用户名: 密码: 验证码:
三倍体毛白杨生长及其林地土壤养分动态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国河北省威县试验地,采用裂区试验设计对不同密度三倍体毛白杨人工林树木生长情况及林地土壤养分动态进行了研究,以三倍体毛白杨(B304、B305、B331、B333)和对照二倍体(1319)为研究对象,连续4a测定7种栽培密度下(2m×2m、2m×3m、2m×3.5m、2m×4m、2m×5m、3m×3m、3m×4m)三倍体毛白杨树木生长情况、叶片养分含量动态、林地土壤养分元素(N、P、K)和有机碳含量以及相关理化性质的变化,得出主要结论如下:
     (1)受无性系差异、种植密度、生长时间及各因素之间交互作用的影响,不同无性系三倍体毛白杨在胸径、树高、单株材积和蓄积量的生长上出现显著性差异。其中三倍体毛白杨无性系B331和B305在2m×5m和2m×4m种植密度下单株材积生长量较高。而对于毛白杨纸浆林的规模化栽种,宜选的种植密度为2m×2m(2500株·hm-2),可获得最高的林木蓄积量。
     (2)在4a生长期内林地土壤的pH值呈现碱性增强变化;不同种植密度和不同土层下土壤pH值变化有显著性差异,三个土层的土壤pH值均在3m×4m种植密度下增加最多,分别为0.51、0.74、0.87。
     (3)林地土壤有机质消耗量较多的种植密度是2m×2m、2m×3m,碱解N是2m×2m,有效P是2m×2m、2m×5m,即密集的种植密度下林地土壤养分消耗较多。但由于枯落物的养分归还,4a后林地土壤养分衰退情况有所恢复。
     (4)不同土壤层次的养分元素含量差异显著,尤其是0-20cm土层的土壤有机质、全N和碱解N含量在种植后的第二年(即2006年)显著下降;林地土壤养分含量受时间效应影响显著。在4a内有机质、N素及K素呈现先降低后升高的变化趋势,土壤P素呈现先升高后下降的变化特点。
     (5)在造林密度、生长时间及二者的交互作用的显著影响下,林地土壤有机碳含量呈现先降后升的变化特点,造林后第二年(即2006年)林地土壤有机碳含量最低。造林密度和时间效应对三倍体毛白杨林地(B304)土壤有机碳含量的影响大于二倍体(1319),在造林后第四年(即2008年)2m×3m密度下有机碳含量增加显著,所以此密度利于发挥林地土壤固碳增汇的生态功能。
     (6)有机碳/全氮(C/N)比值变化规律与有机碳含量变化规律一致,均在造林后第二年(2006年)达到最低值。三倍体毛白杨(B304)高密度林地(2m×2m、2m×3.5m)和普通二倍体(1319)的低密度林地(2m×5m、3mx3m)土壤有机碳与全N含量有显著正相关关系。同时,在2008年二倍体毛白杨2mx5m密度林地中有机碳与全N含量呈显著性负相关,这体现了有机碳与全N含量变化的复杂性。
     (7)毛白杨叶片养分元素的含量具有物候学的特点。在一年之中,叶片N、P、K、Fe和Cu元素的含量呈现下降变化,叶片S元素含量呈现上升变化。Ca和Mg元素的含量呈现先升后降的变化,Zn元素含量则先降后升。叶片各养分元素含量有显著的相关性,其中叶片Cu和S元素的含量在三倍体毛白杨生长时期内始终是呈正相关关系。在春季,叶片N-P,叶片Mg-Mn,叶片Zn-S/Cu之间有显著性正相关。夏季叶片中的K-Ca/Mn元素的含量呈现显著负相关,而Ca-Mn则呈现显著正相关。秋季叶片中的Zn-K/Fe/Cu之间有显著正相关关系,而叶片中Ca-Mg元素含量则呈现显著性负相关。所以在进行人工林管理时,根据其叶片养分动态特点宜在春季进行追肥。而且考虑到各养分元素之间的相关性特点,在施肥时应配比合理的施肥量。
     (8)在三倍体毛白杨B304叶片中,营养元素P、K、Mg、S、Fe、Cu、Zn含量高于其他毛白杨无性系,体现了对养分较强的吸收能力。
     (9)三倍体毛白杨(B304)DRIS营养诊断显示叶片养分元素最佳比例为N/P=13.07±1.76,N/K=6.27±1.77,P/K=0.48±0.10。由高产组三倍体毛白杨叶片养分元素含量得到的三种养分元素最佳比例为N:P:K=1:0.18:0.12。
     (10)根据DRIS营养诊断发现,在2mx2m和2m×3m种植密度下,叶片养分元素含量低,宜选用平衡施肥,保证各种养分的供应。在2mx3.5m、2mx4m、2mx5m和3mx3m种植密度下,K素不足是导致养分元素比例不平衡的限制因子,需肥顺序为K>P>N。
     (11)叶片养分元素与土壤养分和树木生长情况相关性复杂。在2mx2m和3mx4m种植密度下,叶片N含量与土壤全N呈显著性正相关,但在2mx5m种植密度下却呈现显著性负相关。在2mx3m种植密度下,叶片P含量与胸径生长量呈显著性负相关关系而在3mx3m种植密度下叶片P含量与树高生长量呈显著性正相关关系。
From 2005~2008, a split-plot field experiment was carried out to study the tree's growth, foliar nutrient concentrations, the soil organic carbon contents and the dynamic changes of soil nutrient (N, P, K) contents in three soil layers (i.e.,0-20cm,20-40cm and 40-60cm) of the triploid (cv. B304, B305, B331 and B333) and diploid (cv.1319) Populus tomentosa plantation under five growth densities (including 2m×2m,2m×3m,2m×4m,2m×5m and 3mx4m). The results showed that:
     (1) Significant increases of diameter at breast height (DBH), the total plant height, individual volumes (IDV) and growing stock (GRS) were found in triploid P. tomentosa. The largest IDV were found in B331 by 2m×5m and B305 by 2m×4m which were the optimal growth densities for triploid clones. Forevermore,2m×2m (2500 tree·hm-2) density for the large-scale planting for triploid clones can get maximum GRSs.
