用户名: 密码: 验证码:
山东省济南市区废水环境中整合子细菌筛选及耐药性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于抗生素的广泛应用治疗各类感染,使细菌耐药问题越来越严重,从而导致了细菌多重耐药性(Multidrug resistance, MDR)的现象。不断的滥用抗生素使得人体乃至自然环境为细菌进化为多重耐药性细菌提供了选择压力并使细菌耐药性得以广泛的传播。整合子是一种可移动元件,在整合酶作用下,识别重组位点,通过位点特异性重组剪切、捕获并整合细胞外游离的基因盒,并借助整合子的强启动子使功能性基因得以表达的遗传系统;整合子的基因盒大部分是具编码多种水解酶或修饰酶、外排泵等与细菌耐药性相关基因。
     临床上具有不同耐药基因的致病菌会以各种方式流入环境中,环境细菌通过基因的水平转移,可以从流入环境中的临床致病菌中获得耐药性基因。在耐药基因转移过程中,往往会发生突变或重组,进而产生新的耐药基因或新的多重耐药性基因的组合。反过来,这些新的耐药因子有可能再从环境细菌转入临床致病菌,经过空气、食物或水来感染人体,在临床上产生耐药性,对人类健康具有极大的危害。在抗菌药物选择压力环境下,整合子随转座子、接合性质粒一同发生水平转移具有使耐药性在细菌之间传播的功能,是细菌竞争生存、适应环境的机制之
     也是耐药性传播的重要途径。
     我们这项研究是通过调查济南地区医院周边生活废水中整合子细菌的发生率以及其含有的耐药基因盒结构,目的是发掘、鉴定一些新型的整合子结构。从基因水平上分析细菌的耐药及其转移的机制,说明抗菌药物滥用的危害性从而指导抗菌药物的正确使用,防止抗菌药物的滥用;根据细菌耐药的机制,有目的的开发一些新型抗菌药物。
     本文主要的工作内容及结果如下:
     1.通过滤法从济南市区废水环境中筛选耐药性细菌,对所有耐药性菌株的1型、2型、3型整合酶通过PCR分别进行检测
     从2008年至2009年各大医院废水处理厂周边的废水样品;济南齐鲁制药厂下游小清河地下水、工程改造地下抽去的排水及药厂猪圈废水;废水处理厂处理前废水及部分天然少污染的济南周边泉水共15个不同时间的样品进行分析。筛选出391株不同耐药性肠杆菌菌株,根据CLSI标准,通过抗菌药物敏感性实验分析菌株对常用抗菌药物耐药性,发现菌株对氨苄西林、甲氧苄啶、硫代异唑的耐药性大于85%。通过1、2、3型整合酶引物intI1F/R,intI2F/R和intI3F/R进行PCR检测,其中1型整合子比率为59.3%,2型整合子的比率为9.2%,未筛选到3型整合酶阳性的菌株。391株菌株药物敏感性结果与整合子筛选结果分析发现,含有整合子的耐药细菌对氨苄西林、甲氧苄啶和硫代异唑三种抗菌药物的耐药率高达90%以上,非整合子细菌氨苄西林的耐药性也高达87.2%,除了磷霉素外,耐药性含整合子细菌比不具有该结构的菌株耐药性的比率高10%-20%。
     2.对1型整合子可变区采用PCR扩增,通过PCR产物大小、PCR产物RFLP图谱分析及测序结果机型分析
     根据1型整合子可变区根据其保守的5'CS和3'CS设计引物hep58,hep59进行扩增。根据PCR产物大小从0.2kb至6.3kb,PCR产物EcoRⅡ酶切图谱分析,发现34种不同酶切图谱,测序结果发现35种不同的基因盒阵列,具有42种不同的基因盒。35种基因盒阵列中九种基因盒阵列属于新的排列组合,16SrRNA分析,九株菌包含6个属:气单胞菌属、克雷伯菌属、大肠杆菌属、从毛假单胞菌属、普罗维登斯菌属和奇异变形杆菌属。9种新型基因盒阵列如下所示:orfI;arr3--dfrA27;aadA△16—acc(6')-Ⅱ;aac(6')-Ib—bIaoXA-1—catB3;aacA4—orfun—aacA4—catB3 dhfrV—aac.(6—Ⅱ—nitr1—nit2—catB3—blaOXA-1;aac(6')-Ib-cr—arr3—dfrA27—aadA16—IS26;aadB—cat—blaOXA-10—aadAl—dfrAl—aacA4;aadB—cat—blaOXA-10—aadAl—orfll.232株具有1型整合子的基因盒阵列中,dfrA17—aadA5排列方式是最多的一种,占43.5%,其次是dfrA12—orfF—aadA2阵列,占19.3%。
     3.对共筛选出36株2型整合子进行分析,其中含有5种不同的基因盒排列组合,接合转移及转化方法分析2型整合子的水平转移性
     用于扩增2型整合子可变区hep74和hep51引物成功扩增到5种不同的PCR产物4.3kb,3.0kb,2.5kb和2.2kb及时隐时现的2.5kb片段大小。PCR产物连接至pMD19-T测序结果显示分别为linF—dfrAl—aadAl—orf441;dfrA1—catB2—sat2—aadA1; estXvr—sat—aadA1; dfrA1—sat2—aadA1及杂合型的dfrA1—sat2—aadA1—qacH基因盒阵列。36株2型整合子细菌根据REP图谱进行分类,发现其可以分为15类,16S rRNA测序结果显示19株属于奇异变形杆菌属,大肠杆菌属、普罗威登斯菌属各7株,费氏柠檬酸杆菌、志贺氏菌属、不动杆菌属各1株。接合转移、转化实验及脉冲场电泳及Southern杂交实验结果表明除E.coli C4杂合型2型整合子外,其余新型2型基因盒阵列均位于染色体上。采用Tn7类转座子特有序列tnsD, tnsE进行检测,除2株杂合型2型整合子不具有此类保守序列外,其余34株2型整合子均属于Tn7转座子家族。在杂合型2型整合子下游鉴定存在IS26, tnp440和sul3基因。
     4. Aeromonas puctata中新型喹诺酮耐药性基因qnrVC4的克隆及活性分析
     从Aeromonas puctata基因盒3.3kb aacA4—orfun—aacA4—aatB3比对结果发现中间lkb序列功能未知,具有218氨基酸的开放阅读框,GenBank比对结果显示其与QnrB6, QnrA1, QnrS1, QnrC, QnrVC1和QnrVC3具有45%-81%的相似性。根据核苷酸、氨基酸序列相似性及其attC重组位点进行了详细的分析,根据qnr基因命名的法则,将此基因命名为qnrVC4。接合转移和转化实验均未获得该菌株相应的转移子。采用碱裂解法提取质粒,脉冲场电泳,23S rRNA探针杂交对染色体定位,然后用qnrVC4探针进行杂交分析,结果表明该基因位于
     大质粒上,并且该质粒不可以发生水平转移。利用pBC KS(+)的Lac启动子及整合子本身的启动子PcWTGN-10进行表达。将657bp的qnrVC4及含有启动子、aacA4、qnrVC4基因的1.8kb的PCR产物克隆至质粒pBC KS(+)中,在E.coli Top 10中成功构建重组子pBCKS-qnrVC4和pBCKS-Pt-qnrVC4。重组子pBCKS-qnrVC4对环丙沙星、加替沙星、萘啶酮酸最小抑菌浓度(MICs)结果分别为0.032,0.047和4 gg/mL;重组子pBCKS-Pt-qnrVC4结果分别为0.008,0.006和2μg/mL。分析此菌株染色体上GyrA, GyrB和ParC的喹诺酮耐药性决定区域(QRDR)发现GyrA Ser-83-Ile突变是该菌株喹诺酮耐药性的主要原因。
     5.分析391株耐药细菌中质粒介导的喹诺酮耐药性基因qnrA, qnrB, qnrS的分布
     虽然QnrA, QnrB和QnrS蛋白在喹诺酮耐药性的贡献非常小,但是qnrA,qnrB和qnrS通常位于质粒上并成为喹诺酮耐药性水平转移的主要方式,并且此类基因的水平转移为获得高喹诺酮耐药性提供可能。从391株筛选的不同耐药菌株中31株具有qnr类基因,其中2株具有qnrA基因;9株具有qnrS基因阳性菌株;17株qnrB基因阳性菌株,3株同时含有qnrB, qnrS基因。通过两对引物进行PCR,并且通过PCR-RFLP的方法对qnrB基因变体进行了详细的分析,此分析法的结果与测序结果相一致,可以用来大量快速鉴定qnrB基因变体并发现新型qnrB变体。与喹诺酮耐药性相关的aac(6')-Ib-cr基因与qnr基因同时存在可以提高喹诺酮耐药性,在31株菌中检测到12株菌具有该基因。与喹诺酮相关的外排泵基因qepA仅在1株qnrB菌株中和4株qnrS菌株中检测到。接合转移和转化实验结果发现18株菌株的qnr基因可以发生水平转移。
     6.调查391株耐药性菌株中ISCR1介导的复杂结构的1型整合子及具有该元件菌株的耐药性机制分析
     本实验调查了391株菌株含有ISCR1元件的概率,发现其中有41株具有ISCR1元件,包括所有含有qnrA, qnrB的菌株。采用ISCR1元件的保守序列设计引物513BF和3'CS的qac△EB引物及SEFA-PCR分析ISCR1元件下游所携带的耐药性基因,从中发现了11种不同的结构,包括ISCR1—qnrA—ampR—qac△E—sull, ISCR1—qnrB2—qac△E—sull, ISCR1—qnrB6—qac△E—sull, ISCR1—dfrA10—qac△E—sull, ISCR1—tnpU—armA, ISCR1—dfrL—qac△E—sull, ISCR1—dfrM—qac△E—sull, ISCR1—dfrN—qac△E—sull, ISCR1—dfrA19—intI1—aatB3—aadB—qac△E—sull, ISCR1—blaPER-1—gst—ABC transporter—orf252—qac△E, ISCR1—IS630—blaPER-1—gst—ABC transporter—arf52—qac△E等结构。模拟3种新型的DHFR家族(DfrL, DfrM, DfrN)位于ISCR1元件下游的遗传结构,对甲氧苄啶最小抑菌浓度进行分析,耐药性均大于1024μg/mL。
