用户名: 密码: 验证码:
三杆少自由度混联机床精度分析及相关问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混联机床是从上个世纪末开始出现的一种新型制造装备,它可以实现多坐标联动数控加工、装配和测量等功能,也可以满足复杂零件加工的需要。由于具有刚度重量比大、响应速度快、易十实现模块化设计、环境适应能力强等特点,混联机床已经成为新一代机床发展的一个方向,而少自由度混联机床因其自身的优点已成为此类机床发展的趋势。
     世界上许多国家已经对混联机床的研究投入了大量的人力物力,也取得了许多的研究成果,但目前对混联机床的研究总体上还是处于研发、试制和试用阶段。与国外相比,我国关于混联机床的研究也取得了一些阶段性成果,但在整体水平上还存在一定差距。在限制混联机床发展的众多因素中,加工精度是一个比较突出的问题,目前混联机床的加工精度还无法与传统高精度的数控机床相比拟。在实现混联机床产业化的发展道路上,还有许多内容值得我们去研究。
     本论文以东北大学研制的3-TPT型混联机床和3-TPS型混联机床为研究对象,主要对两种混联机床进行了精度分析,并对误差补偿理论进行了探讨,主要研究内容如下:
     (1)结合两种混联机床的结构特点,对它们的运动位置及工作空间进行了分析,建立了运动学方程,并以雅可比矩阵的可操作度和条件数为衡量指标,分析了两种机床在工作空间内的奇异性和操作灵巧性,借此来说明两种混联机床的运动性能及误差敏感性。
     (2)根据误差独立作用原理对两种混联机床的位置误差进行了分析。分析内容包括驱动杆长度误差、铰链点位置误差、运动平台姿态误差等因素对机床位置误差的影响,针对各误差影响因素建立了误差模型,并获得了相应的误差传递函数。
     (3)对处于稳态切削条件下两种混联机床的位置误差进行了分析。建立了稳态切削条件下机床位置误差模型并分析了在工作空间内机床位置误差的变化情况。然后,基于虚拟样机技术对稳态切削条件下机床的位置误差进行了仿真分析,将仿真结果与理论分析结果相比较以说明理论分析结论的准确性。
     (4)以热误差和动态切削力变形误差为对象对混联机床的动态误差进行了初步研究。内容涉及热误差来源、热误差建模方法及动态切削力建模方法等。另外,还基于虚拟样机技术,在ADAMS软件环境中对两种混联机床的动态误差进行了初步仿真。
     (5)根据位置误差理论,对3-TPT型混联机床的试验样机进行了结构参数误差测量,进而求得了机床位置误差受结构参数误差影响的结果。另外,还对机床样机的直线度、平行度和重复位置精度进行了初步评定。
     (6)针对两种混联机床建立了误差标定模型,并基于遗传算法阐述了辨识标定模型参数的理论方法。另外,对混联机床的误差补偿策略进行了研究,根据两种混联机床的特点提出了相应的补偿方式。
     本论文对两种混联机床的精度分析结果,对于研究此类结构混联机床的误差变化特点、实现机床位置误差的补偿都具有重要意义,并为进一步的精度综合奠定了基础。但是,由于混联机床精度问题的复杂性和时变性,为了提高混联机床的加工精度,还需要在误差控制及实时补偿等方面做许多的研究工作。
Since the end of the last century, the Hybrid Machine Tools (HMT) has emerged as a new type of manufacturing equipment. By using HMT, it is easy to satisfy the requirements of multi-axis NC machining, assemble and measurement, so the HMT can be utilized to fabricate the parts with complex surface. Due to the merits of great ratio of stiffness to mass, fast response, module design and environment adaptability, developing excellent HMT has been to the one of the research trends in the machine tool domain. Furthermore, the lower-mobility HMT is the most attractable one.
     Although many people in the worldwide range have resorted to develop the HMT, and even to achieve a little progress, the current focuses of the HMT research are still on its design, try and error stages. In the P.R. China, although domestic scholars and designers have gotten some research fruits, there is still a great gap compare to the level of the developed countries. Through the study on the HMT, the error problem or the issue about the accuracy has been found to be one of the greatest difficulties. Nowadays, the accuracy of the HMT is still lower than the traditional precision NC machine tool, so there is still a long way to go.
     In this work, the error analysis has been conducted on two HMTs developed by Northeastern University with 3-TPT and 3-TPS type respectively, and the corresponding error compensation algorithms are discussed too. The main contents of this work are listed as following:
     (1) Based on the specialties of the 3-TPT and 3-TPS HMTs, the trajectories and workspace of them are analyzed. Their kinematics equations are derived, and their singularity and the dexterity are evaluated based on the operational degree and condition number of their Jacobin matrices. Hence, their kinematics performances and the error sensitivities are clarified.
