用户名: 密码: 验证码:
纳米m-ZrO_2/Al_2O_3复相系统的烧结行为、显微结构和相变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用热分析、X-射线衍射、扫描电镜、透射电镜和原子力显微镜等分析测试手段,对纳米m-ZrO_2/Al_2O_3复相系统的烧结行为、显微结构、马氏体相变以及力学性能进行了研究,观察了ZrO_2体积分数不同对复相体系烧结行为、基体约束应力、晶粒长大、ZrO_2相变的影响。
     本论文实验工作观察了0.6μm Al_2O_3和60nmZrO_2颗粒制备的单相样品及不同ZrO_2初始含量的复相样品的烧结行为。样品的烧结曲线表明,与单相Al_2O_3样品相比,单相ZrO_2样品的最大致密化速率高,而中后期阶段的起始温度和最大致密化速率对应的温度都低,两者的最终线收缩率十分接近,表明纳米颗粒的烧结行为优于亚微米颗粒。在Al_2O_3/ZrO_2复相材料中,样品的烧结行为主要受体积分数占多数的相的控制,烧结曲线与所对应的单相样品相比移向高温区,中后期阶段的起始温度、最大致密化速率对应温度也相应移向高温,但最大致密化速率降低,表明异相粒子的加入对烧结起到阻碍作用。对2℃/min和5℃/min两种升温速率样品的烧结曲线的比较,发现烧结速率的不同对样品的烧结行为影响不大。
     密度测试结果表明,Al_2O_3体积分数占多数的样品的致密度都比单相Al_2O_3的低,而ZrO_2体积分数占多数的样品的致密度都比单相Al_2O_3的高,与样品的烧结行为相一致。通过扫描电镜对样品粒径的观察发现烧结样品中Al_2O_3、ZrO_2的粒径长大与烧结行为的分析也是一致的,单相Al_2O_3的平均粒径是2.16μm,是Al_2O_3粉料的3.5倍;随着ZrO_2体积分数的增加,样品中Al_2O_3的粒径逐渐减小,在含有80vol.%ZrO_2样品中的平均粒径降低为0.78μm,是Al_2O_3粉料的1.3倍。同样,随着Al_2O_3体积分数的增加,样品中ZrO_2的粒径也逐渐减小,在含有80vol.%ZrO_2样品中的平均粒径为0.24μm,是ZrO_2粉料的4倍,而在含有20vol.%ZrO_2样品中的平均粒径为0.14μm,是ZrO_2粉料的2.3倍。
     另一方面,通过差热分析观察了Al_2O_3体积分数对ZrO_2相变温度的影响。结果显示ZrO_2相变温度存在热滞现象,而且随着Al_2O_3体积分数的增加,上、下马氏体点都有降低,下降幅度分别在60℃范围和190℃范围,下马氏体点降幅明显大于上马氏体点,相变热滞温差增大,这是由于基体约束力的增加对ZrO_2相变结构重组所需越过的势垒的影响在升降温过程中不同的缘故。
     通过力学性能的测试结果发现,样品的显微硬度随着ZrO_2含量的增加,逐渐降低,这是由于复合材料样品杨氏模量减小的缘故。而断裂强度和断裂韧性除了10vol.
    
    纳米:仆zro:/A1203复相系统的烧结行为、显微结构和相变的研究
    %zro:样品的强度和韧性较之单相AbO3有所提高外,其它样品都有降低,表明只
    有稳定的四方ZrO:的存在刁‘能对一样品有强韧化作用。
The present thesis used thermal analyse, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) etc to study sintering behavior, microstructure, martensite phase transformation and mechanical properties of nanometer m-ZrO2 /Al2O3 composite system. Simultaneously, we have also observed the effect of the initial volume fraction changes of ZrO2 on sintering behavior, constraining stress of matrix, grain growing and ZrO2 phase transformation.
