN substrates [J]. Jpn. J. Appl. Phys., 1998, 37: L309-L312.
    [15] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz. Design and characterization of GaN/InGaN solar cells [J]. Appl. Phys. Lett., 2007, 91: 132117-1-132117-3.
    [16] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBarrs, and U. K. Mishra. High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap [J]. Appl. Phys. Lett., 2008, 93:143502-1-143502-3.
    [17] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura. Spontaneous emission of localization excitons in InGaN single and multiquantum well structures [J]. Appl. Phys. Lett., 1996,69:4188-4190.
    [18] J. Cjen, Z. Feng, H. Tsai, J. Yang, P. Li, C. Wetzel, T. Detchprohm, and Nelson. Optical and structural properties of InGaN/GaN multiple quantum well structure grown by metalorganic chemical vapor deposition [J]. Thin Solid Films, 2006, 498: 123-127.
    [19] R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M Lomascolo, A. Di Carlo, F. Delia Sala, and P. Lugi. Spontaneous polarization and piezoelectric field in GaN/AlGaN quantum wells: Impact on the optical spectra [J]. Phys. Rev. B, 2000,61:2711-2715.
    [20] B. Monemar, H. Haratizadeh, P. P. Paskov, G. Pozina, P. O. Holtz, J. P. Bergman, S. Kamiyama, M. Iwaya, H. Amano, and T. Akasaki. Influence of polarization fields and depletion fields on photoluminescence of AlGaN/GaN multiple quantum well structures [J]. Phys. Stat. Sol. (b), 2003,237: 353-364.
    [21] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw. InGaN-GaN multiquantum-well blue and green light-emitting diodes [J]. IEEE J. Sel. Top. Quantum Electron, 2002, 8:278-283.
    [22] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau. Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors [J]. Appl. Phys. Lett., 1997, 71: 2794-2796.
    [23] H. Morkoc, R. Cingolani, and B. Gil. Polarization effects in nitride semconductors and device structures [J]. Mat. Res. Innovat., 1999, 3: 97-106.
    [24] I. Daumiller, C. Dirchner, M. Kamp, K. J. Ebeling, and E. Kohn. Evaluation of the temperature stability of AlGaN/Gan heterostructure FET's [J]. IEEE Electron Device Lett.,1999,20:448-452.
    [25]http://www.webelements.com/[Z].
    [26]F.Bernardini,V.Fiorentini,and D.Vanderbilt.Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J].Phys.Rev.B,1997,56:R10024-R10027.
    [27]J.G.Gualtieri,J.A.Kosinski,A.Ballato.Piezoelectric materials for acoustic wave applications[J].IEEE Trans.Ultrason.Ferroelectr.Freq.Control,1994,41:53-59.
    [28]A.F.Wright.Elastic properties of zinc-blende and wurtzite AlN,GaN,and InN[J].J.Appl.Phys.,1997,82:2833-2839.
    [29]K.Tsubouchi,and N.Mikoshiba.Zero-temperature-coefficient SAW devices on AlN epitaxial films[J].IEEE Trans.Ultrason.,1985,SU-32:634-644.
    [30]A.D.Bykhovski,V.V.Kaminski,M.S.Shur,Q.C.Chen,and M.A.Khan.Piezoresistive effect in wurtzite n-type GaN[J].Appl.Phys.Lett.,1996,68:818-820.
    [31]R.B.Schwarz,K.Khachaturyan,and.Weber.Elastic moduli of gallium nitride[J].Appl.Phys.Lett.,1997,70:1122-1124.
    [32]R.J.Kaplar,S.R.Kurtz,D.D.Koleske,and A.J.Fischer.Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells[J].J.Appl.Phys.,2004,95:4905-4913.
    [33]F.Renner,P.Kiesel,G.H.Dohler,M.Kneissl,C.G.Van de Walle,and N.M.Johnson.Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy[J].Appl.Phys.Lett.,2002,81:490-492.
    [34]C.Y.Lai,T.M.Hsu,W.H.Chang,K.U.Tseng,C.M.Lee,C.C.Chuo,and J.I.Chyi.Direct measurement of piezoelectric field in InGaN/GaN multiple quantum wells by electrotransmission spectroscopy[J].J.Appl.Phys.,2002,91:531-533.
    [35]T.Takeuchi,C.Wetzel,S.Yamaguchi,H.Sakai,H.Amano,I.Akasaki,Y.Kaneko,S.Nakagawa,Y.Yamaoka,and N.Yamada.Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect[J].Appl.Phys.Lett.,1998,73:1691-1693.