Today, because antibiotic agents are wildely used to treat infection in our daily life caused the bacteria resistance problem and the multidrug resistance (MDR) phenomenon. The abuse of antibiotic agents was not only the way of bacteria multidrug resistance dissemination but also the important factor for bacteria evolution of multidrug resistance, which provided a selection pressure making human body and the natural environment to be a reservoir for the bacteria to evolve into multi-drug resistant strains. Integron is a mobile element which is referred the recombinase and a recombination site. The recombinase recognizes the specific recombination site, then excises or captures the gene cassettes which can be expressed by a promoter of integron and encoding a variety of hydrolytic enzymes or modifying enzymes, efflux pumps and bacterial resistance related genes.
     Clinical pathogenic bacteria with different resistance genes released into the environment by many ways and the resistance mechanism can be transferred by daughter colony and the other bacteria can obtain the resistance genes through the horizontal gene transfer. Mutations or recombinations were occurred frequently in the gene transfer process to form the new resistant genes, and novel arrays of multiple drug resistance genes were formed by recombination involving integrases. Consequently, these new resistance factors may be transferred to the clinical pathogenic bacteria from the environment and through air, food or water to infect the human body to form new resistance factors in clinical and threat to human health. Integron can be transferred horizentally by transposon and conjugation plasmids, especially under the aquatic environment with antibiotic selection pressures, which is one of the mechanisms for competition and adaption in bacteria and the most important way for resistance scattering.
     This study, we investigate the integrons dissemination and the related resistance gene cassette array structures in the wastewater nearby hospital to explore and identify the novel integron genetic structures. We analysis the bacteria resistance mechanisms and the related gene transfer mechanisms by genetic level to illustrate the risk of antibiotic abuse and guide the proper use of antibiotics to prevent the overuse antibiotics. As well, we could develope a number of new antibacterial drugs according to the mechanisms of bacterial resistance. The main methods and results are as follows:
     1. Bacteria were selected from contaminated water in Jinan by mebrane filter method, all the resistant isolates were also investigated by polymerase chain reactions of class 1,2 and class 3 integrases
     Fifteen different water samples were collected from 2008 to 2009, including the waste water nearby Thousand Buddha hospital, Qilu hospital, the XiaoQing River, a pigpen wastewater in Qilu pharmaceutical factory, water sample pollutated by petroleum, Waste Water Treatment Plant, and the river nearby the Shandong Traditional Chinese Medicine Hospital, the spring of Heihu, and the Xi Lake at different times.391 different resistant Enterobacteriaceae were selected and the antibiotics susceptibility test was used to distinguish the bacteria resistance profiles by CLSI criterion. More than 85% isolates were resistant to ampicillin, trimethoprim and sulfisoxazole. According to the conserved sequences of class 1, class 2 and class 3 integrase, primers intI1F/R, intI2F/R and intI3F/R were designed to investigate the prevalence of integron and 59.3% belonged to class 1 integron,9.2% identified to class 2 integron but no class 3 integron were detected. Comparing the susceptibility between integron bacteria and non-integron bacteria, the ampicillin, trimethoprim and sulfisoxazole resistances are more than 90% in integron bacteria and 87.2% in non-integron bacteria. In all, except the fosmycin, all the other antibiotics in containing integron structure are 10%-20% more than the resistance in non-integron bacteria.