    The sintering behavior was studied for monophase Al2O3 and ZrO2 samples as well as composite samples with different initial volume fraction of ZrO2 using raw materials of 0.6 m Al2O3 powder and 60nm ZrO2 powder respectively in this thesis. The results of sintering curves indicated that the max densification rate of monophase ZrO2 sample was greater than the counterpart of monophase Al2O3, but the starting temperature of intermediate and last stages as well as the corresponding temperature of max densification rate were lower than the counterpart of monophase Al2O3. Moreover shrinkage ratios of both monophase samples were very closed. These results displayed that the sintering behaviors of nanometer powders was better than sub-micron powders. In m-ZrO2 /Al2O3 composite materials, the sintering behaviors of samples were mainly controlled by the phase whose volume fraction was in the majority. Comparing with the corresponding monophase samples, the sintering curves as well as the starting temperatures of interm
    ediate and last stages and the corresponding temperature of max densification rate of composites moved to higher temperature range, but the max densification rate were lower. These conclusions demonstrated that the hetero-phase powder mixed in composites inhibited sintering of samples. Otherwise, comparing the sintering velocity of 2 C/min with that of 5 C/min, we found the difference of sintering velocity did not obviously affect sintering behavior.
    
    
    
    The result of density experiment manifested that the density of samples in which the volume fraction of A12O3 was in the majority was lower than that of monophase A12O3, while the volume fraction of ZrO2 was in the majority was higher than that of monophase Al2O3. This conclusion agreed well with the sintering behavior of samples. The grain growing of A12O3 and ZrO2 observed by SEM was corresponding to the analyses of sintering behavior. The mean grain size of monophase Al2O3 was 2.16 m, which was 3.5 times the size of Al2O3 powder. With the increasing of ZrO2 initial volume fraction, the grain size of Al2O3 in samples was decreasing. The mean grain size of A12O3 in the sample contained 80vol. %ZrO2 was 0.78um, which was 1.3 times the size of A12O3 powder. And with the increase of Al2O3 volume fraction, the grain size of ZrO2 in samples was decreasing. The mean grain size of ZrO2 in the sample contained 80vol. % ZrO2 was 0.24 m, which was 4 times the size of Zr02 powder; while the mean grain size of ZrO2 in
    the sample contained 20vol. %ZrO2 was 0.14um, which was 2.3 times the size of ZrO2 powder.
    On the other hand, the effect of AbOs volume fraction on ZrO2 phase transformation was observed by the differential thermal analysis (DTA). The result showed there was a thermal retardation in ZrO2 phase transformation temperature. With the increasing of AbOa volume fraction, both high and low martensite temperatures were decreasing in the rage of 60 C and 1 90 C respectively. The variation ranges of low martensite temperatures were obviously greater than that of high martensite temperatures. The difference was growing in temperature of thermal retardation due to phase transformation. The reason was different influences during temperature increasing and decreasing on the potential barriers due to structure reorganization needed to get over in ZrO2 phase transformation as the constraining stress of matrix increasing.
    The experimental results of mechanical properties manifested that the micro-hardness got down with the increasing of the initial volume fraction of ZrO2 because of y
引文
[1] 蔡作乾,王琏,杨根.陶瓷材料辞典.北京.化学工业出版社.2002.
    [2] 李世普.特种陶瓷工艺学.武汉.武汉工业大学出版社.1990.
    [3] 陆佩文.无机材料科学基础.武汉.武汉理工大学出版社.1996
    [4] 徐国财,张立德.纳米复合材料.北京.化学工业出版社.2003
    [5] S. Yip. The Strongest Size. Nature(London), 1988, 391:532-533
    [6] A. Krell. A New Look at the Influences of Load, Grain Size, and Grain Boundaries on the Room Temperature Hardness of Ceramics. Int. J. Refract. Met. Hard Mater., 1988, 16[4-6] : 331-335
    [7] Ralph Jrg Hellmig, Hans Ferkel. Using Nanoscaled Powder as an Additive in Coarse-Grained Powder. J. Am. Ceram. Soc., 2001, 84[2] : 261-266.
