用户名: 密码: 验证码:
拉萨地块中部蛇绿岩与逆冲推覆构造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛇绿岩与逆冲推覆构造是造山带构造演化的2种不同地质记录,是现代大陆动力学研究的2个重要内容,在区域构造和造山带研究中占据重要学术地位。论文选择拉萨地块中部蛇绿岩和逆冲推覆构造为主攻方向,以西藏当雄幅(H46C002001)1:25万区域地质调查、构造专题研究及邻区对比观测为基础,通过野外地质测量、岩石地球化学测试、古构造分析和多种方法同位素测年,研究拉萨地块中部纳木错西岸蛇绿岩、永珠藏布—果忙错蛇绿岩与拉萨地块北侧班公—怒江缝合带安多—东巧蛇绿岩、拉萨地块南侧雅鲁藏布江缝合带泽当—罗布莎蛇绿岩及纳木错逆冲推覆构造、旁多逆冲推覆构造,分析早中侏罗世、晚侏罗—早白垩世、晚白垩世区域古构造环境及变迁过程,探讨不同时期区域构造样式、逆冲推覆构造运动历史和区域构造发展演化规律;深化了区域构造研究程度和认识深度,取得若干创新性研究成果。
     1、典型蛇绿岩地球化学特征及形成环境分析:对纳木错西岸蛇绿岩、永珠藏布—果忙错蛇绿岩、安多—东巧蛇绿岩和泽当—罗布莎蛇绿岩进行了系统的剖面观测、岩石薄片鉴定、岩石化学分析及稀土元素地球化学、微量元素地球化学对比分析。在纳木错西岸蛇绿岩片带发现枕状熔岩和放射虫硅质岩。揭示纳木错西岸、永珠藏布—果忙错、安多—东巧蛇绿岩带玄武岩具有相似的稀土元素配分模式,表现为LREE亏损的平坦型,无负Eu异常,类似于大洋中脊玄武岩;泽当—罗布莎蛇绿岩带玄武岩呈现平缓向右倾斜的稀土元素配分模式,属轻稀土富集、重稀土亏损型。测出纳木错西岸蛇纹石化橄榄岩全岩Rb-Sr等时线年龄为166±26Ma,变质辉长岩全岩和单矿物Rb-Sr等时线年龄为173±10Ma,确定纳木错西岸蛇绿岩形成时代为166-173Ma。根据岩石地球化学参数和产出构造部位,推断永珠藏布—果忙错—纳木错蛇绿岩形成于弧间盆地古海底扩张环境,东巧—安多蛇绿岩带形成于规模比较小的古大洋环境,泽当—罗布莎蛇绿岩形成于比较慢速的海底扩张环境。
     2、纳木错逆冲推覆构造研究:发现纳木错西岸嘎龙垭韧性变形带、饿弄怒布舍糜棱岩带和生觉—各昌茶玉韧性剪切带,详细观测典型逆冲断层的地质特征、变形特点、运动方向和序次关系,分析逆冲断层、褶皱构造、韧性剪切带的几何配置关系和动力学成因联系;分析纳木错逆冲推覆构造的空间影响范围,向东延伸与嘉黎逆冲断裂相连接,向西延伸与果忙错—永珠藏布构造带相归并,与纳木错西岸蛇绿岩、永珠藏布—果忙错蛇绿岩共同组成拉萨地块中部最重要的区域构造,命名为纳木错—永珠缝合带(NYS)。通过生觉糜棱岩的角闪石-斜长石矿物对地质温度压力计,测定变形变质温度为490-625℃,平均为547℃;形成压力为0.20-0.76GPa,平均为0.42Gpa;估算生觉—各昌茶玉韧性剪切带形成深度为12-15km。测定糜棱岩角闪石的~(39)Ar-~(40)Ar坪年龄为173.97±0.50Ma、斜长石的~(39)Ar-~(40)Ar坪年龄为109.45±0.50Ma,磷灰石裂变径迹年龄为43.6±3.8Ma,良好地揭示出纳木错西岸3期逆冲推覆构造运动发生时代。
     3、旁多逆冲推覆构造研究:厘定旁多逆冲推覆构造,自北向南划分为4个构造带:南部挤压滑脱构造带、中部叠瓦状逆冲断层带、北部高角度逆冲断层带及后缘逆冲推覆构造带,分别伴生紧闭倒转褶皱、斜歪倒转褶皱、直立—斜歪褶皱,组成白上而下倾角趋于变缓、自前缘向后缘产状逐步变陡、自北向南逆冲的铲型推覆构造。详细分析哈母前锋逆冲断层、下拉逆冲推覆断层、日阿—领布冲韧性剪切带及邦中逆冲推覆断层的地质特征、变形特点和运动方向,发现日阿—领布冲构造带自西向东变形深度逐步增大,表现为西段逆冲推覆、东段韧性剪切变形的显著分段活动特征,尚具有一定的右旋走滑分量。通过测定逆冲断层控制、切割侵入岩的同位素年龄及晚期吞噬、阻断逆冲断层的地质体时代分析,确定旁多逆冲推覆构造主要形成时代为古近纪中晚期(49-18.3Ma)。
     4、中生代区域古构造分析:通过分析典型蛇绿岩形成环境及相关沉积建造、火山活动、岩浆热事件、变质记录、构造变形,再造早中侏罗世、晚侏罗—早白垩世、晚白垩世区域古构造环境及变迁过程。论证拉萨地块中部早中侏罗世—早白垩世存在纳木错—永珠弧间古洋盆,提出中生代拉萨地块发育班公—怒江古大洋、班戈—桑雄古岛弧、纳木错—永珠弧间古洋盆、冈底斯岩浆弧和雅鲁藏布江古大洋,组成复杂的沟—弧—盆系统,构成古亚洲大陆板块南缘比较典型的活动大陆边缘。认为班公—怒江古大洋在早中侏罗世扩张增生的同时,开始向南俯冲消减,导致宁中花岗岩侵位和纳木错西岸生觉—各昌茶玉韧性剪切变形;至早白垩世完全闭合,形成班公—怒江缝合带;纳木错—永珠弧间古洋盆于早中侏罗世开始扩张增生,晚侏罗—早白垩世开始向北俯冲于班戈—桑雄岛弧带之下,早白垩世末期最终闭合,形成纳木错—永珠缝合带;雅鲁藏布江古洋盆自三叠纪开始扩张,早中侏罗世继续增生,晚侏罗—早白垩世在大规模扩张增生的同时,开始向北俯冲消减,于古近纪早期封闭,形成雅鲁藏布江缝合带(YZS)。探索性恢复侏罗—白垩纪古亚洲大陆南缘拉萨地块不同时期的沟—弧—盆体系。
     5、逆冲推覆构造组合与演化过程分析:发现北侧东巧—伦坡拉逆冲断裂(DLT)、中部纳木错逆冲推覆构造(WNT)、当雄南侧旁多逆冲推覆构造(SDT)具有相似的结构组成和相同的运动方向,存在有序的空间配置关系及动力学成因联系;主要逆冲断层均向北倾斜,呈叠瓦状叠覆关系,向地壳深部延伸会聚于中上地壳≥12-15km深度的缓倾斜构造滑脱面,构成拉萨地块北部影响宽度超过250km的大型逆冲推覆构造系统(NLT)。通过WNT糜棱岩的矿物对热年代学分析,发现纳木错西岸存在191-174Ma、174-144Ma、109.4Ma和44Ma四期区域性构造热事件,其中191-174Ma、174-144Ma、44Ma三期逆冲推覆运动导致的平均构造隆升速率分别为0.4mm/a、0.22mm/a、0.2mm/a。认为侏罗纪早中期(173-174Ma)、晚白垩世(约109Ma)、古近纪早期(约44Ma)WNT的逆冲推覆构造运动分别与班公—怒江古大洋板块南向俯冲、纳木错—永珠残余洋盆的萎缩和雅鲁藏布江古大洋板块的北向俯冲、新特提斯残余古大洋板块北向俯冲闭合及随后印度—欧亚陆—陆碰撞存在动力学成因联系。始新世中晚期—渐新世(≤18.3Ma),由于印度大陆快速北向俯冲,在中上地壳发生大规模拆离滑脱运动(NLT),在WNT南缘形成新的逆冲推覆构造(SDT),导致地壳大幅度挤压增厚和快速隆升。