     2. We analyzed the structure of class 1 integron by PCR amplification and the RFLP type by EcoRⅡ
     According to class 1 integron 5'CS and 3'CS, the variable region were obtained by primers hep58 and hep59. The sizes of PCR production were from 0.2kb to 6.3kb, and the related profiles of EcoRⅡrestriction RFLP map, we found 34 different restriction maps, sequencing results showed that 35 different gene cassette arrays with 42 kinds of gene cassettes. Nine of 35 different gene cassette arrays were belonged to the novel rearragement.16S rRNA sequencing results showed the nine isolates were belonged to Aeromonas sp., Klebsiela sp., Escherichia sp., Comanionas sp., Providencia sp. and Proteus sp. The nine novel gene cassette arrays are showed as following:orfI; arr3—dfrA27;aadA△16—acc(6')-Ⅱ; aac(6')-Ib-cr—blaoxA-1—catB3;aacA4—orfun—aacA4—catB3; dhfrV—aac(6)-Ⅱ—nitl—nit2—catB3—blaOXA-1; aac(6')-Ib-cr—arr3—dfrA27—aadA16—IS26; aadB—cat—blaoxA-10—aadA1—dfrA1—aacA4; aadB—cat—blaoxA-10—aadA1—orfll. The gene cassette array about dfrAl7—aadA5 was the most prevelance in our study, contained 43.5%, and followed arrays was 19.3% of dfrA12—orfF—aadA2.
     3. Thirty six isolates were positive to the class 2 integrons and the structures of class 2 integrons were analysised to five different gene cassette arrays. The transformation and cojugation expriments were conducted to analysist the horizontal gene transfer
     PCR products of class 2 variable regions were carried out by the conservative primers hep74 and hep51 and show five different sizes,4.3kb,3.0kb,2.5kb and 2.2kb, as well as a 2.5kb amplicon either negative to the primers or appeared a weaker band. Sequencing results showed the arrays are linF—dfrA1—aadA1—orf441; dfrA1—catB2—sat2—aadA1; estXvr—sat—aadA1; dfrA1—sat2—aadA1 and the hybrid array dfrA1—sat2—aadA1—qacH. Rep-PCR results showed that the 36 bacteria containing 15 different profiles,16S rRNA identification results showed that 19 isolates are Proteus spp., Escherichia spp.,and Providencia spp. are both 7 isolates and Citrobacter freundii, Shieglla sp., and Acinetobacter sp. are only one isolate, respectively. Cojugation and transformation experiment, PFGE and southern hybrid results were showed that except the hybrid class 2 integron, E.coli C4, the other novel class 2 integrons were chromosomally located. The specific primers about tnsD and tnsE were used to identify the Tn7 family. As a result, all the class 2 integrons except the hybrid class 2 integrons were the members of typical Tn7 family. The elements about IS26, tnp440 and sul3 were located downstream of the hybrid class 2 integrons.
     4. The new variant of quinolone resistance gene qnrVC4 was identified in Aeromonas puctata isolates and anlaysis of the mechanisms of quinolone resistance
     The 3.3 kb aacA4—orfun—aacA4—catB3 array was identified in class 1 gene cassette array and orfun was a lkb gene cassette encoded an open reading frame of 218aa which was 45%-81% similarities with QnrB6, QnrAl, QnrS1, QnrC, QnrVCl, and QnrVC3 by GenBank Blast suit analysis. According to the similarity of nucleotides, amino acids and the attC recombination site, the gene was named qnrVC4, and its protein was designated QnrVC4 based on the qnr nomenclature. Conjugative transfer and transformation expriments were both unsuccessful. The location of qnr VC4 was carried out by southern bolting with probes of qnr VC4 gene and 23 S rRNA, respectively. Both hybridizations were carried out using plasmids isolated by alkaline lysis, followed by agarose gel electrophoresis and total genetic material digested with S1 nuclease and I-CeuI, followed by pulsed-field gel electrophoresis (PFGE). The results indicated that qnrVC4 was located on a large plasmid. The qnrVC4 gene and qnrVC4 with the promoter of integron and aacA4 gene were both subcloned in plasmid pBC KS (+), both of which expressed by Lac promoter or promoter of integron (PcWTGN-10)-The minimum inhibitory concentrations (MICs) of ciprofloxicin, gatifloxacin, and nalidixic acid were 0.032, 0.047 and 4μg/mL with the recombinant pBCKS-qnrVC4 and 0.008,0.006 and 2μg/mL in the recombinant pBCKS-Pt-qnrVC4, but the MIC of the original isolate Aeromonas punctata was 0.38,0.19 and 96μg/mL, respectively. The analysis of the GyrA, GyrB, and ParC about the quinolone resistance determining regions (QRDR) showed the GyrA mutation at 83 Ser to Ile was the main facter of quinolone resistance.
     5. Quinolone resistances genes qnrA, qnrB, qnrS were detected in the 391 isolates
     Because of qnrA, qnrB and qnrS gene were reported on plasmids, which provided the easier way of low quinolone resistance transfer and the possibility to form the high quinolone resistance. Eventhough they make little contribute to the quinolone resistance in quinolone resistance isolates but many researchers are more trendency to research the dissemination of these genes and their variants. In 391 isolates,2 isolates were positive qnr A,17 isolates contained qnrB gene,9 qnrS isolates and 3 isolates were positive to both qnrB and qnrS. The PCR with two specific primers and the PCR-RFLP method to analysis the qnrB variants were successful to identify the qnrB variant and which were identical to the sequencing results. The aac(6')-Ib-cr gene identified with qnr gene can promote the quinolone resistance, and 12 isolates were both contained aac(6')-Ib-cr and one kind of qnr gene. The efflux pump gene qepA related quinolone resistance was also detected in one qnrB isolate and four qnrS isolates.18 isolates of qnr gene can be transferred by horizontal gene transfer.
     6. ISCR1 element of the complex class 1 integron was detected in 391 isolates and the related resistance mechanisms were analysised
     The ISCR1 element was detected in the 391 resistance isolates,41 isolates were showed with ISCR1, including all the qnrA and qnrB isolates. Primers of conserved regions (513BF, qac△EB and SEFA-PCR primers) were designed to analysis the downstream genetic structures of ISCR1 element.11 different kinds of genetic structures were illustrated, including ISC1—qnrA—ampR—qac△E—sull, ISCR1—qnrB2—qac△E—sull, ISCRl—qnrB6—qac△E—sull, ISCR1—dfrA10—qac△E—sull, ISCR1—tnpU—armA, ISCR1—dfrL—qac△E—sull, ISCR1—dfrM—qac△E—sull, ISCR1—dfrN—qac△E—sull, ISCR1—dfrA19—int11—catB3—aadB—qac△E—sull, ISCR1—blaPER-1—gst—ABC transporter—orf252—qac△E, ISCR1—IS630—blaPER-1—gst——ABC transporter—orf252—qac△E. Three dihydrofolate reductase (DfrL, DfrM and DfrN) were analysised the MICs of trimethoprom by the mimic genetic structure with ISCR1, and showed the high resistance more than 1024μg/mL。
引文
[1]Tenover F C. Mechanisms of antimicrobial resistance in bacteria. [J]. Am J Med, 2006,119(6 Suppl 1):S3-S10, S62-S70.
