用户名: 密码: 验证码:
对苯醌、丙酮在不同体系中的CIDEP实验研究与RTPM的理论计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学诱导动态电子自旋极化(CIDEP)是由于顺磁粒子在其自旋能级间的非Boltzmann分布导致的。对于光解瞬态自由基的CIDEP,可以用时间分辨电子自旋共振(TRESR)波谱技术对其检测。CIDEP为光物理和光化学过程提供了大量的信息,是研究反应中间体、电子转移和能量转移等的有效手段之一。
     本论文在简要论述自旋极化基本理论的基础上,定量地分析了不同延时下激光光解对苯醌的CIDEP谱中各机理对极化贡献的比例;从实验上研究了对苯醌和丙酮在不同体系中的CIDEP以及PH值和胶束环境对极化的影响;考虑零场分裂参数E,从理论上全面计算了自由基-三重态对极化机理的电子自旋极化强度。
     第一章为绪论部分,简要概述了电子自旋共振(ESR)的基本原理以及CIDEP的基本概念,评述了光解自由基的CIDEP的发展现状。
     第二章在介绍产生CIDEP的四种机理和TRESR波谱仪的原理和结构的基础上,实验研究了对苯醌/乙二醇(PBQ/EG)体系在不同激光延时下的TRESR谱,并对实验谱进行了计算机模拟。通过对不同机理在不同延时下对各自由基极化强度贡献的对比,说明由TM形成的PBQH的极化比由RPM形成的PBQH~·的极化衰减快,这是由于不同机理产生的自由基的极化衰减速率不同造成的。
     第三章为实验部分,研究了对苯醌和丙酮(ACETONE)在不同体系中的CIDEP,以及胶束环境的影响。
     激光光解对苯醌,在1,2-丙二醇(PG)均相溶液中得到了以TM为主的苯半醌自由基PBQH~·,加入硫酸后,我们观察到了质子交换现象;在甲酰胺中,则只得到了苯醌负离子基PBQ~(·-),硫酸的加入,使得PBQ~(·-)的五条峰逐步转变为PBQH~·的六条双峰,证明PBQ~(·-)是由PBQH~*解离产生的。
    
     对ACETONE/EG(PG)体系,光解得到了丙酮拨自由基(c H3)2 C OH
    不!J乙二醇碳自山基CHZOllel:o一I以及l,2一丙二醇碳自由基CH。COHCHOH
    的发射/吸收(E/A)型极化信号,这是一个即M极化过程。在酸性环境
    中,溶剂分子的极化信号明显减弱,而对(cH。)2 COH自由基的极化没有什
    么影响;在碱性环境中,则反应生成了负离子基(c H3)ZCO一。
     在胶束环境中,不同表面活性剂以及不同的浓度对体系极化的影响是
    不{司的。}泪离子表面活性剂CTAB对体系中生成的自山基的极化机理没有
    产生影响,而加入体系中TX一100的浓度对体系的极化机理却产生了很大
    的形响。在PBQ/PG体系中,TX一100的加入,使得该体系光解后生成了
    PBQ’一;而在ACETONE/ PG体系「}一,,随着TX一100浓度的增加,TM机理
    刘极化强度的贡献明显增大。同时就胶束环境对CIDEP的影响作了初步的
    词一沦和分析。
     第四章为理论计算部分。在前面工作的丛础上,以光敏剂分子激发三
    重态和稳态自山基形成缔合体为模型,利用角动量理论、二阶微扰理论和
    密度矩阵理沦,在考虑零场分裂参数E的作用的基础上,对DP一RTPM以
    及QP一RTPM极化强度,进行了史进一步的理论计算。结果表明,零场分
    裂多数E,使净极化E(A)减弱,}司时使超精细相关极化E/A(刀E)加强。
The phenomenon of transient populations in electron spin states deviating from the Boltzmann distribution has been known as chemically induced dynamic electron polarization (CIDEP), which can be tested by time-resolved ESR (TRESR). CIDEP can give us more information about photochemical and photophysical processes and it is a useful method to study intermediate species, electron transfer and energy transfer mechanisms in reactions.