Ophiolite and thrust system are two types of geological record in orogenic belt andimportant contents of tectonics and continental geodynamics. The west Namco ophiolite slices andYongzhuzangbu-Guomanco ophiolites in central Lhasa block, Dongqiao-Ando ophiolites in northLhasa block, Zedang-Luobusha ophiolites in south Lhasa block and west Namco thrust, southDamxung thrust of central Lhasa block are studied in detail by field profiling, geochemical testing,isotopic dating and palaeo-structure analyses based on geological survey at scale 1:250000 forreconstruction of paleo-tectonics in Early-Meso-Jurassic, Late Jurassic-Early Cretaceous, LateCretaceous and understanding tectonic evolution of the Tibetan Plateau, which lead toaccumulation of new data and several key progresses.
     1. Analyses on geochemistry and tectonic setting of ophiolites
     Geological profiling, microscope observation, geochemical testing and isotopic dating havefinished systematically for studying ophiolites of west Namco Lake, Yongzhuzangbu-Guomanco,Dongqiao-Ando and Zedang-Luobusha. Pillow lava and cherts were discovered in west Namcoophiolite mélange. Lava and serpentinite peridote from ophiolite mélanges of west Namco Lake,Yongzhuzangbu-Guomancuo and Dongqiao-Ando in central and north Lhasa block exist similargeochemical features of MORB characterized by rich LREE and slightly right-dipping pattern ofrare-earth elements without Eu anomaly. Rb-Sr isochronic ages of serpentinite peridote andmetamorphic gabbra of west Namco ophiolite mélange are 166±26Ma and 173±10Ma respectively,giving time constraints for ophiolites of central Lhasa block. Ophiolites in west Namco Lake andYongzhuzangbu-Guomanco of central Lhasa block formed in spreading back- or intra-island arcbasin, and ophiolites in Dongqiao-Ando of north Lhasa block and Zedang-Luobusha of southLhasa block formed in smaller ocean and slow-spreading ocean respectively according topetrological geochemistry.
     2. Study on west Namco thrust
     Three ductile shear zones were discovered in Gayalong, Elongnubu andShenjue-Gechangchayu, and geological features, deformation, motion direction and structuralpattern are studied in detail for major thrust faults, ductile shear zones and folds in west bank ofNamco Lake, leading to identification of west Namco thrust (WNT). And west Namco thrust andophiolite mélanges outcropped from west Namco Lake to Yongzhuzangbu coexist together,indicating another tectonic suture in the Tibetan Plateau termed as the Namco-Yongzhu suture orNYS with its east extension to Jiali fault. Milonite from ductile Shenjue-Gechangchayu ductileshear zone formed in 490-625℃averaged 547℃and 0.20-0.76GPa averaged 0.42GPa,corresponding to 12-15km deep in crust. And ~(39)Ar-~(40)Ar dating of hornblende and plagioclase ofmilonite gave plateau ages of 173.97±0.50Ma and 109.45±0.50Ma respectively, indicatingthrusting of WNT in Early-Meso Jurassic and Late Cretaceous. While fission track dating of apatefrom milonite yielded an age of 43.6±3.8Ma, corresponding to Eocene thrusting of WNT.
     3. Study on south Damxung thrust