     (2) Based on the independent principle of the error source, the error models and error transfer functions of the 3-TPT and 3-TPS HMTs have been developed. The influences of the error sources from the driving bar length, joint position, position and pose of the moveable platform are discussed.
     (3) The positional errors of the 3-TPT and 3-TPS HMTs are analyzed under the static machining condition. Their positional error models are developed. The variations of their positional error in the workspace have been found by the models and simulated based on the Virtual Prototype. Two agreements show good agreement, which can be used to verify the correctness of the model analysis.
     (4) The first period dynamic error analysis is performed on the 3-TPT and 3-TPS HMTs in order to discuss the effects of the thermal error and deformation caused by the dynamic cutting force. The research topics include the sources and modeling of the thermal and dynamic cutting force errors. The dynamic error analysis of the 3-TPT and 3-TPS HMTs are conducted in ADAMS.
     (5) The errors of the structural parameters are measured on the 3-TPT HMT prototype based on the positional error theory, and their effects to the position are obtained. Furthermore, the straightness, parallelism and repeatability are evaluated.
     (6) The error calibration models are built for the 3-TPT and 3-TPS HMTs. The parameter identification method is deduced based on the gene algorithm. The strategies of error compensation are studied, and the corresponding compensation approaches are proposed to the 3-TPT and 3-TPS HMTs respectively.
     The error analysis results on the 3-TPT and 3-TPS HMTs are meaningful to do the error compensation for them. The deeper research on the error variation and accuracy synthesis of the HMTs in the similar configuration can be conducted based on this work. However, due to the complexity and time variability of the HMT, there is still a long way to go in order to improve the machining accuracy of the HMT. The urgent and most important research focuses should be concentrated on the error control and real-time compensation.
引文
1. 熊有伦,丁汉.机器人学[M],北京:机械工业出版社,1993,4-38
    2. 汪劲松,黄田.并联机床ˉ机床行业面临的机遇与挑战[J],中国机械工程,1999,10(10):1103-1107
    3. Warneckehj, Neugebauerr. Development of Hexapod Based Machine Tool[J], Annals of the CIRP,1998,47(1):1252-1258
    4. 黄真,孔令富,方跃法.并联机器人机构学理论及控制[M],北京:机械工业出版社,1997,1-268
    5. 张曙,U. Heisel.并联运动机床[M],北京:机械工业出版社,2003,26-169
    6. J. P. Merlet. Parallel robots [M]. Netherland:Kluwer Academic Publishers,2000,183-232
    7. Anonymous. A Machine for the 21st Century [J], Machinery and Production Engineering, 1995,153(3886):20-22
    8.3杨建新,郁鼎文,王立平等.并联机床研究现状与展望[J],机械设计与制造工程,2002,31(3):10-14
    9. Tonshoff H. K, Grendel H. A systematic comparison of parallel kinematics. In:C. R. Boer, L. Molinari-Tosatti and K. S. Smith, eds. Parallel Kinematic Machines:theoretical aspects and industrial requirements [J], Springer-Verlag London Limited,1999:295-312
    10.段广洪,李铁民.并联机器的起源和发展[J],世界制造技术与装备市场,2006(1):41-48
    11.李金泉,丁洪生,付铁等.并联机床的历史、现状及展望[J],机床与液压,2003(3):3-8
    12. Merlet J. P. Information on Parallel Manipulators, http://www-SOP.inria.fr/coprin /equipe/mer21et/merlet-eng, html,1999-08/2000-06
    13.刘锋,陈文凯.3自由度并联机器人的研究现状和应用前景[J],企业技术开发,2006,25(1):9-10
    14.李冬川.并联机床的现状及发展[J],组合机床与自动化加工技术,2002(6):1-11
    15. M.Weck, D. Staimer. Application Experience with a Hexapod machine tool for machining complex Aerospace Parts [J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002:807-815