    [2]Sawai T. Mechanisms of bacterial resistance to beta-lactams by beta-lactamases[J]. Nippon Rinsho,1997,55(5):1225-1230.
    [3]Jovanovic N, Jovanovic J, Stefan-Mikic S, et al. Mechanisms of bacterial resistance to antibiotics.[J]. Med Pregl,2008,61 Suppl 1:9-14.
    [4]Stewart P S. Mechanisms of antibiotic resistance in bacterial biofilms.[J]. Int J Med Microbiol,2002,292(2):107-113.
    [5]Stokes H W, Hall R M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions:integrons.[J]. Mol Microbiol,1989, 3(12):1669-1683.
    [6]Hall R M, Brookes D E, Stokes H W. Site-specific insertion of genes into integrons:role of the 59-base element and determination of the recombination cross-over point.[J]. Mol Microbiol,1991,5(8):1941-1959.
    [7]Hall R M, Collis C M. Mobile gene cassettes and integrons:capture and spread of genes by site-specific recombination.[J]. Mol Microbiol,1995,15(4):593-600.
    [8]Schluter A, Szczepanowski R, Kurz N, et al. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function.[J]. Appl Environ Microbiol,2007,73(6):1952-1960.
    [9]Hansson K, Sundstrom L, Pelletier A, et al. IntI2 integron integrase in Tn7.[J]. J Bacteriol,2002,184(6):1712-1721.
    [10]Shibata N, Doi Y, Yamane K, et al. PCR typing of genetic determinants for metallo-beta-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron.[J]. J Clin Microbiol,2003,41(12):5407-5413.
    [11]Correia M, Boavida F, Grosso F, et al. Molecular characterization of a new class 3 integron in Klebsiella pneumoniae.[J]. Antimicrob Agents Chemother,2003,47(9): 2838-2843.
    [12]Mazel D. Integrons:agents of bacterial evolution.[J]. Nat Rev Microbiol,2006, 4(8):608-620.
    [13]Hochhut B, Lotfi Y, Mazel D, et al. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae 0139 and 01 SXT constins.[J]. Antimicrob Agents Chemother,2001,45(11):2991-3000.
    [14]Collis C M, Hall R M. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase.[J]. J Bacteriol,1992,174(5):1574-1585.
    [15]Partridge S R, Tsafnat G, Coiera E, et al. Gene cassettes and cassette arrays in mobile resistance integrons.[J]. FEMS Microbiol Rev,2009,33(4):757-784.
    [16]Biskri L, Mazel D. Erythromycin esterase gene ere(A) is located in a functional gene cassette in an unusual class 2 integron.[J]. Antimicrob Agents Chemother,2003, 47(10):3326-3331.
    [17]Arakawa Y, Murakami M, Suzuki K, et al. A novel integron-like element carrying the metallo-beta-lactamase gene blaIMP·[J].Antimicrob Agents Chemother, 1995,39(7):1612-1615.
    [18]Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp.[J]. J Bacteriol,2007,189(17):6276-6283.
    [19]Poirel L, Carattoli A, Bernabeu S, et al. A novel IncQ plasmid type harbouring a class 3 integron from Escherichia co//.[J]. J Antimicrob Chemother,2010,65(8): 1594-1598.
    [20]Hall R M, Stokes H W. Integrons:novel DNA elements which capture genes by site-specific recombination.[J]. Genetica,1993,90(2-3):115-132.
    [21]Collis C M, Hall R M. Expression of antibiotic resistance genes in the integrated cassettes of integrons.[J]. Antimicrob Agents Chemother,1995,39(1):155-162.
    [22]Stokes H W, O'Gorman D B, Recchia G D, et al. Structure and function of 59-base element recombination sites associated with mobile gene cassettes.[J]. Mol Microbiol,1997,26(4):731-745.
    [23]Labbate M, Case R J, Stokes H W. The integron/gene cassette system:an active player in bacterial adaptation.[J]. Methods Mol Biol,2009,532:103-125.
    [24]Parent R, Roy P H. The chloramphenicol acetyltransferase gene of Tn2424:a new breed of cat.[J]. J Bacteriol,1992,174(9):2891-2897.
    [25]Stokes H W, Tomaras C, Parsons Y, et al. The partial 3'-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin.[J]. Plasmid,1993,30(1):39-50.
    [26]Toleman M A, Bennett P M, Walsh T R. Common regions e.g. orf513 and antibiotic resistance:IS91-like elements evolving complex class 1 integrons.[J]. J Antimicrob Chemother,2006,58(1):1-6.
    [27]Toleman M A, Bennett P M, Walsh T R. ISCR elements:novel gene-capturing systems of the 21st century?[J]. Microbiol Mol Biol Rev,2006,70(2):296-316.
    [28]Tavakoli N, Comanducci A, Dodd H M, et al. IS 1294, a DNA element that transposes by RC transposition.[J]. Plasmid,2000,44(1):66-84.
    [29]Arduino S M, Roy P H, Jacoby G A, et al. blacrx-M-2 is located in an unusual class 1 integron (In35) which includes Orf513.[J]. Antimicrob Agents Chemother, 2002,46(7):2303-2306.
    [30]Arduino S M, Catalano M, Orman B E, et al. Molecular epidemiology of orf513-bearing class 1 integrons in multiresistant clinical isolates from Argentinean hospitals.[J]. Antimicrob Agents Chemother,2003,47(12):3945-3949.
    [31]Partridge S R, Hall R M. In34, a complex In5 family class 1 integron containing orf513 and dfrA10.[J]. Antimicrob Agents Chemother,2003,47(1):342-349.
    [32]Lesher G Y, Froelich E J, Gruett M D, et al.1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents.[J]. J Med Pharm Chem,1962,91:1063-1065.
    [33]Barlow A M. Nalidixic Acid in Infections of Urinary Tract. Laboratory and Clinical Investigations.[J]. Br Med J,1963,2(5368):1308-1310.
    [34]Kresse H, Belsey M J, Rovini H. The antibacterial drugs market.[J]. Nat Rev Drug Discov,2007,6(1):19-20.
    [35]张致平.喹诺酮类抗菌药研究的新进展.[J].中国抗生素杂志,1999,24(1):61.
    [36]张致平.喹诺酮类抗菌药研究的新进展.[J].外医药抗生素分册,2001,22(6):241.