     The first discovered south Damxung thrust (SDT) in east the Nyainqentanglha Mts. aredivided into 4 sections vertical to its extension including south section of detachment, middlesection of pilled thrust, north section of high-angle fault and back section of thrust slices accompanied by tight folding in south, overturn folding in middle and open wide folds in north.Major faults seems to merge into a deep detachment extended from the south frontier of SDT. Andgeological features, deformation, movement history of the Hamu frontier thrust fault, the Xialathrust fault, the Ria-Linbuchong tectonic belt consisted by high-angle thrust in west and ductileshear zone in east and the Bangzhong thrust slices were studied systematically by field profiling.And The Ria-Linbuchong thrust shows dextral strike-slipping evidences in many localities. TheSDT is inferred to be formed in 49-18.3Ma after isotopic dating of faulted complex and graniteemplaced after thrusting.
     4. Analyses on Jurassic-Cretaceous palaeo-tectonics
     Paleo-tectonics in Early-Meso Jurassic, Late Jurassic-Early Cretaceous and Late Cretaceousare analyzed based on data of petrologic geochemistry of ophiolite mélange, sedimentaryformation, volcanic activity, magma emplacement, metamorphism and deformation. It is inferredthat an intra-island oceanic basin termed as the Namco-Yongzhu Ocean existed inEarly-Meso-Jurassic until Early Cretaceous in central Lhasa block. And Bangoin-Nujiang Ocean,Bange-Sangxiong Island-Arc, Namco-Yongzhu intra-island Ocean, Gangdese Island-Arc andYaluzangbu Ocean formed in Jurassic-Cretaceous in the Lhasa block, formed active continentalmargin in south of the Asia Plate. The Bangoin-Nujiang Oceanic Plate began southwardsubduction while spreading in Early-Meso Jurassic and closed in Early Cretaceous, lead toformation of the Bangoin-Nujiang suture (BNS). The Namco-Yongzhu intra-island Ocean openedand widened in Early-Meso Jurassic by spreading, subducted northward beneath theBange-Sangxiong Island-Arc in Late Jurassic-Early Cretaceous and closed at the end of LateCretaceous, lead to formation of the Namco-Yongzhu suture (NYS). The Yaluzangbu Ocean beganspreading since Triassic via Early-Meso Jurassic until Late-Jurassic-Early Cretaceous whennorthward subduction began, and closed in Paleocene-Early Eocene, lead to formation of theYaluzangbu suture (YZS).
     5. Analyses of thrust association and tectonic evolution of north Lhasa block
     The Dongqiao-Lunpola thrust (DLT) in north Lhasa block, west Namco thrust (WNT) incentral Lhasa block and south Damxung thrust (SDT) in south Lhasa block show same thrustingdirection, similar composition and texture, ordered spatial pattern and related geodynamic cause.Major thrust faults dip to north, pilled in cross section and merge into a detachment in deep crust(≥12-15km), consisting a large-scale thrusting system in north Lhasa block termed as north Lhasathrust (NLT) covering 250km range vertical to extension. Thermo-chronological diagram ofminerals from milonite shows 4 phases of