    [36]蔡端俊.博士论文:GaN基半导体异质结构中的应力相关效应[Z].
    [37]M.B.Nardelli,K.Rapcewicz,and J.Bernholc.Polarization field effects on the electron-hole recombination dynamics in In_(0.2)Ga_(0.8)N/In_(1-x)Ga_xN multiple quantum wells[J].Appl.Phys.Lett.,1997,71:3135-3137.
    [38] F. D. Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentini, R. Scholz, and J. Jancu. Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures [J]. Appl. Phys. Lett., 1997, 74: 2002-2004.
    [39] R. Oberhuber, G. Zandler, and P. Vogl. Mobility of two-dimensional electrons in AlGaN/GaN modulation-doped field-effect transistors [J]. Appl. Phys. Lett., 1998, 73: 818-820.
    [40] S. Park, and S. Chuang. Spontaneous polarization effects in wurtzite GaN/AlGaN quantum wells and comparison with experiment [J]. Appl. Phys. Lett., 2000, 76: 3118-3120.
    
    [41] http://prola.aps.org/forward/PRB/v56/i16/pR10024_1 [Z].
    [42] K. Kumakura, T. Makimoto, and N. Kobayashi. Enhanced hole gernation in Mg-doped AlGaN/GaN superlattices due to piezoelectric field [J]. Jpn. J. Appl. Phys., 2000, 39: 2428.
    [43] J. K. Kim, E. L. Waldron, Y. L. Li, Th. Gessmann, E. F. Schubert, H. W. Jang, and J. L. Lee. P-type conductivity in bulk Al_xGa_(1-x)N and Al_xGa_(1-x)N/Al_yGa_(1-y)N superlattices with average Al mole fraction > 20% [J]. Appl. Phys. Lett., 2004, 84: 3310-3312.
    [44] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures [J]. J. Appl. Phys., 1999, 85: 3222-3213.
    [45] E. F. Schubert, W. Grieshaber, and I. D. Goepfert. Enhancement of deep acceptor activation in semiconductors by superlattice doping [J]. Appl. Phys. Lett., 1996, 69: 3737-3739.
    [46] S. Chichibu, D. A. Cohen, M. P. Mack, A. C. Abare, P. Kozodoy, M. Minsky, S. Fleischer, S. Keller, J. E. Bowers, U. K. Mishra, L. A. Coldren, D. R. Clarke, and S. P. DenBaars. Effects of Si-doping in the barriers of InGaN multiquantum well purplish-blue laser diodes [J]. Appl. Phys. Lett., 1998, 73:496-498.
    [47] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, J. F. Chen, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu. Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes [J]. IEEE J. Quantum Electron., 2002,38: 446-450.
    [1] 谢希德,陆栋. 固体能带理论[M]. 上海: 复旦大学出版社, 2000.
    [2] E. Schrodinger. Collected papers on wave mehanics [M]. London: Blackie and Son Limited, 1928.
    [3] M. Born and K. Huang. Dynamical theory of crystal lattices [M]. Oxford: Oxford University Press, 1954.
    [4] P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas [J]. Phys. Rev., 1964,136 (3B): 864-871.
    [5] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965,140(4A): A1133-A1138.
    [6] R. M. Martin. Electronic structure: Basic theory and practical methods [M]. Cambridge University Press, 2004.
    [7] J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron -gas correlation energy [J]. Phys. Rev. B, 1992,45(23): 13244-13249.
    [8] J. Ihm, A.Zunger, M. L. Cohen. Momentum-space formalism for the total energy of solids [J]. J. Phys. C, 1979,12: 4409-4422.
    [9] G. P. Francis, M. C. Payne. Finite basis set corrections to total energy pseudopotential calculations [J]. J. Phys. Cond. Matt. 1990,2: 4395-4404.
    [10] S. G. Louie, K. M. Ho, and M. L. Cohen. Self-consistent mixed-basis approach to the electronic structure of solids [J]. Phys. Rev. B, 1979,19: 1774-1782.
    [11] G. Elsasser, N. Takeuchi, K. M. Ho, C. T. Chan, P. Braun, and M. Fahnle. Relativistic effects on ground state properties of 4d and 5d transition metals [J]. J. Phys. Cond. Matt. 1990,2:4371-4394.
    
    [12] J. R. Chelikowsky and Y. Saad. Electronic structure of clusters and nanocrystals. M. Rieth and W. Schommers Eds. Handbook of theoretical and computational nanotechnology [Z]. American Scientific, 2004.