     (2) Singificant difference on soil pH values were found in different growth denisites and soil layers. Soil pH value increased after 4a and the largest increment were found in 3m×4m growth density with 0.51 for 0-20cm layer,0.74 for 20-40cm layer and 0.87for 40-60cm layer.
     (3) More soil nutrient contents decreased in the intensive growth densities, such as organic matter in 2m×2m and 2m×3m; available N in 2m×2m; available P in 2m×2m and 2m×5m.
     (4) Significant decreasing in the contents of organic matter, total and available N were found in 0-20cm soil layer in 2006. Growthing year showed significant effect on pH value, the content of P and K. The organic matter, total and available N and total and available K decreased first and then increased while the contents of P exhibited the totally different tendency.
     (5) Significant differences were indicated in the soil organic C content insulted by the treatments with growth density, sampling year and their interaction. Organic C content decreased in 2006 and then increased during the following two years. Form 2005 to 2008, more significant effects of growing density on soil organic C content was found in triploid clone than diploid one. The maximum content of organic carbon was found for the 2m×3m which was optional for the triploid clone to enhance the C sequestration in plantation soil.
     (6) The content changes in the ratio of soil organic C to total N had the same dynamic tendency of soil organic C, and the lowest C:N ratio was in 2006 for all the treatments of the triploid and diploid clones with seven growth densities. Significantly positive correlations between the soil organic C and the total N were found in triploid clone by 2mx2m and 2mx3.5m and diploid clone by 3mx3m and 2mx5m. Significantly negative correlation was also observed in the 2mx5m in 1319 which reflects the complex in the changes of soil organic C and total N in the plantation of triploid P. tomentosa.
     (7) Significant differences were found in foliar nutrients' contents between the triploid (B304, B305, B331 and B333) and the diploid 1319 clones respectively, and an obvious phonological law was also found for them. Compared with the diploid clone 1319, significantly higher foliar P and K contents were found in B304 representing that B304 has stronger anti-drought capacity. The contents of foliar N, P, K, Fe and Cu all decreased from spring to fall while increasing for the foliar S content. Foliar Ca and Mg were also indicated remarkable phenological dynamics during the growing seasons. Moreover, significant positive correlations between the foliar N and P, the foliar Cu and S/Fe, and the foliar Zn and S/Cu/Fe, while significant negative correlations between the foliar Mg and Ca/Mn, and the foliar K and Ca/Mn were also found. According to the phenological change and correlations among the foliar nutrients elements, triploid Populus tomentosa B304 was the optimal one for local introduction and topdressing in spring was strongly recommended as well as the rational ratio of fertilizer should be considered during the plantation management.