thrusting in 191-174Ma, 174-144Ma, 109Ma and 44Maof WNT, lead to 0.4mm/a, 0.22mm/a and 0.2mm/a uplifting respectively. It is concluded thatthrusting in 174-173Ma, 109Ma and 44Ma of WNT were caused by southward subduction ofBangoin-Nujiang Oceanic Plate in Early-Meso Jurassic, northward subductions ofNamco-Yongzhu intra-island arc Oceanic Plate and Yaluzangbu Oceanic Plate in Late cretaceousand close of Yaluzangbu Ocean and its following continental collision in Early Eocenerespectively. And Eocene-Oligocene northward subduction of India continent caused southDamxung thrusting and detachment of NLT and huge shortening and thickening of crust and rapiduplift of the Tibetan Plateau before 18.3-13.5Ma.
引文
李四光,1945,地质力学基础与方法。北平:中华书局出版
    李四光,1973。地质力学概论。北京:科学出版社
    崔盛芹,1981。古构造研究现状及发展趋势。见:构造地质专业委员会编,构造地质学进展。北京:科学出版社
    崔盛芹、吴珍汉,1997。略论构造运动节律与构造运动序列。地学前缘,4(3-4):223-232
    潘裕生,1999。青藏高原的形成与隆升。地学前缘,6(3):1~9
    孙殿卿、崔盛芹,1980。略论中国主要地壳运动。见:国际交流地质学术论文集,第一集。北京:地质出版社
    朱大岗,孟宪刚,赵希涛等,2004。西藏纳木错地区第四纪环境演变。北京:地质出版社
    边千韬、郑祥身、叶建青、刘椿,1996。活动构造与地震。见:张以弗、郑祥身主编,青海可可西里地区地质演化。科学出版社,80-148
    陈文寄,Harrison T.M.,Leloup P.H.等,1994。多重扩散域模式与构造:热年代学研究。见:国家地震局地质研究所编,现今地球动力学研究及其应用。北京:地震出版社,389-397
    陈文寄,李齐,郝杰,周新华,万京林等,1999。冈底斯岩带结晶后的热演化史及其构造含义。中国科学,29 (1):9-15
    陈文寄,计风桔,王非,1999。年轻地质体系的年代测定(续)。北京:地震出版社
    崔之久,高全洲,刘耕年等,1996。夷平面、古岩溶与青藏高原隆升。中国科学(D辑),26(4):378-385
    崔之久,高全洲,刘耕年等,1996。青藏高原夷平面与岩溶时代及其起始高度。科学通报,4l(15):1402-1406
    丁国瑜、田勤俭、孔凡臣、谢霄峰、张立人、王立平,1993。活断层分段—原则、方法及应用。北京:地震出版社,70-112
    丁林,钟大赉,潘裕生等,1995。东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据。科学通报,40(16):1497-1500
    丁林,钟达赉,1998。青藏高原隆升的阶段。见:潘裕生,孔祥儒主编,青藏高原岩石圈结构演化和动力学。广州:广东科技出版社,379~400
    国家地震局地质研究所,1992。西藏中部活动断层。北京:地震出版社
    韩同林,1987。青藏高原活动构造。北京:地质出版社,56-61
    胡海涛、许贵生,1982。青南—藏北高原的构造体系及其对地下水的控制。见:地质矿产部青藏高原地质文集编委会编,青藏高原地质文集。北京:地质出版社,1-40
    江万,吴珍汉,李有社,2000。青藏高原羌塘地区新生代火山岩中麻粒岩包体的发现。见:中国地质学会编,“九五”全国地质科技重要成果论文集。北京:地质出版社,103-105
    孔昭宸,刘兰锁,杜乃秋,1981。从昆仑山—唐古拉山晚第三纪、第四纪的孢粉组合讨论青藏高原的隆起。见:中国科学院青藏高原综合考察队编,青藏高原隆起的时代、幅度和形式问题。科学出版社,78-89
    李吉均,文世宣,张青松,1979。青藏高原隆升的时代、幅度和形式探讨。中国科学(B辑),9(6):608~616
    马杏垣主编,1987。中国及邻近海域岩石圈动力学图。北京:地质出版社
    潘桂棠,刘培生,1990。青藏高原新生代构造演化。北京:地质出版社,1-130
    潘裕生,1999。青藏高原的形成与隆升。地学前缘,6(3):1~9
    孙鸿烈,郑度主编,1998。青藏高原形成演化与发展。广州:广东科技出版社,73-128
    施雅风,李吉均,李炳元,姚传栋,王苏民等,1999。晚新生代青藏高原的隆升与东亚环境变化。地理学报,54(1):10-20
    施雅风,李吉均,李炳元主编,1998。青藏高原晚新生代隆升与环境变化。广州:广东科技出版社,1-16
    汪一鹏,2001.青藏高原活动构造基本特征.见:马宗晋、汪一鹏、张燕平主编,青藏高原岩石圈现今变动与动力学.北京:地震出版社,251-262.
    吴锡浩,王富葆,安芷生,钱方,卢演俦,张选阳,1992。晚新生代青藏高原隆升的阶段和高度。见:黄土.第四纪地质.全球变化,第3集。北京:科学出版社,1-13
    吴珍汉,江万,张淑坤,2000。青藏高原晚喜马拉雅期地壳缩短量分析。地质论评,46(6)
    吴珍汉,吴中海,江万,周继荣,2001。中国大陆及邻区新生代构造—地貌演化过程与机理。北京:地质出版社,37-99
    吴珍汉,江万,周纪荣,李冀湘,2001。青藏高原腹地典型岩体热历史与构造—地貌演化过程的热年代学分析。 地质学报,75(4):468-476
    吴珍汉,江万,Doug Nelson,Bill Kidd,2002。藏北多格错仁红层及孢粉组合特征。现代地质,16(3):225-230
    吴珍汉,胡道功,刘琦胜,夏浩东,焉犀利,2002。西藏当雄地区构造地貌及形成演化过程。23(5):423-428
    吴珍汉,叶培胜,胡道功,刘琦胜,2003。拉萨地块北部逆冲推覆构造。地质论评,49(1):74-80
    吴珍汉,叶培盛,吴中海,胡道功,周春景,2003.青藏铁路沿线断裂活动的灾害效应.现代地质,17(1):1-6.
    吴章明,曹忠权,申屠丙明,1990。念青唐古拉山南东麓断层的初步研究。地震地质,13(1):40-50