    In this paper, based on the brief summary of the fundamental theory of electron spin polarization, the contributions from triplet mechanism(TM) and radical pair mechanism (RPM) to the CIDEP of p-benzoquinone/ethylene glycol (PBQ/EG) system was quantitatively analyzed. The CIDEP of laser photolysis of PBQ and acetone in different homogenous solutions and micelles solutions were experimentally studied. At the same time, considering the zero-field-splitting constant E, the electron spin polarization due to radical-triplet pair mechanism (RTPM) is theoretically calculated in detail.
    In chapter one, the fundamental principles of ESR and the definition of CIDEP as well as its current development were described respectively.
    In chapter two, the four mechanisms to generate CIDEP were introduced and the experiment instrument was described briefly. The CIDEP spectrum of PBQ/EG system has been obtained experimentally by using 285nm laser photolysis. Compared with the stimulated spectra, the relative CIDEP intensity from TM and RPM at different time delay was quantitatively analyzed. It was concluded that the polarization of p-benzosemiquinone radical PBQH* produced from TM decayed faster than generated from RPM.
    In chapter three, the CIDEP of the photolyzed radicals of PBQ and acetone in different homogenous solutions were experimentally studied and the influence of micellar microenvironment on the generation of CIDEP were discussed.
    The major peaks of PBQH' generated from TM was obtained in
    
    
    PBQ/propylene glycol (PG) system and the proton exchange phenomenon was observed with the addition of H2SO4. In PBQ/formamide (FM) system, only the five hyperfine peaks of PBQ- were obtained and the six double peaks of PBQH appeared with the addition of H2SO4 which indicated PBQ- was formed from the dissociation of PBQH*.
    When the acetone/EG (PG) system was photolyzed, the E/A pattern CIDEP spectrum of (CH3)2COH and CH2OHCHOH( CH3 COHCHOH ) generated from
    RPM were obtained. In acid environment, the signal of CH2OHCHOH
    (CH3 COHCHOH) decreased evidently. In basic environment, (CH3)2CO- was
    produced.
    In micellar microenvironment, different surfactant and different concentration have different influence on CIDEP. With the addition of CTAB to sample solution, the polarization mechanism and the signal intensity were the same as in homogenous solutions. When PBQ/PG/TX-100 micellar solution was irradiated by the laser, the CIDEP signal of PBQ- was obtained except for the signal of PBQH'. When ACETONE/EG (PG) /TX-100 micellar solution was photolyzed, the TM appeared accompanying the RPM and the relative ratio oi'TM to RPM increased with the increasing of TX-100 concentration. Here, the fluence of micellar invironment on the generation of CIDEP was simply discussed and analyzed.
    In chapter four, based on the angular momentum theory, the second-order pcrLurbation theory and the motion equation of density matrix, the polarization intensity on the stable radicals of the QP-RTPM and DP-RTPM, with the zero-spilling-field constant E involved in the Hamiltonian, were calculated in detail, respectively. The results indicated that the polarization pattern is E+E/A or A+A/E. Furthermore, the results indicated that the zero-spilling-field constant E made the net polarization decrease and the hyperfine-dependent polarization increase.
引文
[1] 陆同兴,激光光解时间分辨电子自旋共振谱,化学通报,1998,1:11
    [2] 裘徂文.电子自旋共振谱[M].北京:科学出版社,1980