     (8) Higher P, K, Mg, S, Fe, Cu and Zn contents were found in B304 and it was recommended to further study for significant higher P and K content in foliage.
     (9) According to DRIS, the optimum ratios were 13.07±1.76 for N/P,6.27±1.77 for N/K, and 0.48±0.10 for P/K for trioloid P. tomentosa.plantation. Based on means of the high-yielding group, the optimum N:P:K was 1:0.18:0.12.
     (10) Balanced fertilization was recommended for the triploid clone B304 P. tomentosa trees that are spaced at 2×2 and 2×3 m and that have low foliar nutrient concentrations. K was the limiting factor for the triploid clone B304 P. tomentosa plantation with spacings of 2x3.5,2x4,2x5, and 3x3 m, and the order of nutrient deficiencies was K>P>N.
     (11) Soil N concentrations and foliar N concentrations were positively correlated with spacings of 2x2 and 3x4 m but negatively correlated with a spacing of 2x5 m. Foliar P and K concentrations were negatively correlated with tree DBH with a spacing of 2x3 m, and foliar P concentrations and tree height were positively correlated with a spacing of 3x3 m.
引文
[1]鲍士旦.土壤农化分析.2005,北京:中国农业出版社
    [2]曹流清,林斌,刘更有,等.紫珠人工林营养元素的含量与分布.湖南林业科技,2006,33(1):27-32
    [3]陈道东,李贻铨,徐清.林木叶片最适养分状态的模拟诊断.林业科学,1991,27(1):1-7.
    [4]陈凯,马敬,曹一平,等.磷亏缺下不同植物根系有机酸的分泌.中国农业大学学报,1999,4(3):58-62
    [5]陈进宁,汪思龙.杉木人工林土壤碳库动态研究现状及展望.广西林业科学,2007,36(3):147-151.
    [6]陈少雄,杨建林,周国福.不同栽培措施对尾巨桉生长的影响及经济效益分析.林业科学研究,1994,12(4):357-362
    [7]陈文德,李贤伟,彭培好,等.三倍体毛白杨幼林根系生长受土壤特性的影响.四川林勘设计,2005,(4):7-9
    [8]陈辕竣,李贻铨,杨承栋.中国林木施肥与营养诊断研究现状.世界林业研究,1998,11(3):58-65
    [9]崔鸿侠,唐万鹏,胡兴宜,等.杨树人工林连栽对土壤生物学性质的影响.湖北林业科技,2009,159:7-10
    [10]董慧霞,李贤伟张健,等.不同草本层三倍体毛白杨林地土壤抗蚀性研究.水土保持学报,2005,19(3):70-79
    [11]董慧霞,李贤伟,张健,等.退耕地三倍体毛白杨林地细根生物量及其与土壤水稳性团聚体的关系.林业科学,2007,43(5):24-29
    [12]段英华,张亚丽,王松伟,等.不同氮效率水稻全生育期内对增硝营养的响应及其生理机制.生态学报,2007,27(3):1086-1092
    [13]樊卫国,刘进平,文晓鹏,等.银杏叶片中营养元素含量的季节性变化研究.贵州农业大学学报,2000,28(2):6-8
    [14]樊向阳,齐学斌,黄仲冬,等.土壤氮素运移转化机理研究现状与展望.土壤肥料学,2006,22(2):254-258
    [15]方奇.杉木连栽对土壤肥力及其林木生长的影响.林业科学,1987,23(4):389-397
    [16]方运霆,莫江明,Per Gundersen,等.森林土壤氮素转换及其对氮沉降的响应.生态学报,2004,24(7):1523-1531
    [17]方晰,田大伦,项文化,等.杉木人工林土壤有机碳的垂直分布特征.浙江林学院学报,2004,21(4):418-423
    [18]冯茂松,张健,杨万勤,等.四川巨桉人工林的养分因子与营养诊断.福建农林大学学报(自然科学版),2009,8(3):248-255
    [19]耿增超,张立新,赵二龙,等.陕西红富士苹果矿质营养DRIS标准研究.西北植物学报,2003,23(8):1422-1428
    [20]巩其亮,曹帮华,王玉刚.三倍体毛白杨新无性系不同土壤条件下生长对比研究.山东林业科技,2004,(1):1-2