    肖序常,李廷栋,李光岑,常承法,袁学诚,1988。喜马拉雅岩石圈构造演化总论。北京:地质出版社,1-118
    肖序常,李廷栋主编,2000。青藏高原的构造演化与隆升机制。广州:广东科技出版社
    西藏自治区地质矿产局,1993。西藏自治区区域地质志。北京:地质出版社,225-248
    许志琴,崔军文,大陆山链变形构造动力学,北京:冶金工业出版社,1996
    徐仁,1981。大陆漂移与喜马拉雅山上升的古植物学证据。见:中国科学院青藏高原综合考察队编,青藏高原隆起的时代、幅度和形式问题。科学出版社,8-18
    藏高原地质文集编委会编,青藏高原地质文集。北京:地质出版社,119-129
    易明初,1982。活断层的国内外研究综述。中国地质科学院562队集刊,第3期
    易明初,1983,活断层的定义。世界地质,第1集,68-79
    尹安,2001。喜马拉雅—青藏高原造山带地质演化。地球学报,22(3):193-230
    赵文津及INDEPTH项目组著,2001。喜马拉雅山及雅鲁藏布江缝合带深部结构与构造研究。北京:地质出版社,63-355
    钟大赉,丁林,1996。青藏高原的隆起过程及其机制探讨。中国科学(D辑),26(4):289-295。
    中国地质科学院成都地质矿产研究所,1988。青藏高原及邻区地质图(1:150万)。北京:地质出版社
    中国地质科学院岩石圈研究中心,地质矿产部地质研究所著,1996。青藏高原岩石圈结构构造和形成演化。北京:地质出版社
    中国科学院综合科学考察队,1983。西藏地貌。北京:科学出版社,1-238
    中英青藏高原综合考察队,1990。青藏高原地质演化。北京:科学出版社
    董学斌,杨惠心.班公湖—怒江缝合带的古地磁学研究[J].现代地质,1999,13(增刊):36—44.
    张旗,周国庆.中国蛇绿岩[M].北京:科学出版社,2001.
    姚玉鹏,田兴有.中国蛇绿岩研究的现状及今后的研究方向[J].地球科学进展,1997,2(2):34—137.
    李金高,曲德.措勤—纳木错缝合带特征及其找矿意义探讨[J].西藏地质,1993.10(2):38—44.
    张旗.云南双沟蛇绿岩的特征和成因.岩石学报,1995,11(增刊):190—202.
    杨日红,李才,迟效国,等.西藏永珠藏布—纳木湖蛇绿岩地球化学特征及其构造环境初探[J].现代地质,2003,17(1):14—19.
    Alsdorf D., Brown L., Nelson D., Makovsky Y., Klemperer S. and Zhao W., 1998. Crustal deformation of the Lhasa terrane, Tibet Plateau from Project INDEPTH deep seismic reflection profiles. Tectonics, 17(4): 501-519.
    Amijo R., Tapponnier P., Mercier J. L. and Han T., 1986. Quaternary extension in south Tibet: Field observations and tectonic implications. Journal of Geophysical Research, 91 (B 14): 13803-13872.
    Barry, J. C., Lindsay, E. H., and Jacobs, L. L., 1982, A biostratigraphic zonation of the Middle and Upper Siwaliks of the Potwar Plateau of northern Pakistan. Palaeogeography, Palaeoclimatology and Plaeoecology, 37: 95-130.
    Bess J., Courtillot V., Pozzi J. P., Westphal M. and Zhou Y., 1984. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture. Nature, 311: 621-626.
    Blisniuk M. Peter, Hacker R. Bradley, Glodny Johannes, Ratschbacher Lothar, Bi Siwen, Wu Zhenhan, McWilliams O. Michael and Calvert Andy, 2001. Normal faulting in central Tibet since at least 13.5 Ma ago. Nature, 412: 628-632.
    Bloon A. L., 1998. A Systematic Analysis of Late Cenozoic Landforms (3rd Edition). Published by Prentice Hall Inc., New Jersey, USA.
    Brown L. D., Zhao W., Nelson K. D., Hauck M., Alsdorf D., Ross A., Cogan M., Clark M., Liu X. and Che J., 1996.
    Bright spots, structure and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science, 274: 1688-1690.
    Burke K. and Lucas L., 1989. Thrusting on the Tibetan Plateau within the last 5 Ma. In: Sengor A.M.C. et. al. Eds., Tectonic evolution of the Tethyan region, NATO ASI. Series C, 259: 507-512.
    Cerling T. E., Wang Y. and Quade J., 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361: 344-345.
    Chen L., Booker J., Jones A. G., Wu N., Unsworth M. J., Wei W. and Tan H., 1996. Electronically conductive crust in southern Tibet from INDEPTH magnetotelluric surverying. Science, 274: 1694-1696.
    