    16. Merlet J. Parallel Robots [M], London:Kluwer Academic Publishers,2000,15-62
    17.关浩,胡萍,余云满.21世纪新兴机床ˉ虚拟轴并联机床[J],江苏机械制造与自动化,2001(4):17-18
    18. H. J. Warnecke, R. Neggebauer, F. Wieland. Development of Hexapod Based Machine Tool [J], Annals of the CIRP,1998,47(1):337-340
    19. T. Treib. System comparison:5-Axis High Speed Cutting Machines. Parallel Kinematic Machine [J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002: 57-858
    20. N. Hennes. ECOSPEED-An Innovative Machinery Concept for 5-Axis Machining of Large Structural Components in Aircraft Engineering [J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002:763-773
    21.刘宝顺.虚轴机床工作空间分析[D],天津:天津大学,1997
    22.胡明.三杆平动机器人运动学、力学及误差若干研究[D],沈阳:东北大学博士论文,1999
    23.曲义远,黄真.空间6自由度多回路机构位置的三维搜索法[J],机器人,1989(5):5-29
    24.李波.三杆虚轴机床数控技术研究[D],东北大学博士论文,2000
    25.孟祥志.一种新型立卧转换式三杆混联机床的设计研究[D],东北大学博士论文,2004
    26. K. C. Cheok, J. L. Overholt, R. R. Beck. Exact Methods for Determining the Kinematics of a Stewart Platform Using Additional Displacement Sensors [J]. Journal Robotics Systems,1993,10(5):689-695
    27.杨廷力.机器人结构拓朴机构学[M],北京:机械工业出版社,2004
    28. Hunt K. H. Structural Kinematic of In-parallel-actuated Robot-arms. ASME Journal of Mechanisms [J], Transmissions and Automation in Design,1983(105):705-712
    29. Podhorodeski R. P, Pittens K. H. A class of Parallel Manipulators Based on Kinematically Simpte Branches [J], Trans of the ASME,1994,908(116):356-362
    30.蔡光起,胡明等.机器人化三腿磨削机床的研制[J],制造技术与机床,1998(10):4-6
    31.郭建烨,刘永贤,赵亮,蔡光起.3-UPS并联机床驱动杆结构参数对工作空间的影响分析[J],2008,46(525):12-15
    32. HARA A. Synthesis of parallel micro manipulators [J], ASME J of Mechanisms, Transmissions and Automation in Design,1989(1):31-34
    33.郭建烨,赵亮,蔡光起.一种并联机床约束机构参数对工作空间的影响分析[J],机械与电子,2008(5):10-13
    34. Tsai L. W. The Enumeration of a Class of 3-DOF Parallel Manipulators [J], The world congress on the theory of machine and mechanisms,1999:1121-1126
    35. Gosselin C. M, Anneles J. The Optimum Kinematic Design of a Spherical Three degree freedom Parallel Manipulator [J], ASME Journal of Mechanical Design,1989,111(2): 202-207
    36. Visher P, Clavel. Argos:A Novel 3-DOF Parallel Wrist Mechanism [J], International Journal of Robotics Research,2000,19(1):5-11
    37.李仕华.几种空间少自由度并联机器人机构分析与综合的理论研究[D],秦皇岛:燕山大学,2004
    38.周汉明.基于关节空间的3-TPT并联机床作业规划[D],沈阳:东北大学,2006
    39. L. Woo, F. Freudenstein. Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems [J]. J. Mechanisms,1970(5):417-460
    40. J. R. Phillips. Freedom in Machinery. Cambridge University Press,1990:78-90
    41.黄真.空间机构学[M].北京:机械工业出版社,1989,36-87
    42.吴生富,王洪波,黄真.并联机器人工作空间的研究[J],机器人,1991,91(3):33-39
    43. Yang T. L. The topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms [J], Proc of ASME Mechanisms Conference, Orlando, 1988(1):179-190
    44. Shen H. P. A new method and automatic generation for kinematic analysis of complex planar linkages based on the ordered single-opened-chains [J], Proc of ASME Mechanisms Conference, Minneapolis,1994(70):493-500
    45. Luo Y. F. Structure type and characteristics of six DOF closed-chain manipulators with All actuators on base [J], Proc of the 9th Would Conger on the Theory of Machine and Mechanisms, Milano,1995(3):1795-1799
    46.杨廷力,金琼,刘安心等.基于单开链单元的三平移并联机器人机构型综合及其分类[J],机械工程学报,2002,38(8):31-36
    47.郭建烨,赵亮,刘永贤,蔡光起.3-UPS并联机床动平台的干涉校验分析[J],制造技术与机床,2008(6):71-74
    48. J. M. Herve. Design of parallel manipulators via the displacement group [J], Proc. of the 9th World Conger on Theory of Machine and Mechanisms,1995(3):2079-2082