    [13] D. R. Hamann, M. Schluter, and C. Chiang, Norm-Conserving Pseudopotentials [J]. Phys. Rev. Lett., 1979, 43(20): 1494-1497.
    [14] http://beam.helsinki.fi/~akrashen/esctmp.html [Z].
    [15] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B, 1990,41(11): 7892-7895.
    
    [16] G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements [J]. J. Phys.: Condens. Matter., 1994, 6(40): 8245-8257.
    [17]J.Ptak,T.H.Myers,L.T.Romano,C.G.Van de Walle,and J.E.Northup.Magnesium incorporation in GaN grown by molecular-beam epitaxy[J].App.Phys.Lett.,2001,78:285-287.
    [18]L.K.Li,M.J.Jurkovic,W.I.Wang,J.M.Van Hove,and P.P.Chow.Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy[J].Appl.Phys.Lett.,2000,76:1740-1742.
    [19]C.Bungaro,K.Rapcewicz,and J.Bernholc.Surface sensitivity of impurity incorporation:Mg at GaN(0001) surfaces[J].Phys.Rev.B,1999,59:9771-9774.
    [20]Q.Sun,A.Selloni,T.H.Myers,and W.A.Doolittle.Energetics of Mg incorporation at GaN(0001) and GaN(000-1) surfaces[J].Phys.Rev.B,2006,17:155337-1-155337-9.
    [21]L.Hsu,and W.Walukiewicz.Polarization-enhanced Mg doping of GaN[J].March Meeting of the American Physical Society,2003,Z23.004.
    [22]G.Kipshidze,V.Kuryatkov,B.Borisov,Y.Kudryavtsev,R.Asomoza,S.Nikishin,and H.Temkin.Mg and O codoping in p-type GaN and Al_xGa_(1-x)N(0    [23]R.Y.Korotkov,J.M.Gregie,and B.W.Wessels.Electrical properties of p-type GaN:Mg codoped with oxygen[J].Appl.Phys.Lett.,2001,78:222-224.
    [24]S.Iwai,H.Hirayama,and Y.Aoyagi.High doped p-type GaN grown by alternative co-doping technique[J].Mat.Res.Soc.Symp.Proc.,2002,719:F1.1.1-F1.1.7.
    [25]C.G.Van de Walle,and J(o|¨)rg Neugebauer.First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides[J].J.Appl.Phys.,2004,95:3581-3876.
    [26]G.Kresse,and J.Furthmtüller.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput.Matter.Sci.,1996,6:15-50.
    [27]H.J.Monkhorst,and J.D.Pack,Special points for Brillouin-zone integrations[J].Phys.Rev.B,1976,13:5188-5192.
    [28]M.Leszczynski,H.Teisseyre,T.Suski,I.Gregory,M.Bockowski,J.Jun,S.Porowski,K.Pakula,J.M.Baranowski,C.T.Foxon,and T.S.Chen.Lattice parameters of gallium nitride[J].Appl.Phys.Lett.,1996,69:73-75.
    [29]H.Katayama-Yoshida,R.Kato,and T.Yamamoto.New valence control and spin control method in GaN and AlN by codoping and transition atom doping[J].J.Cryst.Growth,2001,231:428-436.
    [30] S. H. Wei, and S. B. Zhang. Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe [J]. Phys. Rev. B, 2001, 66: 155211-1-155211-10.
    [31] G. L. Bir, and G. Pikus. Symmetry and Strain-Induced Effects in Semiconcuctors [M]. New York: Pergamon, 1975.
    [32] D. Fritsch, H. Schmidt, and M. Grundmann. Band-structure pseudopotential calculation of zinc-blende and wurtzite AlN, GaN, and InN [J]. Phys. Rev. B, 2003, 67:235205-235217.
    [33] J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang. Optical and electrical properties of Mg-doped p-type Al_xGa_(1-x)N [J]. Appl. Phys. Lett., 2002, 80: 1210-1212.
    [34] K.B. Nam, M. L. Nakarimi, J. Li, Y. Lin, and H. X. Jiang. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence [J]. Appl. Phys. Lett., 2003, 83: 878-880.
    [35] F. Mireles and S. E. ulloa. Acceptor binding energies in GaN and AlN [J]. Phys. Rev. B, 1998, 58:3879-3887.
    [36] E. L. Waldron, J. W. Graff, and E. F. Schubert. Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattice, Appl. Phys. Lett., 2001, 79: 2737-2739.
    
    [37] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, A. W. Saxler, R. Perrin, and W. C. Mitchel. Polarization-enhanced Mg doping of AlGaN/GaN superlattice [J]. Appl. Phys. Lett., 1999,75:2444-2446.