    Chen Y., Cogne J.-P., Courtillot V., Tapponnier P. and Zhu X. Y., 1993. Cretaceous paleomagnetic results from western Tibet and tectonic implications. Journal of Geophysical Research, 98(B10): 17981-17999.
    
    Cogan M., Nelson K. D., Kidd W. S. F., Wu C. and Project INDEPTH Team, 1998. Shallow structure of the Yadong-Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data. Tectonics, 17(1): 46-61.
    
    Copeland P., Harrison T. M., Pan Y, Kidd W. S. F. and Roden M., 1995. Thermal evolution of the Gangdese batholith, southern Tibet: a history of episodic unroofing. Tectonics, 14(2): 223-236.
    
    Dewey J. F., Shackleton R. M., Chang Chengfa and Sun Yiyin, 1988. The tectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc. Lond, A327, 379-413.
    
    Dodson M., 1973. Closure temperature in cooling geochrolonogical and petrological systems. Contributions to Mineralogy and Petrology, 40: 259-274.
    
    Edwards M. A. and Harrison T. M., 1997. When did the roof collapse? Late Miocene north-south extension in the High Himalaya revealed by the Th-Pb monazite dating of the Khula Kangri granite. Geology, 25: 543-546.
    
    England P. C. and Houseman G. A., 1986. Finite strain calculations of continental deformation, 2, comparison with the India-Asia collision. Journal of Geophysical Research, 91: 3664-3676.
    
    England P. C. and Houseman G. A., 1998. The mechanics of the Tibetan Plateau. Philos. Trans. R. Soc. London, Serial A, 326:301-391.
    
    Flynn L. J. and Jacobs L. L., 1982. Effects of changing environments on Siwalik rodent faunas of northern Pakistan. Palaeogrogr. Palaeoclimatol. Palaeoecol., 38: 129-138.
    
    Gansser A., 1964. Geology of the Himalayas. Wiley-Interscience, New York, 289-290.
    
    Harris N. and Massey J., 1994. Decompression and anatexis of Himalayan metapelites. Tectonics, 13: 1537-1546.
    
    Harrison T. M., Armstrong R. L. and Naeser C. W., 1979. Geochronology and thermal history of the coast plutonic complex near Prince Rupert, British Columbia. Can. J. Earth Sci., 16: 400-410.
    
    Harrison T. M., Grove M., Lovera O. M., Catlos E. J., 1998. A model for the origin of Himalaya anatexis and inverted metamorphism. J. Geophys. Res. 103:27017—27032.
    
    Harrison T M, Copeland P, Kidd W S F and An Yin, 1992. Raising Tibet. Science, 225: 1663-1670.
    
    Harrison T. M., Copeland P., Kidd W. S. F. and Lovera O. M., 1995. Activation of the Nyainqentanghla shear zone: implications for uplift of the southern Tibetan Plateau. Tectonics, 14(3): 658-676.
    
    Hauck M. L., Nelson K. D., Brown L. D., Zhao W. and Ross A. R., 1998. Crustal structure of the Himalayan orogen at -90° east longitude from Project INDEPTH deep reflection profiles. Tectonics, 17(4): 481-500.
    
    Hodges M. S., Parrish R. R. and Searle M. P., 1996. Tectonic evolution of the central Annapurna range, Nepalese Himalayas. Tectonics, 15: 1264-1291
    
    Houseman G. and England P., 1994. A lithospheric-thickening model for the Indo-Asian collision. In: The Tectonic Evolution of Asia. Cambridge: Cambridge Press, 1-17.
    