    [3] R.W. Fessenden and R.H. Schuler, Electron spin resonance studies of transient alkyl radicals, J. Chem.Phys., 1963, 39: 2147
    [4] P.J. Hore, C.G. Joslin, and K.A. Mclauchan, Chemically induced dynamic electron polarization, J. Chem. Soc. Spec. Period. Rep. ESR., 1978, 5: 1
    [5] L.T. Muus, P.W. Atkin, K.A. Mclauchan. et al. eds. Chemically induced magnetic polarization[M].Reided: Dordrecht, 1977
    [6] C.D. Buckley, K A. Mclauchan, E.S.R. studies ofexcited states in solution, Mol. Phys.,1985,54: 1
    [7] H.K. Roth, S. Hoernig, and P. Wuensche, CIDEP and kinetic studies of photolytically generated transient radicals of maleic anhydride by time-domain ESR, Polym. Photochem., 1984, 4: 409
    [8] K.A. Mclauchan, Modern pulsed and continuouswave electron spin resonance. L. Kevan, M.K.Bowman, Eds., Wiley: New York, 1990, 285
    [9] P.W. Atkins, G.T. Evans, Electron spin polarization in a rotating triplet, Mol. Phys.,1974,27: 1663
    [10] J.B. Pederson, J.H. Freed, Theory of Chemically induced magnetic polarization, J. Chem. Phys., 1975,62: 1706
    [11] F.J. Adian, Theory of anomalous electron spin resonance spectra of free radicals in solution, J. Chem.Phys., 1971, 54: 3918
    [12] J.R. Norris, A.Lmorris, et al., A general model of electron spin polarization arising from the interactions within radical pairs. J. Chem. Phys., 1990, 92: 4239
    [13] F.J. Adian, Heuristic model of S-T_0 chemically induced electron spin polarization(CIDEP) and its time evolution, Chem. Phys. Lett., 1997, 272: 120
    [14] C.D. Buckley, D.A.Hunter, et al., Electron spin resonance of spin-correlated radical pairs. Chem. Phys.Lett., 1987, 135: 307
    [15] H.Murai, Y.Sakaguchi,et al., An anomalous phase effect in the individual hyperfine lines of the CIDEP spectra observed in the photochemical reactions of benzophenone in micelles, J. Phys, Chem.,1986, 90: 113
    [16] 陆同兴,李干佐,苏红梅等.微复相体系中光解二苯甲酮羰自由基的CIDEP的研究.中国科学(B),1999,29(3):238
    [17] A.I. Shushin, The effect of spin relaxation on ESR spectra of spin correlated radical pairs[J], Chem.Phys. Lett., 1997, 275: 137
    [18] G.H. Gondmit, H.Paul, A.I. Shushin, Electron spin polarization in radical-triplet pairs, size and dependence on diffusion. J. Phys.Chem., 1993, 97: 13243
    [19] A.Kawai, T.Okutsu, K.Obi. et al. Spin polarization generated in the triplet-doublet interaction: hyperfine-dependent chemically induced dynamic electron polarization, et al. J. Phys. Chem., 1991,95(23): 9130
    [20] A.Kawai, K.Obi. First observation of a radical-triplet pair mechanism(RTPM) with doublet precursor.
    
    J. Phys. Chem., 1992, 96: 52
    [21] A. Kawai, K. Obi. Res. Chem. Intermed, A new mechanism of electron spin polarization generation through radiacal-excited molecule interactions. 1993, 19(8): 865
    [22] H. van Willigen, P. R. Levstein, et al. Application of Fourier Transform Electron Paramagnetic Resonance in the Study of Photochemical Reactions. Chem. Rev., 1993, 93(1): 173
    [23] K A.Mclauchan, J.A.D.Ritchie, A flash-photolysis clectron spin resonance study of radicals formed from carboxylic acids; exchange effects in spin-polarized radicals, Mol. Phys.,1985,56: 141
    [24] L.Tongxing, G.Jun. Proton exchange effects in laser potolysis p-benzosemiquinone spin polarized radicals, Spectr. Lett., 1996, 29: 1459
    [25] A.Kawai, K.Obi. Viscosity dependence of chemically induced dynamic electron spin polarization generated by the radical-triplet pair mechanism, J. Plays. Chem., 1992, 96: 5701