    
    [38] K. Kumakura, T. Makimoto, and N. Kobayashi. Enhanced hole generation in Mg-doped AlGaN/GaN superlattices due to piezoelectric field [J]. Jpn. J. Appl. Phys., 2000, 39: 2428-2430.
    [39] Yasan, and M. Razeghi. Very high quality p-type Al_xGa_(1-x)N /GaN superlattice [J]. Solid-State Electronics, 2003,47: 303-306.
    [40] P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra. Enhanced Mg doping efficiency in Al0.2Ga0.gN/GaN superlattices [J]. Appl. Phys. Lett., 1999, 74: 3681-3683.
    [41] K. Kumakura, and N. Kobayashi. Increased electrical activity of Mg-acceptors in Al_xGa_(1-x)N /GaN superlattice [J]. Jpn. J. Appl. Phys., 1999,38: L1012-L1014.
    [42] A. Yasan, R. McClintock, S. R. Darvish, Z. Lin, K. Mi, P. Kung, and M. Razeghi. Characteristics of high-quality p-type Al_xGa_(1-x)N /GaN superlattices [J]. Appl. Phys. Lett.,2002,80:2108-2110.
    [43]蔡端俊.博士论文:GaN基半导体异质结构中的应力相关效应[Z].
    [44]S.Park,and S.Chuang.Spontaneous polarization effects in wurtzite GaN/AlGaN quantum wells and comparison with experiment[J].Appl.Phys.Lett.,2000,76:1981-1983.
    [45]C.G.VandeWalle and R.M.Martin.Theoretical calculations of heterojunction discontinuities in the Si/Ge system[J].Phys.Rev.B,1986,34:5621-5634.
    [46]Y.K.Su,G.C.Chi,and J.K.Sheu.Optical properties in InGaN/GaN multiple quantum wells and blue LEDs[J].Optical Materials,2000,14:205-209.
    [47]J.H.Ryou,W.Lee,J.Limb,D.Yoo,J.P.Liu,R.D.Dupuis,Z.H.Wu,A.M.Fischer,and F.A.Ponce.Control of quantum-confined stark effect in InGaN/GaN multiple quantum well active region by p-type layer for Ⅲ-nitride-based visible light emitting diodes[J].Appl.Phys.Lett.,2008,92:101113-1-101113-3.
    [48]S.F.Chichibu,A.C.Abare,M.P.Mack,M.S.Minsky,T.Deguchi,D.Cohen,P.ozodoy,S.B.Fleischer,S.Keller,J.S.Speck,J.E.Bowers,E.Hu,U.K.Mishra,L.A.Coldren,S.P.Denbaars,K.Wada,T.Sota,and S.Nakamura.Optical properties of InGaN quantum wells[J].Mater.Sci.Eng.B,1999,59:298-306.
    [49]K.S.Tamaiah,Y.K.Su,S.J.Chang,C.H.Chen,F.S.Juang,H.P.Liu,and I.G.Chen.Studies of InGaN/GaN multiquantum-well green-light-emitting diodes grown by metalorganic chemical vapor depostion[J].Appl.Phys.Lett.,2004,85:401-403.
    [50]T.Deguchi,A.Shikanai,K.Torii,T.Sota,S.Chichibu,and S.Nakamura.Luminescence spectra from InGaN multiquantum wells heavily doped with Si[J].Appl.Phys.Lett.,1998,72:3329-3331.
    [1]P.Ruterana,M.Albrecht,J.Neygebauer.Nitride semiconductors:Handbook on materials and Devies[M].Weinheim:Wiley-VCH Verlag GmbH & Co.KgaA,2003.
    [2]H.M.Manasevit.Single-crystal gallium arsenide on insulating substrates[J].Appl.Phys.Lett.1968,12(4):156-159.
    [3]http://semiconductorglossary.com[Z].
    [4]G.B.Stringfellow.Organometallic vapor-phase epitaxy theory and practice[M].California:Academic press,1999.
    [5]System manual of Thomas Swan CCS 3×2″ MOCVD,Thomas Swan Scientific Equipment LTD.[Z].
    [6]T.F.Kuech,E.Veuhoff,T.S.Kuan,V.Deline,and R.Potemski.The influence of growth chemistry on the MOVPE growth of GaAs and Al_xGa_(1-x)As layers and heterostructures[J].J.Cryst.Growth,1986,77:257-271.
    [7]http://amdg.ece.gatech.edu/msds[Z].