    [8] C. C. Furnas. Grading Aggregates I-Mathematical Relations for Beds of Broken Solids of Maximum Density. Ind. Eng. Chem., 1931, 23: 1052,
    [9] 靳喜海,高濂.纳米复合陶瓷的制备、显微结构与性能.无机材料学报,2001.16[2] :200-206
    [10] A. Krell. Grain Size Dependence of Hardness in Dense Submicrometer Alumina. J. Am. Ceram. Soc., 1995, 78[4] : 1118-1120.
    [11] A. Krell. Improved Hardness and Hierarchic Influences on Wear in Submicrometer Alumina. Mater.Sci.Eng.A, 1996, 209[1-2] : 156-163.
    [12] A. Krell, P. Blank. The Influence of Shaping Method on the Grain Size Dependence of Strength. J. Eur. Ceram. Soc., 1996, 16[11] : 1189-1200.
    [13] K. Morinaga, T. Torikai, K. Nakagawa, S. Fijino. Fibrication of Fine α-Alumina Powders by Thermal Decomposition of Ammonium Alumina Carbonate Hydroxide(AACH). Acta mater., 2000, 48[18/19] : 4735-4741.
    [14] R. Apetz, M. P. B. van Bruggen. Transparent Alumina :A Light-Scattering Model. J. Am. Ceram. Soc., 2003, 86[3] : 480-486.
    [15] 新原皓一.日本协会学术论文志,1991,99(10):974-982
    [16] Alan Piciacchio,et al. J. Am. Ceram. Soc., 1994, 77: 2157--2164.
    [17] Nakahiha Atusushi, et al. J. Ceram. Soc. Jpn., 1992,100(4):448-453
    [18] Jang Byungkoog, et al. J. Ceram. Soc. Jpn., 1994,102(9): 863-867
    [19] Sakaki Gen, et al. J. Ceram. Soc. Jpn., 1992,100(4): 536-540
    [20] Sato Shigini, et al, J. Ceram. Soc. Jpn., 1995,103(7): 676-679
    [21] C. Zener, reported in C. S. Smith, Trans. AIME. 1948
    [22] 杨尚林,张宁,桂太龙.材料物理导论.哈尔滨工业大学,1999
    [23] J. L. SHI. Solid state sintering of ceramics: pore microstructure models, densification equations and applications. Journal of materials science. 1999, 34:3801-3812
    [24] G. C, Kuczynski, AIME, 1949, 85: 169-178
    [25] R. L. Coble. J. Applied Physics. 1961, 32[5] : 787-793
    [26] Idem., ibid. 1961,32[5] : 793
    [27] M. P. Harmer, H. M. Chan, D. M. Smyth. Defect Properties and Processing of High-Technology
    
    Nonmetalic Materials. edited by Y. Chen, W. D. Kingery, R. J. Stokes. Materials Research Society. 1986:125-134
    [28] M. P. Harmer. Advances in Ceramics. Am. Ceram. Soc,Columbus, OH. 1985:679-696
    [29] 曾樊榕,杨峰,康沫狂.Y2O3—ZrO2超微粉体烧结动力学研究.西北工业大学学报,1996,14[2] :175-178
    [30] Jinsheng Hong, Lian Gao. Spark plasma sintering and mechanical properties of ZrO2(Y2O3)-Al2O3 composites. Materials Letters 2000.43[1-2] . 27-31
    [31] Ming-Hong Lin,Jung-Fang Chou and Hong-yang Lu. Grain-Grouth Inhibition In Na2O-Doped TiO2-Execess Barium Titanate Ceramic. J.Am.Ceram.Soc 83[9] 2155-2162
    [32] You Zhou, Kiyoshi Hirao, Motohiro Toriyama, Hidehiko Tanaka. Very Rapid Densification of Nanometer Silicon Carbide Powder by Pulse Electric Current Sintering. J. Am. Ceram. Soc., 2000, 83[3] : 654-656,
    [33] D. Doni Jayaseelan, Shunkichi Ueno, Tatsuki Ohji, Shuzo Kanzaki. Differential Sintering by Improper Selection of Sintering Parameters during Pulse Electric Current Sintering. J. Am. Ceram. Soc., 2004, 87[1] : 159-161.