    [37]Shimizu M, Nakamura S, Takase Y. Piromidic acid, a new antibacterial agent: antibacterial properties.[J]. Antimicrob Agents Chemother (Bethesda),1970,10: 117-122.
    [38]Shimizu M, Nakamura S, Takase Y, et al. Pipemidic acid:absorption, distribution, and excretion[J]. Antimicrob Agents Chemother,1975,7(4):441-446.
    [39]Holmes D H, Ensminger P W, Gordee R S. Cinoxacin:effectiveness against experimental pyelonephritis in rats.[J]. Antimicrob Agents Chemother,1974,6(4): 432-436.
    [40]Takakuwa O, Yamamoto T, Kawai A, et al. Successful treatment of Legionella pneumonia with moxifloxacin in a hemodialysis patient.[J]. Nihon Kokyuki Gakkai Zasshi,2009,47(7):625-630.
    [41]Oliphant C M, Green G M. Quinolones:a comprehensive review.[J]. Am Fam Physician,2002,65(3):455-464.
    [42]Piddock L J. Mechanism of quinolone uptake into bacterial cells.[J]. J Antimicrob Chemother,1991,27(4):399-403.
    [43]Bearden D T, Danziger L H. Mechanism of action of and resistance to quinolones.[J]. Pharmacotherapy,2001,21(10 Pt 2):224S-232S.
    [44]Drlica K, Malik M, Kerns R J, et al. Quinolone-mediated bacterial death.[J]. Antimicrob Agents Chemother,2008,52(2):385-392.
    [45]Truong Q C, Nguyen Van J C, Shlaes D, et al. A novel, double mutation in DNA gyrase A of Escherichia coli conferring resistance to quinolone antibiotics.[J]. Antimicrob Agents Chemother,1997,41(1):85-90.
    [46]Chamberland S, Bayer A S, Schollaardt T, et al. Characterization of mechanisms of quinolone resistance in Pseudomonas aeruginosa strains isolated in vitro and in vivo during experimental endocarditis.[J]. Antimicrob Agents Chemother,1989,33(5): 624-634.
    [47]Yoshida T, Muratani T, Iyobe S, et al. Mechanisms of high-level resistance to quinolones in urinary tract isolates of Pseudomonas aeruginosa.[J]. Antimicrob Agents Chemother,1994,38(7):1466-1469.
    [48]Cattoir V, Nordmann P. Plasmid-mediated quinolone resistance in gram-negative bacterial species:an update.[J]. Curr Med Chem,2009,16(8):1028-1046.
    [49]Strahilevitz J, Jacoby G A, Hooper D C, et al. Plasmid-mediated quinolone resistance:a multifaceted threat.[J]. Clin Microbiol Rev,2009,22(4):664-689.
    [50]Martinez-Martinez L, Eliecer C M, Manuel R J, et al. Plasmid-mediated quinolone resistance.[J]. Expert Rev Anti Infect Ther,2008,6(5):685-711.
    [51]Munshi M H, Sack D A, Haider K, et al. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1.[J]. Lancet,1987,2(8556):419-421.
    [52]Rahman M, Mauff G, Levy J, et al. Detection of 4-quinolone resistance mutation in gyrA gene of Shigella dysenteriae type 1 by PCR.[J]. Antimicrob Agents Chemother,1994,38(10):2488-2491.
    [53]Martinez-Martinez L, Pascual A, Jacoby G A. Quinolone resistance from a transferable plasmid.[J]. Lancet,1998,351(9105):797-799.
    [54]Hata M, Suzuki M, Matsumoto M, et al. Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b.[J]. Antimicrob Agents Chemother,2005,49(2):801-803.
    [55]Jacoby G A, Walsh K E, Mills D M, et al. qnrB, another plasmid-mediated gene for quinolone resistance.[J]. Antimicrob Agents Chemother,2006,50(4):1178-1182.
    [56]Cavaco L M, Hasman H, Xia S, et al. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin.[J]. Antimicrob Agents Chemother,2009,53(2):603-608.
    [57]Wang M, Guo Q, Xu X, et al. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis.[J]. Antimicrob Agents Chemother,2009,53(5):1892-1897.
    [58]Jacoby G, Cattoir V, Hooper D, et al. qnr Gene nomenclature.[J]. Antimicrob Agents Chemother,2008,52(7):2297-2299.
    [59]Tran J H, Jacoby G A. Mechanism of plasmid-mediated quinolone resistance. [J]. Proc Natl Acad Sci U S A,2002,99(8):5638-5642.
    [60]Tran J H, Jacoby G A, Hooper D C. Interaction of the plasmid-encoded quinolone resistance protein QnrA with Escherichia coli topoisomerase IV.[J]. Antimicrob Agents Chemother,2005,49(7):3050-3052.
    [61]Ma J, Zeng Z, Chen Z, et al. High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-Ib-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals.[J]. Antimicrob Agents Chemother,2009,53(2):519-524.
    [62]Sorensen A H, Hansen L H, Johannesen E, et al. Conjugative plasmid conferring resistance to olaquindox.[J]. Antimicrob Agents Chemother,2003,47(2):798-799.
    [63]Kim H B, Wang M, Park C H, et al. oqxAB encoding a multidrug efflux pump in human clinical isolates of Enterobacteriaceae.[J]. Antimicrob Agents Chemother, 2009,53(8):3582-3584.
    [64]Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli.[J]. Antimicrob Agents Chemother,2007,51(7):2464-2469.
    [65]Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate.[J]. Antimicrob Agents Chemother,2007,51(9):3354-3360.
    [66]Deshpande P, Rodrigues C, Shetty A, et al. New Delhi Metallo-beta lactamase (NDM-1) in Enterobacteriaceae:treatment options with carbapenems compromised.[J]. J Assoc Physicians India,2010,58:147-149.
    [67]Poirel L, Lagrutta E, Taylor P, et al. Emergence of metallo-ss-lactamase NDM-1-producing multidrug resistant Escherichia coli in Australia.[J]. Antimicrob Agents Chemother,2010.
    [68]Yong D, Toleman M A, Giske C G, et al. Characterization of a new metallo-beta-lactamase gene,bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India.[J]. Antimicrob Agents Chemother,2009,53(12):5046-5054.
    [69]Wilson K. Preparation of genomic DNA from bacteria. [J]. Curr Protoc Mol Biol, 2001, Chapter 2:2-4.
    [70]Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement; M100-S17.[J].2007, Vol.27.no.1.CLSI, Wayne, PA.
    [71]Vasilakopoulou A, Psichogiou M, Tzouvelekis L, et al. Prevalence and characterization of class 1 integrons in Escherichia coli of poultry and human origin.[J]. Foodborne Pathog Dis,2009,6(10):1211-1218.
    [72]范建华.禽源致病性大肠杆菌的耐药性和Ⅰ型整合子的研究.[硕士].扬州大学,2009.