    [8]S.Nakamura,Yasuhiro Harada,and Masayuki Seno.Novel metalorganic chemical vapor deposition system for GaN growth[J].Appl.Phys.Lett.,1991,58:2021-2023.
    [9]A.Watanabe,T.Takeuchi,K.Hirosawa,H.Amano,K.Hiamatsu,and I.Akasaki.The growth of single crystalline GaN on a Si substrate using AlN as an intermediate layer[J].J.Cryst.Growth,1993,128:391-396.
    [10]H.X.Wang,T.Wang,S.Mahanty,F.Komatsu,T.Inaoka,K.Nishino,and S.Sakai.Growth of GaN layer by metal-organic chemical vapor deposition system with a novel three-flow reactor[J].J.Cryst.Growth,2000,218:148-154.
    [11]P.M.Frijlink.A new versatile,large size MOVPE reactor[J].J.Cryst.Growth,1988,93:207-215.
    [12]http://en.wikipedia.org/wiki/XRD[Z].
    [13]C.G.Dunn,E.F.Koch.Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe[J].Acta Metall.,1957,5:548-554.
    [14]A.Bchetnia,A.Touré,T.A.Lafford,Z.Benzarti,I.Halidou,M.M.Habchi,B.El Jani.Effect of thickness on structural and electrical properties of GaN films grown on SiN-treated sapphire[J].J.Crys.Growth,2007,308:283-289.
    [15]J.C.Zhang,D.G.Zhao,J.F.Wang,Y.T.Wang,J.Chen,J.P.Liu,and H.Yang.The influence of AlN buffer layer thickness on the properties of GaN epilayer[J].J. Crystal Grwoth,2004,268:24-29.
    [16]V.Srikant,J.S.Speck,and D.R.Clarke.Mosaic structure in epitaxial thin films having large lattice mismatch[J].J.Appl.Phys.,1997,82:4286-4295.
    [17]Y.Sun,O.Brandt,T.Liu,A.Tranpert,and K.H.Ploog.Determination of the azimuthal orientational spread of GaN films by x-ray diffraction[J].Appl.Phys.Lett.,2002,81:4928-4930.
    [18]O.Brandt,P.Waltereit,and K.H.Ploog.Determination of strain state and composition of highlu mismatched group-Ⅲ nitride heterostructures by x-ray diffraction[J].J.Phys.D:Appl.Phys.,2002,35:577-585.
    [19]许振嘉.半导体的检测与分析[M].北京:科学出版社,2007.
    [20]沈学础.半导体光学性质[M].北京:科学出版社,1991.
    [21]王华馥,吴自勤.固体物理实验方法[M].北京:高等教育出版社,1990.
    [22]王秀峰,程冰.现代显示材料与技术[M].北京:化学工业出版社,2007.
    [23]http://www.17led.com/LEDdisplay/2008-03/32.html[Z].
    [24]孙以材.半导体测试技术[M].北京:冶金工业出版社,1984.
    [1] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski. Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire [J]. Appl. Phys. Lett., 1997,71: 2635-2637.
    [2] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski. Polarity determination for GaN films grown on (0001) sapphire and high-pressure-grown GaN single crystals [J]. Appl. Phys. Lett., 1998, 73: 668-670.
    [3] X. Q. Shen, T. Ide, S. H. Cho, M. Shimizu, S. Hara, and H. Okumura. Stability of N- and Ga-polarity GaN surfaces during the growth interruption studied by reflection high-energy electron diffraction [J]. Appl. Phys. Lett., 2000,77:4103-4105.
    [4] M. Sumiya. K. Yoshimura, K. Ohtsuka, and S. Fuke. Dependence of impurity incorporation on the polar direction of GaN film growth [J]. Appl. Phys. Lett., 2000, 76: 2098-2010.
    [5] L. K. Li, M. J. Jurkovic, W. I. Wang, J. M. Van Hove, and P. P. Chow. Surface polarity dependence of Mg doping in GaN grown by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2000,76: 1740-1742.
    [6] S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya. Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy [J]. Appl. Phys. Lett., 2001, 78: 28-30.
    [7] A. Uedono, S. F. Chichibu, Z. Q. Chen, M. Sumiya, R. Suzuki, T. Ohdaira, T. Mikado, T. Mukai, and S. Nakamura. Study of defects in GaN grown by the two-flow metalorganic chemical vapor deposition technique using monoenergetic positron beams [J]. J. Appl. Phys., 2001, 90: 181-186.
    [8] S. J. Pearton. GaN and related materials II [M]. Amsterdam: Gordon and breach science publishers, 2000.