    [21]郭书花,郑丽锦.三倍体毛白杨营养元素含量及相互关系研究.河北农业科学,2007,11(2):26-29
    [22]郭有富,崔魁柱,张留江,等.津南区土壤耕层养分动态的研究.天津农林科技,2004,(1):31-33
    [23]洪顺山,庄珍珍,胡炳堂,等.湿地松幼林营养的DRIS诊断.林业科学研究,1995,8(4):360-366
    [24]黄宝强,王麒,杨树人工林叶营养元素季节性变化的研究.福建林业科技,2005,(3):18-20
    [25]黄昌勇.土壤学.北京:中国农业出版社,1999,187-193
    [26]黄益宗,冯宗炜,李志先,等.尾叶枝叶片氮磷钾钙镁硼元素营养诊断指标.生态学报,2002,22(8):1254-1259
    [27]康向阳,毛建丰.三倍体毛白杨配子育性及其子代形态变异研究.北京林业大学学报,2001,23(4):20-23
    [28]李成保,徐仁扣,肖双成.几种有机酸对土壤中磷活动性的增加效应.土壤学报,2005,42(3):508-512
    [29]李军明.论三倍体毛白杨与“林纸”产业.2006,3:79-82
    [30]李素艳.三倍体毛白杨养分动态变化规律及施肥技术研究.北京:北京林业大学博士论文,2008:26-54
    [31]李跃林,胡成志,张云,等.几种人工林土壤碳储量研究.福建林业科技,2004,31(4):4-8
    [32]李贤伟,张健,陈文德,等.三倍体毛白杨+黑麦草复合模式根土养分动态研究.水土保持学报,2005,19(4):6-10
    [33]李小坤,鲁剑巍,吴礼树.土壤钾素固定和释放机制研究进展.湖北农业科学,2008,47(4):473-477
    [34]林成谷.土壤学.(北方本,第二版).1996,北京:农业出版社
    [35]林德喜,陈辉.锥栗人工林营养综合诊断(DRIS)研究.林业科学,2001,37(1):117-125
    [36]刘桂林,张鼎华.亚热带森林生态系统土壤有机碳特环研究进展.武夷科学,2007,23:234-240.
    [37]刘合民.三毛杨造林技术探讨.林业实用技术,2006(8):20
    [38]刘克林,孙向阳,赵铁蕊,等,三倍体毛白杨不同无性系叶片营养元素质量分数差异.浙江林学院学报,2007,24(3):297-301
    [39]刘克林,孙向阳,王海燕,等.三倍体毛白杨叶片营养DRIS诊断.生态学报,2009,29(6):2893-2899
    [40]刘淑春,张仁福,姜小文,等.湘南引种三倍体毛白杨生长模型研究.湖南林业科技,2005,5(32):45-47
    [41]刘毅,张兴芬,王敏,等.引种三倍体毛白杨的生长特性分析.辽宁林业科技,2005(4):22-23
    [42]刘勇,陈燕,张志毅,等.不同施肥处理对三倍体毛白杨苗木生长及抗寒性的影响.北京林业大学学报,2000,22(1):38-44
    [43]刘永辉,张静妮,崔德杰,等.长期定位施肥对非石灰性潮土粘土矿物组成及主要理化性质的影响,土壤学报,2006,43(4):697-702
    [44]卢爱刚,庞德谦,康世昌,等.中国半个世纪以来夏季降水量变化总趋势.生态环境2008,17(1):169-172
    [45]陆景陵,胡霭堂.植物营养学.北京:中国农业大学出版社,2003:18-36
    [46]马杰,蔺岩珍,高志帮.三倍体毛白杨无性系在陇东地区不同土壤条件下生长对比研究.陕西林业科技,2008(2):7-9
    [47]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂(Reaumuria soongorica)叶片元素和水分含量与土壤 因子的关系.生态学报,2008,28(3):983-992
    [48]马玉敏,王迎,玄成龙,等.三倍体毛白杨无性系生长性状研究.山东林业科技,2005,(5):11-15
    [49]孟宪宇.测树学.北京:中国林业出版社,2004,24-36;188-211
    [50]牛增琦.毛白杨大规格苗木合理育苗密度的探讨.山东林业科技,2004(3):12
    [51]潘根兴.中国土壤有机碳库及其演变与应对气候变化.气候变化研究进展,2008,4(5):282-289
    [52]曲天竹,孙向阳,张颖,等.三倍体毛白杨叶片营养年变化规律初探.浙江林学院学报,2008,25(4):538-542
    [53]盛炜彤,杨承栋,范少辉.杉木人工林的土壤性质变化,林业科学研究,2003,16(4):377-385
    [54]史军,刘纪远,高志强,崔林丽.造林对土壤碳储量影响的研究.生态学杂志,2005,24(4):410-416
    [55]邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究.水土保持学报,2005,19(3):24-28
    [56]宋艳波,杨佩芳,李六林,等.枣树年周期中叶片矿质元素含量动态变化及其相关性研究.山西农业大学学报,2006(4):340-343
    [57]孙向阳.土壤学.北京:中国林业出版社,2005:344-356
    [58]唐菁,杨承栋,康红梅.植物营养诊断方法研究进展.世界林业研究,2005.18(6):45-48.