    [34] 吴文芳,葛启录,李桂芝等.ZrO_2的烧结动力学研究.高等学校化学学报.1993,14[9] :1257-1260
    [35] 张琪,董向红,陈玉如等.纳米ZrO2陶瓷粉科的烷结性研究.陶瓷学报,1997,18[3] :136-140
    [36] 刘艳改,贾德昌,周玉.烧结方法对LiTaO3/Al2O_3复相陶瓷微观结构和力学性能的影响,材料科学与工艺.2001年第1期:232-235
    [37] 张锐,符水龙,卢红霞,许红亮,郑隆烈.影响ZTA陶瓷微波烧结的主要工艺过程.无机材料学报.2001第1期:169-172
    [38] J. R. Groza, S. H. Risbud, K. Yamazaki. Plasma Activated Sintering of Additive-Free AlN Powders to Near-Theoretical Density in 5 Minites. J. Mater Res., 1992, 7[10] : 2643-2645
    [39] S. H. Risbud, K. J. R. Groza, M. J. Kim., Clean Grain Boundaries in Aluminium Nitride Ceramics Densified without Additive by a Plasma-Activated Sintering Process. Philos. Mag. B,1994, 69[3] : 525-533
    [40] S. H. Risbud, C. H. Shah, A. K. Mukherjee, M. J. Kim, J. S. Bow, R. A. Holl., Retention of Nanostructure in. Aluminum Oxide by Very Rapid Sintering at 1150℃. J. Mater. Res., 1995,10[2] :237-239
    [41] Enrico Merlani, Chiara Schmid. Residual Stresses in Alumina/Zirconia Composites: Effect of Cooling Rate and Grain Size. Journal of the American Ceramic Society, 2001.84[12] .
    [42] 周玉.陶瓷材料学.哈尔滨.哈尔滨工业大学出版社,1995
    [43] 徐祖耀.相变原理.北京.科学出版社,1988
    [44] Arun Suresh, Merrilea J. Mayo, Wallace D. Porter, Claudia J. Rawn. Crystallite and Grain-Size-Dependent Phase Transformations in Yttria-Doped Zirconia. J. Am. Ceram. Soc., 2003, 86[2] : 360-362.
    [45] R. C. GARVIE. J.Phy Chem. 1965 69: 1238.
    [46] Balasubramanian, M. Malhotra, S. K. Gokularathnam, C. V. Sintering and mechanical properties of sol-gel derived alumina-zirconia composites. Journal of Materials Processing Technology.