    [9] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer [J]. Appl. Phys. Lett., 1986,48: 353-355.
    [10] S. Nakamura. GaN growth using GaN buffer layer [J]. Jpn. J. Appl. Phys., 1991, 30: L1705-L1707.
    [11] C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. Li, Y. Lu, H. Liu, T. Salagaj, and R. A. Stall. Effect of substrate pretreatment on growth of GaN on (0001) sapphire by low pressure metalorganic chemical vapor deposition [J]. J. Vac. Sci. Technol. A, 1995, 13:672-675.
    [12] S. Keller, B. P. Keller, Y. F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBarrs. Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 1996, 68: 1525-1527.
    [13] M. Sumiya, M. Tanaka, K. Ohtsuka, S. Fuke, T. Ohnishi, I. Ohkubo, M. Yoshimoto, H. Koinuma, and M. Kawasaki. Analysis of the polar direction of GaN film growth by coaxial impact collision ion scattering spectroscopy [J]. Appl. Phys. Lett., 1999, 75: 674-676.
    [14] M. Sumiya, and S. Fuke. Review of polarity determination and control of GaN [J]. MRS Internet J. Nitride Semicond. Res., 2004, 9: 1.
    [15] M. Sumiya, and S. Fuke. Effect of treatments of sapphire substrate on growth of GaN film [J]. Appl. Sur. Sci., 2005,244:269-272.
    [16] M. Sumiya, K. Yoshimura, T. Ito, K. Ohtsuka, S. Fuke, K. Mizuno, M. Yoshimoto, H. Koinuma, A. Ohtomo, and M. Kawasaki. Growth mode and surface morphology of a GaN film deposited along the N-face polar direction on c-plane sapphire substrate [J]. 2000, J. Appl. Phys., 88: 1158-1165.
    [17] S. Figge, T. Bottcher, S.Eindeldt, and D. Hommel. In situ and ex situ evaluation of the film coalescence for GaN growth on GaN nucleation layers [J]. J. Crystal Growth, 2000, 221: 262-266.
    [18] M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan. Influence of AlN nucleation layer growth conditions on quality of GaN layers deposited on (0001) sapphire [J]. J. Crystal growth, 2002, 240:247-254.
    [19] K. Lorenz, M. Gonsalves, W. Kim, V. Narayanan, and S. Mahajan. Comparative study of GaN and AlN nucleation layers and their role in growth of GaN on sapphire by metalorganic chemical vapor deposition [J]. Appl. Phys. Lett., 2000, 77: 3391-3393.
    [20] A. Estes Wickenden, D. K. Wickenden, and T. J. Kistenmacher. The effect of thermal annealing on GaN nucleation layers deposited on (0001) sapphire by metaloganic chemical vapor deposition [J]. J. Appl. Phys., 1994,75: 5367-5371.
    [21] L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto, and Y. Kokubun. Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers [J]. J. Appl. Phys., 1997, 82: 4877-4882.
    [22] S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim, and H. Cho. Two-step growth of high quality GaN using V/III ratio variation in the initial growth stage [J]. J. Crystal Growth, 2004, 262: 7-13.
    [23] T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh. Control of initial nucleation by reducing the V/III ratio during the early stages of GaN growth [J]. Phys. Stat. Sol. (a), 2000,180:45-50.
    [24] P. Fini, X. Wu, E. J. Tarsa, Y. Golan, V. Srikant, S. Keller, S. P. Denbaars, and J. S. Speck. The effect of growth environement on the morphological and extended defect evolution in GaN grown by metalorganic chemical vapor deposition [J]. Jpn. J. Appl. Phys., 1998,37:4460-4466.
    [1] J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang. Optical and electrical properties of Mg-doped p-type Al_xGa_(1-x)N [J]. Appl. Phys. Lett., 2002, 80: 1210-1212.
    [2] K.B. Nam, M. L. Nakarimi, J. Li, Y. Lin, and H. X. Jiang. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence [J]. Appl. Phys. Lett., 2003, 83: 878-880.
    [3] F. Mireles and S. E. ulloa. Acceptor binding energies in GaN and AlN [J]. Phys. Rev. B, 1998, 58: 3879-3887.
    [4] P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra. Enhanced Mg doping efficiency in Al_(0.2)Ga_(0.8)N/GaN superlattices [J]. Appl. Phys. Lett., 1999, 74: 3681-3683.
    [5] E. L. Waldron, J. W. Graff, and E. Fred Schubert. Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices [J]. Appl. Phys. Lett., 2001,79: 2737-2739.