    [59]唐万鹏,李吉跃,胡兴宜,等.江汉平原杨树人工林连栽对林地土壤质量的影响.华中农业大学学报,2009,28(6):750-755
    [60]童书振,盛炜彤,张建国.杉木林分密度效应研究.林业科学研究,2002,15(1):66-75
    [61]王海明,陈治谏,李贤伟.不同退耕还林林草复合经营模式生物量和营养元素循环研究.水土保持研究,2005a.2(12):125-128.
    [62]王海明,陈治谏,李贤伟,等.不同林草复合经营模式矿物质营养元素相互关系的研究.水土保持学报,2005b.4(19):76-79.
    [63]王麒.杨树人工林养分动态研究.北京:北京林业大学硕士论文,2001:6-23
    [64]王一杰,张云志,李惠萍.宁夏黄灌区三倍体毛白杨无性系苗期生长规律研究.防护林科技,2005,(3):14-17
    [65]王小平.不同分解方法ICP-AES测定植物样品中元素含量的影响.光谱学与光谱分析,2005,25(4):536-566
    [66]魏殿生.造林绿化与气候变化一碳汇问题研究.北京:中国林业出版社,2000,6-15
    [67]卫金困,吴强,马丽.林地土壤pH值、磷、钾、有机质和水含量具有可变和可控性.山西林业科技,2000,(4):26-30
    [68]温晓红.造林密度的作用及其应用.现代农业科学,2009,16(5):128-130
    [69]吴秀云,蔡景龙.沙兰杨造林密度与生长关系的研究.河北林业科技,1989,(2):18-22
    [70]吴勇刚,张健,何惠琴.巨桉纸浆原料林土壤养分与林木生长研究.四川林业科技,2004,25(2):42-45
    [71]吴志祥,谢贵水,陶忠良,等.不同树龄橡胶林上土壤有机碳含量与储量特征.热带作物学报,2009,30(2):135-141
    [72]夏冬明.土壤肥料学.上海交通大学出版社,2007,47-53
    [73]谢安强,陆小静,杨榕,等.柳杉苗木综合营养诊断研究Ⅱ.田间DRIS指数法.福建林学院学报,2006,26(2):111-116
    [74]许凤,陈嘉川.三倍体毛白杨的生物结构.中华纸业,2002,23(6):24-27
    [75]徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究.北京林业大学学报,2005,27(2):18-22.
    [76]徐晓燕,马毅杰,张瑞平.土壤中钾的转化及其与外源钾的相互关系的研究进展.土壤通报,2003,34(5):489-492
    [77]薛睿,贺斌,薛文瑞.甘肃干旱荒漠区纸浆林三倍体毛白杨营建试验.陕西林业科技,2006(2):12-16
    [78]阎德仁,刘永军,刘永宏.落叶松人工林土壤肥力与防止地力衰退趋势的研究.内蒙古林业科技,1996,(3-4):93-98.