    Kidd W.S.F., Pan Y., Chang C., Coward M. P., Dewey J. F., Gansser A., Molnar P., Shackleton R. M. and Sun Y, 1988. Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau geotraverse route. Phil. Trans. Roy. Soc. London. A, 327: 287-305.
    
    Kidd W. S. F. and Molnar P., 1990. Quaternary and present active faults of Lhasa-Golmud of the Tibetan Plateau. Roy. Soc. London. A, 327: 332-352.
    
    Kong X. and Bird P., 1994. Neotectonics of Asia: thin-shell finite-element models with faults. In: The Tectonic Evolution of Asia. Cambirdge: Cambridge Press, 18-36.
    
    Kroon D., Steens T. and Troelstra S. R., 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foramifers. Proc. Ocean Drill. Program Sci. Results, 117: 257-263.
    
    Leshou Chen, John R. Booker, Alan G Jones, Nong Wu, Martyn J. Unsworth, Wenbo Wei and Handong Tan, 1996. Electrically conductive crust in Southern Tibet from INDEPTH magnetotelluric surveying. Science, 274: 1694-1696
    
    Li Jijun, 1995. The uplift of the Tibet Plateau and Global Changes. Lanzhou: Lanzhou University Press, 130-180.
    
    Lin Aiming, Fu Bihong, Guo Jianming, Zeng Qingli, Dang Guangming, He Wengui and Zhao Yue. Co-seismic strike-slip and rupture length produced by the 2001 Ms 8.1 Central Kunlun Earthquake. Science, 2002, 296: 2015-2017.
    Ludwig K. R., 2000. User's manual for ISOPLOT/Ex version 2.4. Geochronological toolkid for Microsoft excel. Berkeley Geochronology Center, special publication no.la, 1-53
    Makovsky Y., Klemperer S. L., Ratschbacher L., Brown L. D., Li M., Zhao W. and Meng F., 1996. INDEPTH wide-angle reflection observation of P-wave to S-wave conservation from crustal bright spots in Tibet. Science, 274: 1690-1691.
    
    Matsuda T., Ota Y, Ando M. and Yonekura N., 1978. Fault mechanism and recurrence time of major earthquakes in southern Kanto district, Japan, as deduced from coastal terrace data. Geol. Soc. America Bull. 89: 1610-1618
    
    Metivier F., Gaudemer Y., Tapponnier P. and Meyer B., 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China. Tectonics, 17(6): 823-842.
    
    Molnar P. and Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science, 189: 418-426.
    
    Molnar P. and Tapponnier P., 1978. Active tectonics of Tibet. Journal of Geophysical Research. 83: 5361-5375.
    
    Molnar P., 1987. Geomorphic evidence for active faulting in the Altyn Tagh and northern Tibet and quantitative estimates of its contribution to theconvergence of India and Eurasia. Geology, 15: 249-253.
    
    Molnar P., England P. and Martinod J., 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Reviews of Geophysics, 31(4): 357-396.
    
    Nelson K. D., Zhao W., Brown L. D., Kuo J., Che J., Liu X. and Klemperer S. L., 1996. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results. Science, 174: 1684-1688.
    
    Pan Y., Kidd W.S.F, 1992, Nyainqentanglha shear zone:A late Miocene extensional detachment in the southern Tibetan plateau, Geology, 22, 775-778.
    
    Quade J., Ceding T. E. and Bowman J. R., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342: 163-166.
    
    Raymo M. E. and Ruddiman W. F., 1992. Tectonic forcing of late Cenozoic climate. Nature, 359: 117-122.
    
    Ratschbacher L, Frisch W and Liu G., 1994. Distributed deformation in southern and western Tibet during and after the Indus-Asia collision. Journal of Geophysical Research, 99: 19917-19946.
    
    Schackleton N. J., 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the NorthAtlantic region. Nature, 307: 620-623.
    
    Scharer U., Xu R. H. and Allegre C. J., 1984. U-Pb geochronology of Gangdese plutonism in Lhasa-Xigase region, Tibet. Earth and Planetary Science Letters, 69: 311-320.
    
    Searle M. P., Parrish R. R., Hodges K. V. A., Hurford M. W. A. and Whitehouse M. J., 1997. Shisha Pangma leucogranite, south Tibetan Himalaya: field relations, geochemistry, age, origin and emplacement. Journal of Geology, 105: 295-317.
    
    Spicer R. A., Harris N. B. W., Widdowson M., Herman A. B., Guo S., Valdes P. J., Wolfe J. A. and Kelley S., 2003. Constant elevation of southern Tibet over the past 15 Million years. Nature, 421: 622-624.
    
    Smith A.B., and Juntao X., 1988. Palaeontology of the 1985 Tibet Geotraverse, Lhasa to Golmud.. Phil. Trans. Roy. Soc. London. A, 327:53-105.
    
    Sun Xiuyu, 1984. Association of spores of Oligocene-Miocene of the Xining-Minghe Basin of Central Qinghai Province. Geological Review, 30(3): 207-216.
    