    [73]White P M C D. Characterization of two new gene cassettes, aadA5 and dfrA17.[1]. FEMS Microbiol Lett,2000,182:265-269.
    [74]Weill F X, Demartin M, Tande D, et al. SHV-12-like extended-spectrum-beta-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali.[J]. J Clin Microbiol,2004,42(6):2432-2437.
    [75]Frana T S, Carlson S A, Griffith R W. Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104.[J]. Appl Environ Microbiol,2001,67(1):445-448.
    [76]Sunde M, Norstrom M. The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products.[J]. J Antimicrob Chemother,2006,58(4):741-747.
    [77]Ye C, Bai X, Zhang J, et al. Spread of Streptococcus suis sequence type 7, China.[J]. Emerg Infect Dis,2008,14(5):787-791.
    [78]Takahashi S, Nagano Y. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis.[J]. J Clin Microbiol,1984,20(4):608-613.
    [79]拉塞尔萨姆布鲁克D.W.分子克隆实验指南.[M].科学出版社,2002.
    [80]Mollet B, Iida S, Shepherd J, et al. Nucleotide sequence of IS26, a new prokaryotic mobile genetic element.[J]. Nucleic Acids Res,1983,11(18):6319-6330.
    [81]Sun J, Zhou M, Wu Q, et al. Characterization of two novel gene cassettes, dfrA27 and aadA16, in a non-O1, non-O139 Vibrio cholerae isolate from China.[J]. Clin Microbiol Infect,2010,16(8):1125-1129.
    [82]Wei Q, Jiang X, Yang Z, et al. dfrA27, a new integron-associated trimethoprim resistance gene from Escherichia coli.[J]. J Antimicrob Chemother,2009,63(2): 405-406.
    [83]Leverstein-Van Hall M A, Paauw A, Box A T, et al. Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital.[J]. J Clin Microbiol,2002,40(8):3038-3040.
    [84]Povilonis J, Seputiene V, Ruzauskas M, et al. Transferable Class 1 and 2 Integrons in Escherichia coli and Salmonella enterica Isolates of Human and Animal Origin in Lithuania.[J]. Foodborne Pathog Dis,2010.
    [85]Zhang X Y, Ding L J, Yue J. Occurrence and characteristics of class 1 and class 2 integrons in resistant Escherichia coli isolates from animals and farm workers in northeastern China.[J]. Microb Drug Resist,2009,15(3):223-228.
    [86]Moura A, Henriques I, Smalla K, et al. Wastewater bacterial communities bring together broad-host range plasmids, integrons and a wide diversity of uncharacterized gene cassettes.[J]. Res Microbiol,2009.
    [87]Ahmed A M, Nakano H, Shimamoto T. Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan:description of an unusual class 2 integron.[J]. J Antimicrob Chemother,2005,55(3):371-374.
    [88]Ramirez M S, Quiroga C, Centron D. Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii.[J]. Antimicrob Agents Chemother,2005,49(12):5179-5181.
    [89]Ramirez M S, Vargas L J, Cagnoni V, et al. Class 2 integron with a novel cassette array in a Burkholderia cenocepacia isolate.[J]. Antimicrob Agents Chemother,2005,49(10):4418-4420.
    [90]Ploy M C, Denis F, Courvalin P, et al. Molecular characterization of integrons in Acinetobacter baumannii:description of a hybrid class 2 integron.[J]. Antimicrob Agents Chemother,2000,44(10):2684-2688.
    [91]Barlow R S, Gobius K S. Diverse class 2 integrons in bacteria from beef cattle sources.[J]. J Antimicrob Chemother,2006,58(6):1133-1138.
    [92]Boonjakuakul J K, Canfield D R, Solnick J V. Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque.[J]. Infect Immun,2005, 73(8):4895-4904.
    [93]Guerra B, Soto S M, Arguelles J M, et al. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype.[J]. Antimicrob Agents Chemother,2001,45(4):1305-1308.
    [94]Liu J, Keelan P, Bennett P M, et al. Characterization of a novel macrolide efflux gene, mef(B), found linked to su13 in porcine Escherichia coli.[J]. J Antimicrob Chemother,2009,63(3):423-426.
    [95]Van Camp G, Chapelle S, De Wachter R. Amplification and sequencing of variable regions in bacterial 23 S ribosomal RNA genes with conserved primer sequences.[J]. Curr Microbiol,1993,27(3):147-151.
    [96]刘佳妍,金莉莉,王秋雨.细菌基因组重复序列PCR技术及其应用:[J].微生物学杂志,2006,(03).
    [97]Herrero M, de Lorenzo V, Timmis K N. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria.[J]. J Bacteriol,1990,172(11): 6557-6567.
    [98]Matsumoto-Mashimo C, Guerout A M, Mazel D. A new family of conditional replicating plasmids and their cognate Escherichia coli host strains.[J]. Res Microbiol, 2004,155(6):455-461.
    [99]Wang M, Tran J H, Jacoby G A, et al. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China.[J]. Antimicrob Agents Chemother,2003,47(7):2242-2248.
    [100]Bibbal D, Dupouy V, Prere M F, et al. Relatedness of Escherichia coli strains with different susceptibility phenotypes isolated from swine feces during ampicillin treatment.[J]. Appl Environ Microbiol,2009,75(10):2999-3006.
    [101]Gautom R K. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day.[J]. J Clin Microbiol,1997,35(11):2977-2980.
    [102]Liu S L, Hessel A, Sanderson K E. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. [J]. Proc Natl Acad Sci U S A,1993,90(14): 6874-6878.
    [103]Barton B M, Harding G P, Zuccarelli A J. A general method for detecting and sizing large plasmids.[J]. Anal Biochem,1995,226(2):235-240.
    [104]Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study.[J]. J Antimicrob Chemother,2008,62(3):469-473.
    [105]Van Essen-Zandbergen A, Smith H, Veldman K, et al. Occurrence and characteristics of class 1,2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands.[J]. J Antimicrob Chemother,2007,59(4): 746-750.
    [106]Levings R S, Hall R M, Lightfoot D, et al. linG, a new integron-associated gene cassette encoding a lincosamide nucleotidyltransferase.[J]. Antimicrob Agents Chemother,2006,50(10):3514-3515.
    [107]Chuanchuen R, Koowatananukul C, Khemtong S. Characterization of class 1 integrons with unusual 3'conserved region from Salmonella enterica isolates.[J]. Southeast Asian J Trop Med Public Health,2008,39(3):419-424.
    [108]Fonseca E L, Dos Santos Freitas F, Vieira V V, et al. New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1.[J]. Emerg Infect Dis, 2008,14(7):1129-1131.
    [109]Jove T, Da R S, Denis F, et al. Inverse correlation between promoter strength and excision activity in class 1 integrons.[J]. PLoS Genet,2010,6(1):e1000793.