    [79]尹逊霄,华珞,张振贤,等.土壤中磷素的有效性及其特环转化机制研究.首都师范大学学报(自然科学版),2005,26(3):95-101
    [80]杨建平,丁永建,陈仁升,等.近40a中国北方降水量与蒸发量变化.干旱区资源与环境,2003,17(2):6-10
    [81]杨修,黄冬梅.泡桐营养元素吸收和循环规律研究.资源科学,1999,21(2):62-69
    [82]余常兵,罗治建,陈卫文,等.幼龄杨树养分含量及其积累季节变化研究.福建林学院学报,2005.25(2):181-186
    [83]俞新妥,张其水.杉木连栽林地土壤生化特性及土壤肥力的研究.福建林学院学报,1989,9(3):263-271
    [84]余雪标,杨国清,李尚昆,等.不同连栽代次桉树林土壤性质的变化.桉树人工林长期生产力管理研究.北京:中国林业出版社,2000:94-103
    [85]张福锁,李晓林.石灰性土壤的生物活化途径.土壤与植物营养研究新动态(第一卷),1992,北京:北京农业大学出版社
    [86]张颖.白银地区三倍体毛白杨造林试验初报.甘肃林业科技,2003.8(3):6-10
    [87]张颖,孙向阳,曲天竹,等.三倍体毛白杨不同无性系叶片养分含量研究.西北林学院学报,2008.23(2):64-68
    [88]张秀玲,李君剑,石福臣.速生杨人工林对土壤碳氮含量及微生物生物量的影响.生态与农村环境学报,2008,24(2):32-35
    [89]赵世伟,苏静,吴金水,等.子午岭植被恢复过程中土壤团聚体有机碳含量的变化.水土保持学报,2006,20(3):114-117
    [90]赵天锡,陈章水.中国杨树集约栽培.北京:中国科学技术出版社,1994:52-77
    [91]赵勇刚.黄河流域三倍体毛白杨区域生态经济发展战略.山西林业科技,1999,(2):1-5
    [92]赵勇刚.三倍体毛白杨栽培综合标准.山西林业科技,2002,(4):23-26
    [93]赵雪梅,孙向阳,王海燕,等.三倍体毛白杨速生林土壤养分因子及pH值动态变化.生态学报,2010,30(11)
    [94]赵雪梅,孙向阳,王海燕,等.不同种植密度下三倍体毛白杨林地土壤的养分消耗.东北林业大学学报,2009,37(1):42-44
    [95]赵雪梅,王海燕,孙向阳,等.三倍体毛白杨品种和种植密度对其叶片营养元素含量的影响.河北林果研究,2007,22(2):117-121
    [96]赵雪梅,王海燕,孙向阳,等.三倍体毛白杨无性系人工林林地土壤养分消耗与林木生长研究.林业科学研究,2008,21(3):419-423
    [97]郑世锴.杨树短轮伐期集约栽培的新进展.世界林业研究,1989,2(1):17-18
    [98]周启星.健康土壤学.北京:科学出版社,2005:276-305
    [99]左洪超,吕世华,胡隐樵.中国近50年气温及降水量的变化趋势分析.高原气象,2004,23(2):238-244
    [100]朱之悌.全国毛白杨优树资源收集保存和利用的研究.北京林业大学学报,1992(14(增3)),1-25
    [101]朱之悌.毛白杨遗传改良.北京:北京林业出版社,2006:155-213;221-236
    [102]Alifragis D, Smiris P, Maris F, Kavvadias FV. The effect of stand age on the accumulation of nutrients in the aboveground components of Aleppo pine ecosystem. Forest Ecol Manag,2001, 141:256-269
    [103]Annie, D, van den Driessche, R and Thomas, BR. Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH. Canadian Journal of Forest Research,2003,33:552-560
    [104]Arlette L, Joann KW, Robert LB, and Claude C. Diagnostic tools to evaluate the foliar nutrition and growth of hybrid poplars. Can J For Res,2008,38:2138-2147
    [105]Bailey JS, Beattie JAM, Kilpatrick DJ.The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards:Ⅰ. Model establishment. Plant Soil 1997a,197,127-135
    [106]Bailey JS, Cushnahan A, Beattie JAM. The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards:Ⅱ. Model calibration and validation. Plant Soil,1997b,197:137-147
    [107]Bailey JS, Dils RA, Foy RH, Patterson D.The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards:Ⅲ Practical applications. Plant Soil, 2000,222:255-262
    [108]Bailey JS, Ramakrishna A, Krichhof G. An evaluation of nutritional constraints on sweet potato (Ipomoea batatas) production in the central highlands of Papua New Guinea. Plant Soil 2009,316:97-105
    [109]Batjes NH.Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biol Fertil Soils,1998,27:230-235
    [110]Birk EM, Vitousek PM. Nitrogen availability and nitrogen use efficiency in loblolly pine stands. Ecology,1986,67:69-79
    [109]Garrison MT, Moore JA, Shaw TM, et al. Foliar nutrient and tree growth response of mixed-conifer stands to three fertilization treatments in northeast Oregon and north central Washington. Forest Ecol Manag,2000,132:183-198
    [111]Chapin FS, Kedrowski RA. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology,1983,64:376-391
    [112]Diem B, Godblod DI. Potassium, Calcium and magnesium antagonism in clones of Populus trichocarpa. Plant Soil,1993,155:411-414
    [113]Elwali AMO, Gascho GJ, Sumner ME. DRIS norms for the nutrients in corn leaves. Agron J 1985, 77:506-508
    [114]Elumalai S, Bahieldinal A, Wratth J M, et al. Improved biomass productivity and water res-efficient under water deficit conditions in transgenic wheat constitutively expressing the barely HVA1 gene. Plant Sci,2000,155:1-9