    [6] J. K. Sheu, C. H. Kuo, C. C. Chen, G. C. Chi, and M. J. Jou. Characterization of the properties of Mg-doped Al_(0.15)Ga_(0.85)N/GaN superlattices [J]. Solid-State Electronics, 2001,45: 1665-1672.
    [7] K. Kumakura, T. Makimoto, and N. Kobayashi. Enhanced hole genration in Mg-doped AlGaN/GaN superlattices due to piezoelectric field [J]. Jpn. J. Appl. Phys., 2000, 39:2428-2430.
    [8] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBarrs, U. K. Mishra, H. W. Saxler, R. Perrin, and W. C. Mitchel. Polarization-enhanced Mg doping of AlGaN/GaN superllattices [J]. Appl. Phys. Lett., 1999, 75:2444-2446.
    [9] Z. X. Qin, Z. Z. Chen, H. X. Zhang, X. M. Ding, X. D. Hu, T. J. Yu, and G. Y. Zhang. The role of Ni and Au on transparent film of blue LEDs [J]. Solid-State Electronics, 2003,47:1741-1743.
    [10] J. Jang, S. Park, and T. Seong. Ultrahigh transparency of Ni/Au ohmic contacts to surface-treated p-type GaN [J]. J. Appl. Phys., 2000, 88: 5490-5492.
    [11] S. H. Wang, S. E. Mohney, and R. Birkhahn. Environmental and thermal aging of Au/Ni/p-GaN ohmic contacts annealed in air [J]. J. Appl. Phys., 2002, 91: 3711-3716.
    [12] A. K. Viswanath, E. Shin, J. Lee, S. Yu, D. Kim, B. Kim, Y. Choi, and C. Hong. Magnesium acceptor levels in GaN studied by photoluminescence[J].J.Appl.Phys.,1998,83:2272-2275.
    [13]E.Oh,H.Park,and Y.Park.Excitation density dependence of photoluminescence in GaN:Mg[J].Appl.Phys.Lett.,1998:70-72.
    [14]L.Eckey,U.Von Gfug,J.Hoist,A.Hoffmann,A.Kaschner,H.Siegle,C.Thomsen,B.Sehineller,K.Heime,M.Heuken,O.Sch(o|¨)n,and R.Beccard.Photoluminescence and Raman study of compensation effects in Mg-doped GaN epilayers[J].J.Appl.Phys.,1998,84:5828-5830.
    [15]M.A.Reshchikov,G.C.Yi,and B.W.Wessels.Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities[J].Phys.Rev.B,1999,59:13176-13183.
    [16]M.Ilegems,and R.Dingle.Luminescence of Be- and Mg-doped GaN[J].J.Appl.Phys.,1973,44:4234-4235.
    [17]T.W.Kang,S.H.Park,H.Song,and T.W.Kim.Mechanism of donor-aceeptor pair recombination in Mg-doped GaN epilayers grown on sapphire substrates[J].J.Appl.Phys.,1998,84:2082
    [1] T. Wang, D. Nakagawa, M. Lacjab, T. Sugahara, and S. Sakai. Optical investigation of InGaN/GaN multiple quantum wells [J]. App. Phys. Lett., 1999, 74: 3128-3130.
    [2] K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, K. Uchida, H. Tolunaga, N. Akutsu, and K. Matsumoto. An analysis of temperature dependent photoluminescence line shapes in InGaN [J]. Appl. Phys. Lett., 1998, 73: 1697-1699.
    [3] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski. "Blue" temperature-induced shift and band-tail emission in InGaN-based light sources [J]. Appl. Phys. Lett., 1997, 71: 569-571.
    [4] T. Wang, H. Saeki, J. Bai, T. Shirahama, M. Lachab, and S. Sakai, P. Eliseev. Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures [J]. Appl. Phys. Letts., 2000,76: 1737-1739.
    [5] T. Wang, J. Bai, S. Sakai, and J. K. HO. Investigation of the emission mechanism in InGaN/GaN-bansed light-emitting diodes [J]. Appl. Phys. Lett., 2001, 78: 2617-2619.
    [6] C. L. Yang, L. Ding, J. N. Wang, K. K. Fung, W. K.Ge, H. Liang, L. S. Yu, Y. D. Qi, D. L. Wang, Z. D. Lu, and K. M. Lau. Thermally activated carrier transger processes in InGaN/GaN multi-quantum-well lighe-emitting devices [J]. J. Appl. Phys., 2005, 98:023703.