    49. Huang Z, Fang Y. F. Kinematic characteristics analysis of 3-DOF in parallel actuated pyramid mechanisms [J], Mechanism and Machine Theory,1996,31(8):1009-1018
    50. Huang Z, Wang J. Kinematic of 3-DOF pyramid manipulator by principal screws [J], Proc of 2000 ASME DETC/Mech-14061,2000
    51.文福安,梁崇高,廖启征.并联机器人机构位置正解[J],中国机械工程,1999,10(9):1011-1013
    52. F. Tahmasebi, L.W. Tsai. Workspace and Singularity Analysis of a Novel Six-DoF Parallel Minimanipulator [J], Journal of Applied Mechanisms & Robotics,1994,1(2):31-40
    53. O. Masory, J. Wang. Workspace Evaluation of Stewart Platforms. Advanced Robotics, 1995(9):443-461
    54. M. Z. A. Majid, Z. Huang, Y. L. Yao. Workspace Analysis of a Six-Degree of Freedom, Three-Prismatic-Prismatic-Spheric-Revolute Parallel Manipulator [J], The International Journal of Advanced Manufacturing Technology,2000,16(6):441-449
    55. F. Gao, X. J. Liu, X. Chen. The Relationships between the Shapes of the Workspace and the Link Lengths of 3-DoF Symmetrical Planar Parallel Manipulators [J], Mechanism and Machine Theory,2001,36(2):205-220
    56.郭建烨,赵亮,刘永贤,蔡光起.并联机床电主轴与铰链点的干涉检查[J],组合机床与自动化加工技术,2008(4):50-52
    57. I. A. Bonev, J. Ryu. A New Approach to Orientation Workspace Analysis of 6-DoF Parallel Manipulators [J], Mechanism and Machine Theory,2001,36(1):15-28
    58. F. Pernkopf, M. L. Husty. Workspace Analysis of Stewart-Gough Manipulators Using Orientation Plots[J], Proceedings of MUSME 2002, Mexico City,2002:33-38
    59. C. M. Gosselin. Determination of the Workspace of 6-Dof Parallel Manipulators [J], Journal of Mechanical Design,1990(112):331-336
    60. T. Huang, J. Wang, D. J. Whitehouse. Closed Form Solution to Workspace of Hexapod Based Virtual Axis Machine Tools [J], Transactions of the ASME, Journal of Mechanical Design,1999,121(3):26-31
    61.姜兵,黄田.6-PSS并联机器人操作机平动工作空间解析[J],机器人,2000,22(2):136-142
    62.赵亮,郭建烨,蔡光起.3-TPS(RRR)并联机床设计中的干涉分析[J],工具技术,2007,41(1):63-65
    63.刘辛军,张立杰,高峰.基于AutoCAD平台的六自由度并联机器人位置工作空间的解析求解方法[J],机器人,2000,22(6):457-464
    64. http://www.ifw.uni-hannover.de/robotool/pages/mainpage.htm
    65. Wei Lin, C. D. Cran. Closed-form forward displacement analysis of the 4-5 in-parallel platform [J], of Mech. Des,1994,116(1):47-53
    66. R. P. Podhorodeski, K. H. Pittens. A class of parallel manipulator based on kinematically simple braches [J], of Mech. Des,1994,116(4):908-914
    67. Gunter Pritschow, Karl Hein Wurst. Systematic Design of Hexapods and other Parallel link Systems [J], Annals of the CIRP,1997,46(1):291-295
    68. J. Kim, F. C. Park, J. M. Lee. A new parallel mechanism machine tool capable of five-face machining [J]. Annals of the CIRP,1999,48(1):337-340
    69. Kumar V. Characterization of Workspace of Parallel Manipulators [J], ASME Mech Des, 1992(114):368-375
    70. Gosse lin C. M, Angeles J. The optimum Kinematic Design of a Planar 3-DOF Parallel Manipulator [J], ASME J Mech Transand Autin Des,1988(110):35-41
    71. Pennock G. R, Kassner D. J. The Workspace of a General Geometry Planar 3-DOF Plat form Type Manipulator [J]. ASME J Mech Des,1993(115):269-276
    72. Fichter E. F. A Stewartplat form-Based Manipulator. General Theory and Practical Construction [J], Int J Of Rob Res,1986,5(2):157-182
    73. Masory O, Wang J. Workspace Evaluation of Stewart Platforms [J], ASME,1992, (45): 337-346
    74. Bhattacharaya S. On the optimum design of Stewart platform type parallel manipulators [J], Robotica,1995,13(2):133-140
    75.赵亮,郭建烨,蔡光起.一种3-TPS (RRR)型并联机床伸缩杆的设计[J],机械制造,2006,44(499):15-17
    76.刘红军,陈文家,赵明扬.一种混合型4自由度并联机床的位置分析[J],组合机床与自动化加工技术,2003(4):71-73
    77.尹小琴,马履中.三平移并联机构3-RRC的工作空间分析[J],中国机械工程,2003(14):1194-1196.