    [115]Field CB, Behrenfeld J, Randerson JT, et al. Global net primary production: combing ecology and remote sensing. Remote Sens Environ,1995,51:74-88
    [116]Field CB, Behrenfeld J, Randerson JT, et al. Primary production of the biosphere: integrating terrestrial and oceanic components. Science,1998,281:237-240
    [117]Fox TR, Comerford NB. Low-molecular weight organic acion in selected forest soils of the southeastern USA. Soil Sci,1990,54:1139-1144
    [118]Gartner BL, North EM, Johnson GR, et al. Effects of live crown on vertical patterns of wood density and growth in Douglas-fir. Can J For Res,2002,32:439-447
    [119]Gucci R, Lombardini L, Tattini M. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree Physiol,1997,17:13-21
    [120]Harvey HP, van den Driessche R. Poplar nutrient resorption in fall or drought: influence of nutrient status and clone. Can J For Res,1999,29: 1916-1925
    [121]He L and Scott XC.Response of trembling and hybrid aspens to phosphorus and sulfur fertilization in a Gray Luvisol: growth and nutrient uptake. Can J For Res,2004,37:1391-1399
    [122]Heilman PE, Xie FG Influence of nitrogen on growth and productivity of short-rotation Populus trichocarpa × Populus deltoids hybrids. Can J For Res,1993,23(9):1863-1869
    [123]Heilman PE, Xie FG. Effects of nitrogen fertilization on leaf area, light interception, and productivity of short-rotation Populus trichocarpa×Populus deltoids hybrids. Can J For Res, 1994,24(1):166-173
    [124]Hsiao TC, Xu LK. Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot,2000,51:1595-1616
    [125]Huang BL, Lu CQ, Zhang LF. Effects of different growth density on the growth, output and wood properties of Eucalyptus urophylla. Sci Silvae Silicae,2000,36(1):81-90
    [126]Joanne CH, Kevin RT, Ross EM, et al. Mechanisms for changes in soil carbon storage with pasture to Pinus radiata land-use change. Global Change Biol,2003,4:1294-1308
    [127]Jones CA, Bowen JE. Comparative DRIS and crop log diagnosis of sugarcane tissue analyses. Agron J,1981,73:941-944
    [128]Kayahara GJ, Carter RE, Klinka K. Site index of western hemlock (Tsuga heterophylla) in relation to soil nutrient and foliar chemical measures. For Ecol Manag,1995,74: 161-169
    [129]Killngbeck KT. Autumnal resorption and accretion use efficiency in a Kansas gallery forest. Am Midl Nat,1985,116:180-189
    [130]Killingbeck KT. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology,1996,77:1716-1727
    [131]Koerselman W and Meuleman AFM. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. J Appl Ecol,1996,33:1441-1450
    [132]Kwabiah AB, Voroney RP, Palm C A. Inorganic fertilizer enrichment of soil: effect on decomposition of plant litter under subhumid tropical conditions. Biol Fertil Soils,1999,30: 224-231
    [133]Mishra VK, GN, Effect of spacing on stem and crown development in cottonwood (Populus deltoids Bartr.). Ind Forum,1993, (119):732-737
    [134]Magill A H and Aber J D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil,1998,203:301-311
    [135]Mooney HA. Carbon-gaining capacity and allocation patterms of Mediterranean climate plants. In: Druger FJ, Mitchell DT, Jarvis JUM, eds. Mediterranean-type ecosystems. The role of nutrients. Berlin:Springer-Verlag,1983,103-109
    [136]Nimmagadda VVJ, Pavuluri CM, Srinivasula RJR. Determination of zinc, copper, lead and cadmium in some medicinally important leaves by differential pulse anodic stripping analysis. J Trace Elem Med Biol,2003,17(2):79-83