    
    1997.67[1-3] .67-70
    [47] 陈沙鸥,戚凭,郭小龙,张巍,张宏图.ZrO_2晶粒尺寸对ZTA陶瓷材料力学性能的影响.1998年第十届全国高技术陶瓷学术年会论文集:396-399
    [48] 刘发民,孟国文,关小韦.纳米氧化锆弥散增强氧化铝陶瓷的实验研究.西安建筑科技大学学报.1996年第3期:105—108
    [49] 陈沙鸥,戚凭,任宝乾,葛晓辉,张宏图.3Y-TZP对Al_2O_3陶瓷的韧化作用.1998年第十届全国高技术陶瓷学术年会论文集:389-392
    [50] 吴南春、李包顺、黄校先、郭景坤.Al_2O_3-(Ce)ZrO_2复相陶瓷的制备和力学性能.1998年第十届全国高技术陶瓷学术年会论文集:381-385
    [51] Bhattacharya, Sandeepan: Jakus, Karl. Hot pressing of annular alumina-zirconia composites. Journal of the American Ceramic Society. 1998.81[3] . 460-464
    [52] Jinsheng Hong, Lian Gao. Spark plasma sintering and mechanical properties of ZrO2(Y2O3)—Al2O3 composites. Materials Letters. 2000.43[1-2] 27-31
    [53] A. Sayir and S. C. Farmer. The effect of the microstructure on mechanical properties of directionally solidified Al_2O_3/ZrO_2(Y_2O_3) eutectic. Acta materialia. 2000.48[18-19] . 4691-4697
    [54] Jimenez-Melendo,Manuel; Clauss, Carolina; Dominguez-Rodriguez, Arturo; Sanchez-Herencia, Antonio J., Moya, Jose S. Microstructure and high-temperature mechanical behavior of alumina/alumina-yttria-stabilized tetragonal zirconia multiplayer composites. Journal of the American Ceramic Society. 1997.80[8] 2126-2130
    [55] Clarisse, L., Baddi, R., Bataille, A.,et al., Superplastic deformation mechanisms during creep of alumina-zirconia composites. Acta Materialia. 1997.45[9] . 3843-3853
    [56] Clarisse, L,, Baddi, R., Bataille, A.,et al., Superplastic deformation mechanisms during creep of alumina-zirconia composites. Acta Materialia. 1997.45[9] . 3843-3853
    [57] Sakka, Yoshio, Suzuki, Tohru S., Nakano, Keishi, et al. Microstructure control and superplastic property of zirconia dispersed alumina ceramics. Journal of the Japan Society of Powder and Powder Metallurgy. 1998.45[12] . 1186-1195
    [58] Seung Kun Lee, Rajan Tandon and Michael J. Readey. Scratch Damage in Zirconia Ceramics. J.Am.Ceram.Soc. 2000.83[6] : 1428-1432
    [59] Young-Woo Rhee and Suk-Joong L. Kang. Experimental Evaluation of Toughening Mechanisms in Alumina-Zirconia Composites. J.Am.Ceram.Soc. 1999.82[5] : 1229-32
    [60] J. M. McHale, A. Auroux, A. J. Perrotta, A. Navrotsky. Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. Science, 1997, 277:788
    [61] S. Schlag, F-H. Eicke, W. B. Stern. Size Driven Phase Transition and Thermodynamic Properties of Nanocrystalline BaTiO3. Ferroelectrics, 1995, 173:351
    [62] 陈沙鸥、戚凭、陈利祥等.ZTA陶瓷材料的相变与韧化.陶瓷工程,1997年增刊.[121—123]
    [63] 陈大明,彭应国,李斌太.Al2O3-ZrO2复合纳米超微粉的制备及其特性研究.金属热处理学报.2000,21[2] :36-41
    [64] Phase Diagrams of Ceramics[J] . The American Ceramic Society,Columbus OH,Fig.4377
    [65] 张巨先,高陇桥.纳米粉添加剂对Al_2O_3陶瓷烧结性能及微结构的影响.真空电子技术,2000,6:36-39
    [66] 张长瑞,郝元恺.陶瓷基复合材料—原理、工艺、性能与设计.国防科技大学出版社.2001
    
    
    [67] 高瑞平,李晓光,石剑林,等.先进陶瓷物理与化学原理及技术.北京.科学出版社.2001
    [68] 梁开明,顾扣芬,顾守仁,孙传水.ZTA陶瓷ZrO_2的韧化机制与断裂特征.石丰酸盐学报.1995,23[5] :477-487
    [69] F. F. Lange, B. J. Kellet. J. Am. Ceram. Soc. 1989, 72[5] : 735
    [70] Lange F F. Transformation toughening Part 1 Size effects associated with the thermodynamics of constrained transformations. Journal of materials science. 1982, 17: 225-234
    [71] 饶坚.纳米m-ZrO_2+Al_2O_3复相系统的分散、烧结和力学性能研究:[硕士学位论文] .青岛:青岛大学化工学院,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700