    78.张威,赵新华.3-RTT并联机器人位置分析[J],天津理工学院学报,2003,13(8):32-35
    79.孟祥志,蔡光起.一种新型三腿并联机床的位置空间分析[J],机床与液压,2003,184(4):51-53
    80. Tsai L. W. Robot Analysis:the Mechanics of Serial and Parallel Manipulators [M], USA: John Wiley & Sons, Inc.,1999,62-81
    81.伍懿.一种3-TPS并联机床的尺度综合及精度设计[D],沈阳:东北大学,2004
    82.祃琳,黄田等.面向制造的并联机床精度设计[J],中国机械工程,1999,10(10):1114-1118
    83. Patel A. J, Ehmann K. F. Volumetric error analysis of a Stewart platform-based, machine tool [J]. Annals of the CIRP,46(1):286-290
    84.孟琸,车仁生.并联六坐标测量机的误差模型和误差补偿[J],哈尔滨工业大学学报,2004,36(3):317-320
    85.罗继曼,于恒,刘阳,郭建烨.3-TPS型并联机器人约束链的几何误差分析[J],机械工程师,2005(7):81-83
    86. Timo Ropponen, Tatsuo Arai. Accuracy analysis of a modified Stewart platform manipulator [J], IEEE International Conference on robotics and automation,1995(1): 521-525
    87.吕崇耀,熊有伦.Stewart并联机构位姿误差分析[J],华中理工大学学报,1999(8):4-6.
    88.汪劲松,白杰文,高猛等.Stewart平台铰链间隙误差的精度分析[J],清华大学学报,2002,42(6):758-761
    89. Huang Tian. A simple yet effective approach for error compensation of a tripod-based parallel kinematics machine [J], CIRP Annals,2000,49(1):285-288
    90. Kim H. S, Choi Y. J. The kinematic error bound analysis of the Stewart platform [J], Journal of Robotic Systems,2000,17(1):63-73
    91.徐卫良,张启先.机器人误差分析的蒙特卡洛方法[J],机器人,1988,2(4):1-6
    92.邹豪,王启义,赵明扬等.并联Stewart机构位姿误差分析[J],东北大学学报,2000,21(3):301-304
    93.吴江宁,左爱秋,李世伦.并联六自由度平台机构机械误差分析与检测[J],中国机械工程,1999,10(6):614-617
    94.牛国栋.三平移并联机器人机构的精度研究[D],济南:山东理工大学,2004
    95. A. J. Patel, K. F. Ehmann. Volumetric Error Analysis of a Stewart Platform Based Machine Tool [J], Annals of the CIRP,1997(1):287-290
    96.苏玉鑫,段宝岩.六自由度Stewart平台运动精度分析[J],西安电子科技大学学报(自然科学版),2000,27(4):401-403
    97.余晓流,王启义,赵明扬等.基于测量数据反演并联机床非线性位姿误差模型[J],机械工程学报,2001,37(2):38-42
    98.梁辉,白志富,陈五一.一种驱动冗余并联机床的铰链间隙误差分析[J],机床与液压,2006(6):7-9
    99.粟时平.多轴数控机床精度建模与误差补偿方法研究[D],长沙:国防科学技术大学,2002
    100.汪劲松,白杰文,高猛. Stewart平台铰链间隙的精度分析[J],清华大学学报,2002,42(6):758-761
    101.左扣成.3-TPT型并联机床的误差分析与仿真[D],沈阳:东北大学,2006
    102. H. Tajbakhsh, G.R. Fellow. Kinematic Error Estimation and Transmission Error Bounding for Stewart Platform Based Machine Tools [J], Transactions of NAMRI/SME,1997: 323-328
    103. Han S. Kim, Yong J.Choi. The kinematic Error Bound Analysis of the Stewart Platform[J], Journal of Robotic Systems,2000,17(1):63-73
    104.吕崇耀,熊有伦.Stewart并联机构位姿误差分析[J],华中理工大学学报,1999(8):4-6
    105.阎华,刘桂雄,郑时雄.机器人位姿误差建模方法综述[J],机床与液压,2000(1):3-5
    106.焦国太.机器人位姿误差的分析与综合[D],北京:北京工业大学,2002
    107.蔡光起,原所先,明明等.三自由度虚拟轴机床静力学及动力学的若干研究[J],中国机械工程,1999,10(10):1108-1111
    108. Z. Huang, H.B. Wang. Dynamic Force Analysis of n-DOF Multiloop Complex Spatial Mechanisms [J], Mechanisms and Machine Theory,1992,27(1):97-105
    109.王启明.三平移自由度并联机器人力学及相关问题研究[D],沈阳:东北大学,1999
    110.杨斌久.少自由度并联机床约束链的若干问题研究[D],沈阳:东北大学,2006
    111. Chang-De Zhang, Shin-Min Song. An Efficient Method for Inverse Dynamics of Manipulators Based [J],1993,10(5):605-627