    [137]Parent LE and Granger RL. Derivation of DRIS norms from a high-density apple orchard established in the Quebec Appalachian Mountains. J Amer Soc Hort Sci,1989,114:915-919
    [138]Paul KL, Polglase PJ, Nyakuengama JG, et al. Change in soil carbon following afforestation. For Ecol Man,2002,168:241-257
    [139]Puri S, Singh V, Bhushan B, Singh S, Biomass production and distribution of roots in 3 stands of Populus deltoids. Forest Ecol Manag,1994, (65):135-147
    [140]Rathfon RA and Burger JA.Diagnosis and recommendation integrated system modifications for faster fir Christmas trees. Soil Sci Soc Am J,1991,55:1026-1031
    [141]Ronnie, MM, Zewge T. The effect of initial tree-planting density on timber and wood-fuel properties of red alder and sycamore. Can J Forest Res,2006,36:1475-1483
    [142]Ryan DF, Bormann FH. Nutrient resorption in northern hardwood forests. Bioscience,1982, 32:29-32
    [143]Shengzuo Fang, Xizeng Xu, Shixing Lu, et al. Growth dynamics and biomass production in short-rotation poplar plantations:6-year results for three clones at four spacing. Biom Bioen, 1999,17:415-425
    [144]Song CH, Woodcock CE. A regional forest ecosystem carbon budget model:impacts of forest age structure and land use history. Ecol Model,2003,164:33-47.
    [145]Spanner MA, Pierce LL, Running SW. The seasonality of AVHRR data of temperature coniferous forests:relationships with leaf area index. Remote Sens Environ,1990,33:97-112
    [146]Sparks TH, Carey PD. The responses of species to climate over two centuries: an analysis of the Marsham phenological record,1736-1947. J Ecol,1995,83:321-329
    [147]Sparks TH, Jeffree EP, Jeffree CE. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol,2000,44:82-87
    [148]Sumner ME.Application of Beaufils'diagnostic indices to maize data published in the literature irrespective of age and conditions. Plant Soil,1977,46:359-369
    [149]Tessier JT, Raynal DJ. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J Appl Ecol,2003,40:523-534
    [150]Toma G and Annie D. Early growth and nutrition of hybrid poplars fertilized at planting in the boreal forest of western Quebec. For Ecol Manage,2008,255:2981-2989
    [151]Tyree MT, Ewers FW. The hydraulic architecture of trees and other woody plants. New Phytol, 1991,119:345-360
    [152]van den Driessche R. Phosphorus, copper and zinc supply levels influence growth and nutrition of a young Populus trichocatpa (Torr.& Gray)×P.deltoides (Bartr. ex Marsh) hybrid. New For, 2000,19:143-157
    [153]Vesterdal L, Ritter E, Gundersen P. Change in soil organic carbon following afforestation of former arable land. For Ecolo Man,2002,169: 137-147
    [154]Walworth JL and Summer ME.The diagnosis and recommendation integrated system (DRIS).Adv Soil Sci,1987,6:149-188
    [155]Wang GG White spruce site index in relation to soil, understory vegetation and foliar nutrients. Can J For Res,1995,25:29-38
    [156]Wang SM, Wan CG, Wang YR. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China J Arid Environ,2004,56 (3):525-539
    [157]Wright J, Westoby M, Reich PB. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J of Ecol,2002,90 (3): 534-543
    [158]Xue L, Hagihara A. The competition-density effect in Populus ×Euramericana cv.'San martion' plantations. Sci Silvae Sin,2003,39(5):61-64
    [159]Yoder BJ, Waring RH. The Normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations. Remote Sens Environ,1994,49:81-91
    [160]Zhang ZH, Zhang ZY, Lin SZ, Li XG.. Effects of plant density on growth of new clones in Populus tomentosa. Forest Stu China,2003,5(2):23-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700