    [110]Robicsek A, Strahilevitz J, Sahm D F, et al. qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. [J]. Antimicrob Agents Chemother,2006,50(8):2872-2874.
    [111]Kehrenberg C, Friederichs S, de Jong A, et al. Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis.[J]. J Antimicrob Chemother,2006,58(1):18-22.
    [112]Chen Y T, Liao T L, Liu Y M, et al. Mobilization of qnrB2 and ISCR1 in plasmids.[J]. Antimicrob Agents Chemother,2009,53(3):1235-1237.
    [113]Teo J W, Ng K Y, Lin R T. Detection and genetic characterisation of qnrB in hospital isolates of Klebsiella pneumoniae in Singapore.[J]. Int J Antimicrob Agents, 2009,33(2):177-180.
    [114]Yokoyama K, Doi Y, Yamane K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa.[J]. Lancet,2003,362(9399):1888-1893.
    [115]Ferreira S, Paradela A, Velez J, et al. Carriage of qnrAl and qnrB2, bla(CTX-M15), and complex class 1 integron in a clinical multiresistant Citrobacter freundii isolate.[J]. Diagn Microbiol Infect Dis,2010.
    [116]Bauernfeind A, Stemplinger I, Jungwirth R, et al. Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other beta-lactamase genes.[J]. Antimicrob Agents Chemother,1996,40(8):1926-1930.
    [117]Doi Y, Shibata N, Shibayama K, et al. Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate.[J]. Antimicrob Agents Chemother,2002,46(8): 2427-2434.
    [118]Lee S H, Kim J Y, Lee G S, et al. Characterization of blaCMY-11, an AmpC-type plasmid-mediated beta-lactamase gene in a Korean clinical isolate of Escherichia coli.[J]. J Antimicrob Chemother,2002,49(2):269-273.
    [119]Verdet C, Arlet G, Barnaud G, et al. A novel integron in Salmonella enterica serovar Enteritidis, carrying the bla(DHA-1) gene and its regulator gene ampR, originated from Morganella morganii.[J]. Antimicrob Agents Chemother,2000,44(1): 222-225.
    [120]Sabate M, Navarro F, Miro E, et al. Novel complex sull-type integron in Escherichia coli carrying bla(CTX-M-9).[J].Antimicrob Agents Chemother,2002,46(8): 2656-2661.
    [121]Wang S, He J, Cui Z, et al. Self-formed adaptor PCR:a simple and efficient method for chromosome walking.[J]. Appl Environ Microbiol,2007,73(15):5048-5051.
    [122]Parsons Y, Hall R M, Stokes H W. A new trimethoprim resistance gene, dhfrX, in the In7 integron of plasmid pDGO100.[J]. Antimicrob Agents Chemother,1991, 35(11):2436-2439.
    [123]Tosini F, Visca P, Luzzi I, et al. Class 1 integron-borne multiple-antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype typhimurium.[J]. Antimicrob Agents Chemother,1998,42(12):3053-3058.
    [124]Verdet C, Benzerara Y, Gautier V, et al. Emergence of DHA-1-producing Klebsiella spp. in the Parisian region:genetic organization of the ampC and ampR genes originating from Morganella morganii.[J]. Antimicrob Agents Chemother, 2006,50(2):607-617.
    1. Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions:integrons. Mol Microbiol 1989; 3: 1669-83.
    2. Hall RM, Collis CM. Mobile gene cassettes and integrons:capture and spread of genes by site-specific recombination. Mol Microbiol 1995; 15:593-600.
    3. Pan JC, Ye R, Meng DM et al. Molecular characteristics of class 1 and class 2 integrons and their relationships to antibiotic resistance in clinical isolates of Shigella sonnei and Shigella flexneri. JAntimicrob Chemother 2006; 58:288-96.
    4. Kadlec K, Schwarz S. Analysis and distribution of class 1 and class 2 integrons and associated gene cassettes among Escherichia coli isolates from swine, horses, cats and dogs collected in the BfT-GermVet monitoring study. J Antimicrob Chemother 2008; 62:469-73.
    5. Hansson K, Sundstrom L, Pelletier A et al. IntI2 integron integrase in Tn7. J Bacteriol 2002; 184:1712-21.
    6. Ahmed AM, Nakano H, Shimamoto T. Molecular characterization of integrons in non-typhoid Salmonella serovars isolated in Japan:description of an unusual class 2 integron. JAntimicrob Chemother 2005; 55:371-4.
    7. Ramirez MS, Quiroga C, Centron D. Novel rearrangement of a class 2 integron in two non-epidemiologically related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2005; 49:5179-81.
    8. Ramirez MS, Vargas LJ, Cagnoni V et al. Class 2 integron with a novel cassette array in a Burkholderia cenocepacia isolate. Antimicrob Agents Chemother 2005; 49: 4418-20.
    9. Ploy MC, Denis F, Courvalin P et al. Molecular characterization of integrons in Acinetobacter baumannii:description of a hybrid class 2 integron. Antimicrob Agents Chemother 2000; 44:2684-8.
    10. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:2-4.
    11. Takahashi S, Nagano Y. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. J Clin Microbiol 1984; 20:608-13.
    12. Xu H, Davies J, Miao V. Molecular characterization of class 3 integrons from Delftia spp. JBacteriol 2007; 189:6276-83.
    13. White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother 2001; 45:2658-61.
    14. Chuanchuen R, Koowatananukul C, Khemtong S. Characterization of class 1 integrons with unusual 3'conserved region from Salmonella enterica isolates. Southeast Asian J Trop Med Public Health 2008; 39:419-24.
    15. White PMCD. characterization of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol Lett 2000; 182:265-9.
    16. Boonjakuakul JK, Canfield DR, Solnick JV. Comparison of Helicobacter pylori virulence gene expression in vitro and in the Rhesus macaque. Infect Immun 2005; 73: 4895-904.
    17. Weill FX, Demartin M, Tande D et al. SHV-12-like extended-spectrum-beta-lactamase-producing strains of Salmonella enterica serotypes Babelsberg and Enteritidis isolated in France among infants adopted from Mali. J Clin Microbiol 2004; 42:2432-7.
    18. Marshall B, Tachibana C, Levy SB. Frequency of tetracycline resistance determinant classes among lactose-fermenting coliforms. Antimicrob Agents Chemother 1983; 24:835-40.
    19. Mendez B, Tachibana C, Levy SB. Heterogeneity of tetracycline resistance determinants. Plasmid 1980; 3:99-108.
    20. Marshall B, Morrissey S, Flynn P et al. A new tetracycline-resistance determinant, class E, isolated from Enterobacteriaceae. Gene 1986; 50:111-7.
    21. Zhao J, Aoki T. Nucleotide sequence analysis of the class G tetracycline resistance determinant from Vibrio anguillarum. Microbiol Immunol 1992; 36: 1051-60.
    22. Frana TS, Carlson SA, Griffith RW. Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104. Appl Environ Microbiol 2001; 67:445-8.