    112.赵兴玉,黄田.并联机床进给传动系统弹性动力学建模方法研究[J],振动工程学报,2001,14(2):196-201
    113.李兵,王知行,胡颖.新型并联机床的刚度计算模型研究[J],机械设计,1993(3):14-16
    114.李育文,张华,杨建新等.6-UPS并联机床静刚度的有限元分析和实验研究[J],中国机械工程,2004,15(2):121-125
    115.高峰,黄玉美.混联式机床的并联机构刚度解析[J],制造技术与机床,2001(6):32-34
    116.陈旭.一种3-UPS混联机床动态性能的研究[D],沈阳:东北大学,2006
    117. R. Neugebauer, J. Leopold, K. Hoyer, A. Stoll, tec. Interaction Between Machine Tool and Process-Modelling, Simulation and Identification of Milling Operations on hexapod 6x HEXA [J], The 3rd Chemnitz Parallel Kinematics Seminar. Chemnitz Germany,2002: 833-841
    118.邬勇.虚拟样机技术在机构精度分析中的研究与应用[D],长沙:湖南大学,2004
    119.徐文福,强文义,梁斌等.基于虚拟样机技术的空间机器人系统的建模与仿真[J],机器人,2005(5):193-196
    120.陶学恒,马丽敏,刘彤宴等.五轴联动并联机床的三维实体建模及运动仿真[J],制造业信息化,2005(9):48-49
    121.赵亮,郭建烨,蔡光起.一种3 TPS (RRR)型并联机床虚拟样机设计[J],机械与电子,2006(11):3-5
    122.韩海生,黄田,周立等.虚拟环境下并联机床建模与仿真[J],制造技术与机床,2000(1):19-20
    123. Modeling and Meshing Guide, Release 10.0[M], Ansys, Inc,2005,256-268
    124.李增刚. ADAMS入门详解与实例[M],北京:国防工业出版社,2006,46-78
    125.郭旭伟,王知行.基于ADAMS的并联机床运动学和动力学仿真[J],现代设计与制造,2003(7):119-122
    126.侯红玲,赵永强,魏伟锋.基于ADAMS及ANSYS的动力学仿真分析[J],现代机械,2005(4):62-63
    127. ADAMS/View, Version2005 [M], Mechanical Dynamics, Inc,2005,104-234
    128.刘小平,郑建荣,朱治国等. SolidWorks与ADAMS/View之间的图形数据交换研究[J],机械工程师,2003(12):26-28
    129. Foley Jamcs D, Dam Andries Van. Fundamentals of Interactive Computer Graphics [M], Addison-Wesley Publishing Company,1982,61-73
    130.王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M],西安:西北工业大学出版社,2002,27-89
    131.朱春霞.基于虚拟样机的并联机床若干关键技术的研究[D],沈阳:东北大学,2007
    132.史长虹,张建民,张同庄等.变轴数控机床重复定位精度评定策略探讨[J],北京理工大学学报,2001,21(4):450-453
    133.王智明,彭安华,王其兵.多项式回归理论在机床热误差建模中的应用[J],兰州理工大学学报,2007,33(6):40-42
    134.张燕,翁绍捷,李粤.加工中心主轴热误差的建模分析[J],组合机床与自动化加工技术,2008(4):30-32
    135.吴汉夫.三轴加工中心热误差推定的建模方法[J],广西工学院学报,2006,17(4):47-48
    136.赵海涛.数控机床热误差模态分析、测点布置及建模研究[D],上海交通大学,2006
    137.杜正春,杨建国,关贺等.制造机床热误差研究现状与思考[J],制造业自动化,2002,24(10):1-3
    138. J. S. Chen, G. Chiou. Quick testing and modeling of thermally-induced errors of CNC machine tools [J], Int. J. Mach Tools Manufact,1995,35(7):1063-1074
    139. Bryan J. International status of thermal error research [J], Annals of the CIRP,1990,39(2): 645-656
    140.刘国良,张宏涛,曹洪涛等.神经网络理论在数控机床热误差建模中的应用[J],现代制造工程,2005(8):20-23
    141.郭厚焜,游全根,曹爱文.基于切削力的铣削加工误差数学模型[J],机床与液压,2007,35(12):58-59
    142.吴昊,基里维斯,赵海涛等.基于电流测量的数控机床切削力误差建模与实时补偿[J],机械制造,2005,43(492):13-15
    143.吴昊,杨建国,张宏韬等.三轴数控铣床切削力引起的误差综合运动学建模[J],中国机械工程,2008,19(16):1908-1911
    144. James K. Russell E. Particle swarm optimization [J], IEEE International Conference on Neural Networks,1995:1942-1948.
    145. Fabio A. G, Leandro S. C. Radial basis neural network learning based on particle swarm optimization to multistep prediction of chaotic Lorenz's system [J], IEEE Proceedings of the Fifth International Conference on Hybrid Intelligent Systems,2005:521-523.