    [7] Y. Lai, C. Liu, and Z. Chen. Study of the dominant luminescence mechanism in InGaN/GaN multiple quantum wells comprised of ultrasmall InGaN quasiquantum dots [J]. Appl. Phys. Lett., 2005, 86: 121915.
    [8] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P. Liu, and I. G. Chen. Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor depostion [J]. Appl. Phys. Lett., 2004, 84: 3307-3309.
    [9] Y. Cheng, C. Tseng, C. Hsu, K. Ma, S. Feng, E. Lin. C. C. Yang, and J. Chyi. Mechanisms for photon-emission enhancement with silicon doping in InGaN/GaN quantum-well structures [J]. J. Electron. Mater., 2005, 32: 375-381.
    [10] Y. Lai, C. Liu, Y. Lin, T. Hsueh, R. Lin, D. Lyu, Z. Peng, and T. Lin. Origins of efficient green light emission in phase-separated InGaN quantum wells [J]. Nanotechnology, 2006,17: 3734-3739.
    [11] B. Monemar, P. P. Paskov, G. Pozina, T. Paskova, J. P. Bergman, M. Iwaya, S. Sitta, H. Amano, and I. Akasaki. Optical Characterization of InGaN/GaN MQW structures without In phase separation [J]. Phys. Stat. Sol. (b), 2001, 228: 157-160.
    [12] T. M. Smeeton, M. J. Kappers, J. S. Barnard, M. E. Vicker, and C. J. Humphreys. Electron-beam-induced strain within InGaN quantum wells: False indium "cluster" detection in the transmission electron microscope [J]. Appl. Phys. Lett., 2003, 83: 5419-5421.
    [13] A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, and P. Hinze. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency [J]. Phys. Rev. Lett., 2005,95: 12402.
    [14] C.-C. Chuo, G-T. Chen, M.-I. Lin, C.-M. Lee, and J.-I. Chyi. Localized and quantum-well state excitons in AlInGaN laser-diode structure [J]. Phys. Rev. B, 2002,66:161301.
    [15] B. Monemar, P. P. Paskov, J. P. Bergam, G. Pozina, V. Darakchieva, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki. Photoluminescence in n-doped Ino.1Gao.9N/Ino.o1Gao.99N multiple quantum wells [J]. MRS Internet J. Nitride Semicond. Res., 2002,7: 7.
    [16] M. A. Reshchikov, G. C. Yi, and B. W. Wessels. Behavior of 2.8- and 3.2-eV photoluminescence bands in Mg-doped GaN at different temperatures and excitation densities [J]. Phys. Rev. B, 1999, 59:13176-13183.
    [17] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi. Temperature dependence of the radiative recombination zone in InGaN/GaN multiple quantum well light-emitting diodes [J]. J. Appl. Phys., 2001, 89: 6554-6556.
    [18] T. Wang, D. Nakagawa, J.Wang, T. Sugajara, and S. Sakai. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells [J]. Appl. Phys. Lett., 1998,73: 3571-3573.
    [19] L. Peng, C. Chuang, and L. Lou. Piezoelectric effects in the optical properties of strained InGaN quantum wells [J]. Appl. Phys. Lett., 1999, 74: 795-797.
    [20] P. C. Tsai, R. W. Chuang, and Y. K. Su. Lifetime tests and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates [J]. J. Lightw. Technol., 2007,25: 591-596.
    [21] S. Shhajed, Y. Xi, Y. - L. Li, Th. Gessmann, and E. F. Schubert. Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes [J]. J. Appl. Phys., 2006, 97: 054506.
    [22] P. K. Basu. Theory of optical processes in semiconductors: Bulk and microstructures [M]. New York: Oxford University Press Inc., 2003.
    [23] B. T. Liou, C. Y. Lin, S. H. Yen, Y. K. Kuo. First-principles calculation for bowing parameter of wurtzite In_xGa_(1-x)N [J]. Optics Communications, 2005,249: 217-223.
    [24] U. M. E. Christmas, A. D. Andreev, and D. A. Faux. Calculation of electric field and optical transitions in InGaN/GaN quantum wells [J]. J. Appl. Phys., 2005, 98: 073522.
    [25] H. Teisseyer, P. Perlin, T. Suski, I. Grzegory, S. Porowski, J. Jun, A. Pietraszko, and T. D. Moustakas. Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer [J]. J. Appl. Phys., 1994, 76: 2429-2454.
    [26] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff. Temperature dependence of the fundamental band gap of InN [J]. J. Appl. Phys. 2003, 94:4457-4460.
    [27] M. A. Morrison. Understanding quantum physics: a user's manual [M]. New Jersey: Prentice-Hall Inc., 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700