    [26] Y. Kobori, A. Kawai, Kobi, Direct observation of CIDEP Generated through enhanced intersystem crossing, J. Chem. Phys., 1994, 98: 6425
    [27] J. Lee and G.J. Celltans. Oxygen quenching of positronium in liquids, J. Chem. Phys., 1965, 42: 437
    [28] 郑荣梁.自由基生物学[M] .北京:高等教育出版社,1992
    [29] M. Mitsui, K. Takeda, et al., The first observation of CIDEP generated through the interaction between an excited singlet oxygen molecule and a free radical. Chem. Phys. Lett., 1996, 262: 125
    [30] M.Terazima, M.Tonooka, T.Azumi, Photochem. Photobiol., 1991, 54: 59
    [31] K.M.Salikhov, 2nd Asia-Pacific EPR/ESR Symposium Proceedings, 1999
    [32] G.L. Closs, P. Gautam, et al., Steady-state and time-resolves direct detection EPR spectra of fullerence triplets in liquid solution and glassy matrices. Evidence for a dynamic Jahn-Teller effect in triplet C_(60), J. Phys. Chem., 1992, 96: 5228
    [33] H. Levanon, V. Meiklyar, et al., Paramagnetic stales and dynamics of photoexcited C_(60), J. Phys. Chem., 1992, 96: 6128
    [34] 沈钟,王果庭,胶体与界面化学.化学工业出版社,1991
    [35] Y. Sakaguchi, H. Hayashi, H. Murai, et al., CIDEP of study of the photochemical reactions of carbonyi compounds showing the external magnetic field effect in a micelle, Chem. Phys. Lett., 1984, 110: 275
    [36] G. L. Closs, M.D.E.Forbes, J.R.Norris, Spin-polarized electron paramagnetic resonance spectra of radical pairs in micelles: observation of electron spin-spin interactions, J. Phys. Chem., 1987, 91: 3592
    [37] K. Tominaga, S. Yamauchi, N. Hirota. Temperature dependence of the CIDEP spectrum of acetone,J. Chem. Phys, 1988, 88(2): 553
    [38] A.I. Grant, N.J.B. Green, P.J. Hore and K.A. McLauchan. Spin exchange effects in radical pair CIDEP, Chem. Phys. Lett., 1984, 110(3): 280
    [39] C. Blattler, F. Jent, H. Paul, et al. A novel radical-triplet pair mechanism for chemically induced electron polarization(CIDEP) for free radical in solution, Chem. Plays. Lett., 1990, 166(4): 375
    [40] 陆同兴,危启正,喻其山等.0.2微秒时间分辨电子自旋共振波谱仪,仪器仪表学报,1993,14:262
    [41] 何光龙,危启正,喻其山等.高时间分辨电子自旋共振波谱仪设计中的几个技术问题,安徽师大学报(自然科学版),1994,17(2):59
    
    
    [42] F. Lendzian, P. Jaegermann and K. Mbius. Time-Resolved CIDEP-Enhanced ENDOR on short-lived radicals, Chem. Phys. Lett., 1985, 120(2): 195
    [43] J.B. Pederson, C. E. M. Hansen, H. parbo, et.al., A CIDEP study of p-benzosemiquinone, Chem. Phys. Lett., 1975, 63: 2398
    [44] 陆同兴,何光龙.光解苯半醌自由基CIDEP的时间演化研究.化学物理学报,1995,5:410
    [45] 陆同兴,李干佐,苏红梅,汤开元.胶束微环境下光解苯半醌负离子基的CIDEP研究,化学学报,1997,55:215
    [46] J. Martin, C. YU Brian and J.R. Norris. Exploring complex CIDEP of p-benzosemiquinone with time resolved CW-EPR, Mol. Phys., 2002, 100(9): 1323
    [47] J. Martin and J.R. Norris. A time-resolved study of the electron-spin-polarization pathways of p-benzosemiquinone, J. Magn. Resort., 2001, 150: 26
    [48] 涂兴华,许新胜等.电子自旋极化谱的的计算机模拟,安徽师范大学学报(自然科学版),2001,24(1):88
    [49] A. I. Ononye, A. R. McIntosh, and J. R. Bolton. Mechanism of the Photochemistry of p-Benzoquinone in Aqueous Solutions. J. Phys. Chem., 1986, 90(23): 6266
    [50] L. Ganzuo, L. Xizhong, et al. Studies on photolized anthracenequinone radical by using TR-ESR spectrometer, Colloids and Surfaces A, 1997,167: 143
    [51] Su. Hong-mei, L. Ganzuo, Z. Liqiang. A CIDEP study ofphotolized p-benzoseimquinone radical in homogeneous solvents and micellar solutions, Colloids and Surfaces A, 1997,123-124: 107
    [52] I. Ian, C.P. Smith, A. Carrinton. An electron spin resonance study of proton transfer equilibria involving the semiquinone derived from hydroquinone and catechol, Mol. Phys.,1967, 56: 439