    Tapponnier P. and Molnar P., 1976. Slip-line field theory and large-scale continent tectonics. Nature, 264: 319-324.
    
    Tapponnier P. and Molnar P., 1977. Active faulting and tectonics of China. Journal of Geophysical Research, vol.82,2905-2930.
    
    Tapponnier P., Peltzer A. Y., Le Dain, Amijo R. And Cobbold P., 1982. Propogating extrusion tectonics in Asia: New insignts from simple experiments with plasticine. Geology, 10: 611-616.
    
    Tapponnier P., Xu Z., Roger F., Meyer B., Arnaud N., Wittlinger G. and Y J., 2001. Oblique stepwise rise and growth of the Tibetan Plateau. Science, 294: 1671-1677.
    
    WilliamsJ.S., Claesson, S.,1987. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib. Mineral. Petrol. 97:205-217.
    
    Wagner G. A., 1992. Fission-track dating. Germany: Kluwer Academic Publisher, 145-158.
    
    Wagner G. A., 1998. Age Determination of Young Rocks and Artifacts. Springer-Verlag, Berlin, 219-294.
    
    Wu C., Nelson K. D., Wortman G., Samson S. C., Li J., Kidd W. S. F. and Edwards M. A., 1998. Yadong cross structure and south Tibetan detachment in the east central Himalaya. Tectonics, 17(1): 28-45.
    
    Wu Zhenhan, Jiang Wan, Peter Blisniuk, Bi Siwen, Zhang Shukun, Olaf Kuchel and Mao Yi, 1999, ESR dating of the evolution of the Shuanghu basin in the northern Tibetan Plateau. ACTA Geologica Sinica, 73(3): 289-293.
    
    Wu Zhenhan, Wu Xihao, Jiang Wan and Wu Zhonghai, 1999. Geodynamic process of Cenozoic geomorphic reversion of China. Terra Nostra, (2): 178-180.
    
    Woodward N B, Boyer E S and Suppe J. 1989. Balanced Geological Cross-section: An Essential Technique in Geological Research and Exploration. Published by American Geological Union.
    
    Xu R. H., Scharer U. and Allegre C. J., 1985. Magmatism and metamorphism in the Lhasa block (Tibet): a geochronological study. Journal of Geology, 93: 41-57.
    
    Yin A., Harrison T. M., Reyerson F. J., Chen W., Kidd W. S. F. and Copeland P., 1994. Tertiary structural evolution of the Gangdese thrust system in southern Tibet. Journal of Geophysical Research, 99 (B9 ) : 18175-18201.
    
    Yin A., Nie S., Craig P. and Harrison T. M., 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 17(1): 1-27.
    
    Yin A. and Harrison T. M., 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci. Lett., 28: 211-280.
    Zhao W., Nelson K. D. and Project INDEPTH Team, 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366: 557-559.
    
    Zhong Dalai and Ding Lin, 1996. Rising process of the Qinghai-Xizang Plateau and its mechanism. Science in China (Series D), 39(4): 369-379.
    
    Zoback M. L., 1992. First and second order patterns of stress in the lithosphere: the World Stress Map Project. Journal of Geophysical Research, 97(B8):11703-l 1728.
    Pearce J A, Deng Wanming. The ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and lhasa to Kathmandu (1986). The geological Evelution of the Tibet[M]. London, The Royal Society, 1988. 215-238.
    Dick H J, Bullen T. Chromian spinel as a petrogenetic indicator in abyssal and alpine- type peridotites and spatially associated lavas[J]. Contri. Mineral and Petro, 1984,86:54-76.
    Pearce J A, Lippard S J,Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites [J]. Marginal Basin Geoligy, 1984, 16: 77—94.
    Coish R A. Rare earth elementgeochemistry of the Bett Cove ophiolite, Newfoundland:Complexi-ties in ophiolite formation. Geochimica et Cosmochimics Acta, 1982,46:2117—2134.
    Bloomer S H.Stern R J,Smoot N C. Physical volcanology of the submarine Mariana and volcano arcs Bulletin of Volcanology, 1989,51:210—224.
    Gribble R F, Stern R J,Bloomer S H, et al. MORB mantal and subduection components interact to generate basalts in the southern Mariana Trough back-are basin [J]. Geochemica et Cosmochimica, 1996,60:2153—2166. Gribble R F, Stern R J,Newman S, et al. Chemical and isotopic compositeon of lavas from the Northern Mariana Trough:implications for magmagenesis in back-arc basin [J] Journal of petrology, 1998,39:125—154. Taylor R N,Murton B J,Nesbitt R W. Chemical transects across intra-oceanic arcs:Implications for the tectonic setting of ophiolites [A]. Geol. Soc. Spec.Pub. ,London [C],1992,60:117—132.
    Elthon D. Geochemical evidence for formation of the Bay of Islands ophiolite above a subduction zone [J]. Nature, 1991, 3 (54): 140-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700