    23. Guerra B, Soto SM, Arguelles JM et al. Multidrug resistance is mediated by large plasmids carrying a class 1 integron in the emergent Salmonella enterica serotype [4,5,12:i:-]. Antimicrob Agents Chemother 2001; 45:1305-8.
    24. Sunde M, Norstrom M. The prevalence of, associations between and conjugal transfer of antibiotic resistance genes in Escherichia coli isolated from Norwegian meat and meat products. JAntimicrob Chemother 2006; 58:741-7.
    25. Clinical And Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement; M100-S17.,2007.
    26. Wang M, Tran JH, Jacoby GA et al. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother 2003; 47:2242-8.
    27. Chang N, Chui L. A standardized protocol for the rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. Diagn Micr Infec Dis 1998; 31:275-9.
    28. Liu SL, Hessel A, Sanderson KE. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc Natl Acad Sci U S A 1993; 90:6874-8.
    29. Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem 1995; 226:235-40.
    30. Van Camp G, Chapelle S, De Wachter R. Amplification and sequencing of variable regions in bacterial 23 S ribosomal RNA genes with conserved primer sequences. Curr Microbiol 1993; 27:147-51.
    31. van Essen-Zandbergen A, Smith H, Veldman K et al. Occurrence and characteristics of class 1,2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. JAntimicrob Chemother 2007; 59:746-50.
    32. Levings RS, Hall RM, Lightfoot D et al. linG, a new integron-associated gene cassette encoding a lincosamide nucleotidyltransferase. Antimicrob Agents Chemother 2006; 50:3514-5.
    33. Liu J, Keelan P, Bennett PM et al. Characterization of a novel macrolide efflux gene, mef(B), found linked to sul3 in porcine Escherichia coli. J Antimicrob Chemother 2009; 63:423-6.
    1. Barton, B. M., G. P. Harding, and A. J. Zuccarelli.1995. A general method for detecting and sizing large plasmids. Anal. Biochem.226:235-240.
    2. Cattoir, V., L. Poirel, C. Aubert, C. J. Soussy, and P. Nordmann.2008. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg. Infect. Dis.14:231-237.
    3. Cavaco, L. M., H. Hasman, S. Xia, and F. M. Aarestrup.2009. qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother.53:603-608.
    4. Clinical and Laboratory Standards Institute.2007. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement M100-S17. Clinical and Laboratory Standards Institute, Wayne, PA.
    5. Collis, C. M., and R. M. Hall.1995. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob. Agents Chemother.39:155-162.
    6. Fonseca, E. L., F. Dos Santos Freitas, V. V. Vieira, and A. C. Vicente.2008. New qnr gene cassettes associated with superintegron repeats in Vibrio cholerae O1. Emerg. Infect. Dis.14:1129-1131.
    7. Goni-Urriza, M., C. Arpin, M. Capdepuy, V. Dubois, P. Caumette, and C. Quentin.2002. Type II topoisomerase quinolone resistance-determining regions of Aeromonas caviae, A. hydrophila, and A. sobria complexes and mutations associated with quinolone resistance. Antimicrob. Agents Chemother.46:350-359.
    8. Jacoby, G., V. Cattoir, D. Hooper, L. Martinez-Martinez, P. Nordmann, A. Pascual, L. Poirel, and M. Wang.2008. qnr Gene nomenclature. Antimicrob. Agents Chemother.52:2297-2299.
    9. Lee, M. F., C. F. Peng, Y. H. Lin, S. R. Lin, and Y. H. Chen.2008. Molecular diversity of class 1 integrons in human isolates of Aeromonas spp. from southern Taiwan. Jpn. J. Infect. Dis.61:343-349.
    10. Liu, S. L., A. Hessel, and K. E. Sanderson.1993. Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. Proc. Natl. Acad. Sci. U. S. A.90:6874-6878.
    11. Martinez-Martinez, L., A. Pascual, and G. A. Jacoby.1998. Quinolone resistance from a transferable plasmid. Lancet 351:797-799.
    12. Picao, R. C., L. Poirel, A. Demarta, C. S. Silva, A. R. Corvaglia, O. Petrini, and P. Nordmann.2008. Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J. Antimicrob. Chemother. 62:948-950.
    13. Poirel, L., L. Cabanne, H. Vahaboglu, and P. Nordmann.2005. Genetic environment and expression of the extended-spectrum beta-lactamase blaPER-1 gene in gram-negative bacteria. Antimicrob. Agents Chemother.49:1708-1713.
    14. Sabate, M., F. Navarro, E. Miro, S. Campoy, B. Mirelis, J. Barbe, and G. Prats.2002. Novel complex sull-type integron in Escherichia coli carrying bla(CTX-M-9). Antimicrob. Agents Chemother.46:2656-2661.
    15 Sinha, S., S. Chattopadhyay, S. K. Bhattacharya, G. B. Nair, and T. Ramamurthy.2004. An unusually high level of quinolone resistance associated with type Ⅱ topoisomerase mutations in quinolone resistance-determining regions of Aeromonas caviae isolated from diarrhoeal patients. Res. Microbiol. 155:827-829.
    16. Takahashi, S., and Y. Nagano.1984. Rapid procedure for isolation of plasmid DNA and application to epidemiological analysis. J. Clin. Microbiol.20:608-613.
    17. Toleman, M. A., P. M. Bennett, and T. R. Walsh.2006. ISCR elements:Novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70:296-316.
    18. Verner-Jeffreys, D. W., T. J. Welch, T. Schwarz, M. J. Pond, M. J. Woodward, S. J. Haig, G S. Rimmer, E. Roberts, V. Morrison, and C. Baker-Austin.2009. High prevalence of multidrug-tolerant bacteria and associated antimicrobial resistance genes isolated from ornamental fish and their carriage water. PLoS One 4:e8388.
    19. Wang, M., J. H. Tran, G. A. Jacoby, Y. Zhang, F. Wang, and D. C. Hooper. 2003. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob. Agents Chemother.47:2242-2248.
    20. Wang, M., Q. Guo, X. Xu, X. Wang, X. Ye, S. Wu, and D. C. Hooper.2009. New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother.53:1892-1897.
    21. Wang, S., J. He, Z. Cui, and S. Li.2007. Self-formed adaptor PCR:A simple and efficient method for chromosome walking. Appl. Environ. Microbiol. 73:5048-5051.
    22. White, P. A., C. J. McIver, Y. Deng, and W. D. Rawlinson.2000. Characterisation of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol. Lett.182:265-269.
    23. Xu, H., J. Davies, and V. Miao.2007. Molecular characterization of class 3 integrons from Delftia spp. J. Bacteriol.189:6276-6283.
    24. Yoshida, H., M. Bogaki, M. Nakamura, and S. Nakamura.1990. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother.34:1271-1272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700