    [53] 陆同兴,许新胜,崔执凤.激光光解自由基质子交换的TRESR研究.物理化学学报,2003,19(3):268
    [54] X. Xin-sheng, Z. Wei-jun, et al., A TRESR study of photolyzed p-benzoseimquinone radical in p-benzoseimquinone/formamide system, Photochem. Photobiol.(Submitted)
    [55] Y. Kambra and H. Yoshida, Photoreduction of quinines. I. Bull. Chem. Soc., Jap. 1977, 50(6): 1367
    [56] P.R. Levstein, H.V. Willigen. Fourier transform-electron paramagnetic resonance study of the photochemical reaction of acetone with 2-propanol, J. Chem. Phys, 1991, 95(2): 900
    [57] S. Yamauchi, K. Tominaga, N. Hirota. Existence of the triplet mechanism in the CIDEP spectrum of acetone, J. Phys. Chem., 1986, 90(11): 2367
    [58] K. Tominaga. The CIDEP spectrum of a radical pair of the acetone ketyle radical in solution effect of deuteration, S. Yamauchi, N. Hirota. Chem. Phys. Lett., 1988, 149: 32
    [59] M.C. Thurnauer, T-K. Chiu, A.d. Trifunac. The sign of electron exchange in random radical encounter pairs, Chem. Plays. Lett., 1985, 116(6): 543
    [60] C. D. BUCKLEY and K. A. McLAUCHLAN. The influence of ST_(-1) Mixing in spectra which exhibit electron spin polarization(CIDEP) from the radical pair mechanism, Chem. Phys. Lett., 1987, 137(1): 86
    [61] K. Tominaga, S. Yamauchi, N. Hirota. A chemically induce dynamic electron polarization study on the acetone ketyl radical and radical pair in an alcohol solution, J. Chem. Phys, 1990, 92(9): 5175
    
    
    [62] R. Livingston and H. Zeldes. Paramagnetic resonance of liquids during photolysis: hydrogen peroxide and alcohols, J. Chem. Phys, 1966, 44(3): 1245
    [63] G.P. Laroff and R.W. Fessenden. Equilibrium and kinetics of the acid dissociation of several Hydroxyalkyl radicals, J. Phys. Chem., 1973, 77(10): 1283
    [64] 张先燚,崔执凤,许新胜等,三重态/氢给体分子/TEMPO体系CIDEP超精细相关性的研究,原子与分子物理学报,2000,17(4):613
    [65] T. lmamura, O.Onitsuka, K.Obi. et al. Memory spin polarization in triplet-doublet system, J. Phys.Chem., 1986, 90: 6741
    [66] 何光龙,陈次平,杨俊林.化学诱导动态电子极化自由基.三重态对理论中选择三重态对淬灭的证明,波谱学杂志,1998,15(3):197
    [67] Z. Xian-yi, X. xin-sheng, et al. Chemically induced dynamic electron polarization investigation of the triplet-radical system in the solution of the triplet quencher, Chin. J. Chem., 2000, 18: 683
    [68] A. Kawai, Y. Watanabe and K. Shibuya. Control of ferromagnetic and antiferromagnetic couplings in a galvinoxyl-triplet chrysene encounter complex through solvent polarity, Chem. Phys. Lett., 2003,373: 8
    [69] 陆同兴,孙文斌.光敏分子与稳态自由基体系的化学诱导动态电子极化的理论计算,量子电子学,1998,15:297
    [70] 张先燚,陆同兴,许新胜等.三重态分子/稳定自由基体系超精细相关CIDEP的理论计算,波谱学杂志,2000,17(2):121
    [71] 许新胜,陆同兴,张先燚等.吸收型自由基-三重态对电子极化强度的理论计算,原子与分子物理学报,2001,18(2):190
    [72] X. xin-sheng, Z. Xian-yi, C. Zhi-feng, et al. Theoretical study of hyperfine related CIDEP of radical-triplet pairs, Chem. Phys. Lett., 2003, 369: 579
    [73] 郑乐民,徐庚武.原子结构与原子光谱[M].北京:北京大学出版社,1988
    [74] X. xin-sheng, Z. Xian-yi, Z. Wei-jun. et al. Theoretical study of the intensity of chemically induced dynamic electron polarization of Radical-triplet pairs, Chin. J. Atom. Mol.Phys., 2003,20(4)
    [75] J. Fujisawa, K. Ishii, et al. First observation of the excited doublet state of a radical-triplet pairs in solution, J. Phys. Chem(A)., 1999, 103: 213
    [76] Y. Kobori, K. Takeda, et al. Exchange interaction in radical-triplet pairs: Evidences for CIDEP generation by level crossings in triplet-doublet interactions, J. Phys. Chem(A)., 1998, 102: 5160

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700