    146. Masanori S, Fan X. J. An effective search method for NN-based face detection using PSO [J], Proceedings of the SICE Annual Conference Sapporo:Hokkaido Institute of Technology,2004:2742-2745
    147.陈志俊.数控机床切削力误差建模与实时补偿研究[D],上海:上海交通大学,2008
    148.李亚.3-HSS并联机床精度设计与运动学标定方法研究[D],天津:天津大学,2002
    149.孙浩.5-UPS/PRPU并联机床的误差标定研究[D],秦皇岛:燕山大学,2004
    150.李凌云. Stewart机构的误差建模与参数标定方法研究[D],秦皇岛:燕山大学,2004
    151.Besnard S, Khalil W. Identifiable parameters for parallel robots kinematic calibration, Proc. Of ICRA,2001:2859-2866
    152.唐国宝. Stewart平台运动学标定方法[D],天津:天津大学硕士学位论文,2002
    153. Huang T, Whitehouse D. J. A simple yet effective approach for error compensation of a tripod-based parallel kinematic machine, CIRP Annals,2000,49(1):281-285
    154.高建设.新型五自由度并联机床驱动输入选择与运动学标定研究[D],秦皇岛:燕山大学,2006
    155. J. Peirs, D. Reynaerts, H. Van Brussel. Design of Miniature Parallel Manipulators for Integration in a Self-propelling Endoscope [J], Sensors and Actuators,2000(85):409-417
    156.钟诗胜,杨晓钧,王知行.基于6-TPS型并联机床的标定方法研究[J],计算机集成制造系统,2005,11(10):1469-1474
    157.范或,张建民.一种新的变轴数控机床标定方法[J],机床与液压,2004(11):177-179
    158.何小妹,丁洪生,付铁,孙厚芳.并联机床运动学标定研究综述[J],机床与液压,2004(10):9-11
    159.周芳青.5-UPS并联机床结构参数标定及加工技术研究[D],秦皇岛:燕山大学,2004
    160.袁剑雄,王知行,刘芳辉.6/6型并联运动装置标定实验研究[J],中国机械工程,2002,13(17):1472-1476
    161.赵学满,李占贤,黄田.并联机床实验标定[J],组合机床与自动化加工技术,2004(2):26-30
    162.黄俊杰,赵俊伟,陈国强.串并联型机床运动学参数标定的一种建模方法[J],机械科学与技术,2006,25(6):702-704
    163.PatelA J, Ehmann K. F. Volumetric error analysis of a Stewart platform-based machine tool [J], Annals of the CIRP,1997,46(1):287-290
    164. Wang SM, EhmannK F. Error model and accuracy analysis of a six-DOF Stewart platform [J], Manufacturing Science and Engineering,1995(2):519-530
    165.魏世民,周晓光,廖启征.六轴并联机床运动精度的标定研究[J],中国机械工程,2003,14(23):1981-1985
    166.高峰.遗传算法的若干理论分析[D],杭州:浙江大学,2003
    167.徐宗本,陈志平,章祥荪.遗传算法基础理论研究的新近发展[J],数学进展,2000,29(2):97-114
    168.王志美,陈传仁.遗传算法理论及其应用发展[J],内蒙古石油化工,2006(9):44-45
    169.陈建安,郭大伟,徐乃平,孙云芝.遗传算法理论研究综述[J],西安电子科技大学学报,1998,25(3):363-368
    170. Srinivas M, Patnaik L. M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithm[J], IEEE Trans Syst Man, Cybern,1994,24(4):656-667
    171. Feng Q. X, Francesco P. Theoretical Analysis of Evolutionary Algorithms with an Infinite Population Size in Continuous Space Part I and II:Basic Properties of Selection and Mutation[J], IEEE Trans Neural Networks,1994,5(1):102-129
    172.张升平,刘卫国.遗传法理论与应用[J],长沙铁道学院学报,1993,11(2):41-49
    173.游雪肖,胡松林.遗传算法模式理论研究[J],湖北师范学院学报(自然科学版),2007,27(1):24-27
    174.马丰宁,寇纪淞,李敏强.遗传算法新模板理论的研究[J],系统工程学报,2000,15(4):327-332
    175.吴光琳,林建平,李从心等.基于神经网络的数控加工热误差补偿[J],机床与液压,2000(3):8-9
    176.唐治,闫开印,田怀文.基于动态反馈神经网络模型的数控机床热误差实时预报补偿[J],机械设计与制造,2007(8):119-121
    177.鲁远栋,徐中行,刘立新等.数控机床热变形误差补偿技术[J],机床与液压,2007,35(2):43-45
    178.刘又午,章青,王国锋等.数控机床误差补偿技术及应用发展动态及展望[J],制造技术与机床,1998(12):5-6
    179.詹友基,乐清洪,贾敏忠.机床误差及其误差补偿技术[J],福建工程学院学报,2004,2(4):409-412
    180.吴昊,胡伟,鲁志政,杨建国.基于粒子群算法的数控机床切削力误差实时补偿[J],上海交通大学学报,2007,41(10):1695-1698
    181.陶晓杰,王治森.机床误差的补偿方法探讨[J],制造业自动化,2005,27(5):18-20
    182.张宏韬,曹洪涛,沈金华等.数控机床热误差补偿的人工神经网络建模及其应用[J], 2006,44(497):17-20
    183.杜正春,杨建国,窦小龙,刘行.基于RBF神经网络的数控车床热误差建模[J],上海交通大学学报,2003,37(1):26-29
    184.徐雪梅,涂源钊,范守文.基丁BP神经网络的虚拟轴机床的实时误差补偿控制[J],四川大学学报(工程科学版),2003,35(1):81-84
    185.虞文华.神经网络在数控机床运动误差补偿中的应用[J],机电工程,1996(3):18-19
    186.沈云波,童景琳.数控机床空间位置误差的检测及神经网络误差补偿技术[J],工具技术,2006,40(1):69-72
    187.王东署,迟健男,徐方等.遗传神经网络法及其在机器人误差补偿中的应用[J],东北大学学报(自然科学版),2006,27(1):13-16
    188.刘又午,章青.数控机床误差补偿技术及应用发展动态及展望[J],制造技术与机床,1998(12):5-6
    189.石宏.3-TPS混联机床相关控制算法研究[D],沈阳:东北大学,2005
    190.周思永.反馈与控制[M],北京:国防工业出版社,1995,192-197
    191. Nguyen C. C, Antrazi S. S, Zhou Z. L. Adaptive Control of a Stewart Platform-Based Manipulator [J], Journal of Robotic Systems,1993,10(5):657-687
    192. Jingxia Yuan, Jun Ni. The real-time compensation technique for CNC machining systems [J], Mechatronics,1998(8):359-380
    193. Chen J. S, Yuan J, Ni Jetal. Real-time compensation for time-variant volumetric error on a machining center [J], ASME Journal of Engineering for Industry,1993(114):472-479.
    194.贾敏忠,詹友基.机床几何误差和运动误差及其误差补偿技术[J],机电技术,2004(2):77-80
    195.焦国太,李庆,冯永和等.机器人位姿误差的综合补偿[J],华北工学院学报,2003,24(2):104-107
    196.石宏,郭建烨,蔡光起.基于位移螺旋与Chasles定理的机器人轨迹规划研究[J],机械与电子,2004(10):40-43
    197. Kakino, Yosniki. Study on the motion accuracy of NC machine tools improvement of the DBB test using scale feedback values [J], Journal of Japan Society for Precision Engineering,1996,45(6):78-85
    198. Kakino Y. Accuracy inspection of NC machine tools by double ball bar method [M], Hanser Publishers,1999,5-58
    199. Ford D. Compensation algorithms for the real-time correction of time and spatial encoder in a vertical machine center [J], Proceedings of Institution of Mechanical Engineers,2002, 24(2):58-62
    200.周鸿斌,张建民,付红伟等PRS-XY型混联数控机床工作台误差补偿技术[J],北京理工大学学报,2007,27(2):120-124
    201.Sartori S, Zhang G. X. Geometric error measurement and compensation of machines [J], Annals of the CIRP,1995,44(2):599-609
    202.左健民,王保升,汪木兰等.超精密数控机床进给系统非线性分析及误差补偿研究进展[J],南京工程学院学报(自然科学版),2007,5(1):1-6
    203.姜万生,黎永前,乐清洪.精密机床几何误差补偿技术及应用[J],制造业自动化,2002,24(12):47-50
    204.曹永洁,傅建中.数控机床误差检测及其误差补偿技术研究[J],制造技术与机床,2007(4):38-41
    205.杨建国.数控机床误差综合补偿技术及应用[D],上海:上海交通大学,1998
    206.石宏,郭建烨,蔡光起.3-TPS混联机床刀具长度补偿算法[J],东北大学学报(自然科学版),2006,27(8):907-910
    207. Francisco J. S, Roger J-B W. Minimization by random search techniques [J], Mathematics of Operations Research,1981,6(1):19-30.
    208. John R. K, James P. R. Genetic generation of both the weights and architecture for a neural network [J], International Journal of Intelligent Systems, UCNN-91-Seattle, 1991(6):397-404
    209. David B.F. An introduction to simulated evolutionary optimization [J], IEEE Transactions on Neural Networks,1994,5(1):3-14
    210.彭商贤,张平,郭玉申.装配机器人位姿误差补偿的研究[J],天津大学学报,1990(2):31-36
    211.周鸿斌. PRS-XY型混联数控机床精度分析及误差补偿技术研究[D],北京:北京理工大学,2006
    212. Stephen Derby. The deflection and Compensation of General Purpose Robot Arms [J], Mechanism and Machine Theory,1983(6):445-450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700