用户名: 密码: 验证码:
无功优化进化计算的局部搜索策略及多目标处理方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,电力系统无功优化进化计算以其高灵活性、高鲁棒性、强适应性等特征,在电力系统优化领域受到了广泛的关注。这类无功优化算法不需要使用任何梯度信息,对函数性态的依赖性较小,能够方便地同时处理连续与离散无功电压控制设备,是当前研究的热点问题之一。但作为一类随机型的不确定优化方法,进化计算在求解无功优化这类电力系统复杂问题时,仍存在一些不够完善的地方,如容易出现早熟现象,收敛速度较慢,局部搜索能力不高等。目前虽然已经提出了很多相应的改进措施,但算法性能仍有较大的提升空间,且还存在较多问题亟待解决,如在引入局部搜索策略时如何获得收敛性的全面提升,协同进化中如何对控制变量进行分组,考虑多目标优化模型时如何在目标函数间权衡等等。鉴于此,本文以无功优化进化计算的改进策略为研究对象,内容涉及采用多局部搜索策略的无功优化进化计算、多目标无功优化进化计算及其两阶段优化策略、鲁棒性无功优化模型及优化策略、无功优化协同进化中的控制变量分组方法等四部分内容。所做的工作和所取得的主要成果归纳如下:
     提出了一种采用多局部搜索策略的无功优化模因算法。该算法在现有局部搜索策略的基础上,提出了修正型、定向型和随机型等3类无功优化模因,并由此构造出无功优化模因池,以达到结合多局部搜索策略的目的。在IEEE 30节点上的系统仿真表明,新算法可以发挥各类局部搜索策略的优势,具有更全面的收敛特性,寻优效率较高。此外,算例中还分析了参与局部搜索的个体的比例对算法性能的影响,得出了比例过高将影响算法性能的结论。
     提出了无功优化多目标模型转换方法的一种等值线分析法。该方法借助于地理学中等值线的概念,能够从几何意义的角度,描绘出各类无功优化多目标模型转换方法在目标空间的寻优方向,并挖掘出各种模型转换方法中最优解的几何意义。在这基础上,探讨了各种模型转换方法之间的联系,并据此对模型转换方法进行了比较和归类。
     比较研究了五种经典多目标进化算法在无功优化计算中的性能特点。从帕累托前沿、外部解、C指标等角度对五种算法进行了详细的比较,并分析了各算法在求解无功优化问题时所表现出的不同性能等级。结果表明,改进强度帕累托进化算法(Strength Pareto Evolutionary algorithm 2,SPEA2)与改进非支配解排序遗传算法(Nondominated Sorting Genetic Algorithm-Ⅱ,NSGAⅡ)表现出了最优异的性能特点,能获得质量较高的帕累托最优解集。
     提出了多目标无功优化进化计算的一种分阶段优化策略。该优化策略将优化过程分为全局搜索和集中搜索两个阶段。第一阶段采用NSGAⅡ搜索到粗略的帕累托解集后,决策者从中获取目标函数的近似分布范围、目标函数间的近似关系等粗略信息,分析并制定对最优解的要求,简单直观的表达偏好信息;在此基础上,第二阶段利用等值线分析的相关结论,获取决策者对最优解的要求后设定偏好参数,并采用权值法、目标规划法、ε约束法等方法,有针对性的在重点区域和方向上进行集中寻优,获得满足要求的最优解。仿真分析表明,分阶段策略能够综合NSGAⅡ与模型转换方法的优势,灵活实用,具有较高的寻优效率。
     提出了基于蒙特卡洛积分的鲁棒性无功优化模型。该模型采用了蒙特卡洛积分形式的目标函数,近似地替代了在负荷水平波动下电压偏移、系统网损的期望值,搜索能够抵御负荷波动的无功优化鲁棒解。为降低蒙特卡洛积分的误差,提出了一种鲁棒性无功优化的样本解选择方法。该方法将样本解表示为系统负荷增加比例与功率增长方向两个参数,并根据负荷的增减情况选择恰当的样本解。算例分析中分别采用遗传算法及NSGAⅡ,计算了IEEE118节点系统的单目标与多目标鲁棒性无功优化问题。结果表明,对于负荷水平的波动,无功优化鲁棒解更能保持解的质量,性能较优。
     提出了基于自动分区遗传算法的一种无功优化协同进化的分组方法。该方法将控制变量分组问题转换为降阶电网分区问题,并构造了降阶电网分区优化模型。新模型不仅采用了典型的聚类有效性指标,而且考虑了控制变量分组的均匀性。在此基础上,引入了自动分区遗传算法用于求解新分区模型。该算法采用了种子分区编码方法,能够自适应地选择分区数目,具有较高的灵活性。在IEEE 118节点的算例表明,新分区算法能够自动确定分区数目,快速合理地对系统控制变量进行分组,能够进一步提高无功优化协同进化计算的并行效率。
In recent years, evolutionary computation (EC) for reactive power optimization (RPO) has drawn extensive attention due to its features of high flexibility, high robustness, and strong adaptability. Such reactive power optimization algorithm is a hot topic of current research because it does not need any gradient-based information, does not depend on the functional state of the objectives, and does not has any trouble to handle both continuous and discrete reactive power and voltage control equipments. As a class of stochastic optimization methods, however, EC still has some disadvantage when solving complex problems such as RPO, i.e., premature, slow convergence, low local search ability. Although many modification strategies have been proposed, there is still large margin for improvement, and many issues need further discussion, i.e., how to obtain overall upgrade of convergence when applying local search strategies (LSSs), how to group the control variables in coevolutionary computaion, how to balance between the objectives in multiobjective optimization, etc. To solve these problems, the strategies of improvement for EC in RPO is chosen to be the research topic, including four aspects, say, EC with multiple LSSs for RPO, multiobjective reactive power optimization and its two-stage optimization strategy, robust reactive power optimization model and optimization strategy, and grouping methods of control variables in coevolutionary computation for RPO. The outputs of the thesis are listed as follows.
     Memetic algorithm based on multiple LSSs for RPO is proposed. Based on the existing LSSs, correcting memes, directed memes and stochastic memes are proposed to form the meme pool for RPO, by which the multiple LSSs can be combined together. The algorithm is applied in IEEE 30 bus system and numerical simulations demonstrate that the algorithm combines all the advantages of LSSs and shows the best performance of convergence. In addition, simulation results with different percentage of population participating in LSSs process are compared and relationship between percentage of population and efficiency of the algorithm is analyzed.
     A contour-line analysis approach for objective-converting methods (OCMs) in RPO is proposed. With the contour line concept in geography area, contour analysis can obtain the search directions of various OCMs in the objective space, and uncover geometric meaning of their optimal solutions. According the the observations, the intrinsic link between OCMs are studied, and OCMs are compared and classified.
     Five state-of-the-art multiobjective evolutionary algorithms (MOEAs) are compared for RPO. Pareto front, the outer solutions, and C measure are used to analyze the performance of the five MOEAs in RPO, which are classified into five performance levels. Strength Pareto Evolutionary algorithm 2 (SPEA2) and Nondominated Sorting Genetic Algorithm-II (NSGAII) are demonstrated to be the best algorithms that can obtain Pareto front with higher quality.
     A two-stage optimization strategy is proposed for MOEAs to solve multiobjective RPO. The strategy divides the search process into two phases, global search and focused search. The first stage uses NSGAII to search for a rough Pareto set, from which the decision maker (DM) obtain the information of the approximate distribution range of the objective functions, their approximated relationships, and then draw the requirements and preferences of the optimal solution in a simple and visualized way. On this basis, the second phase set preference parameters, and then adopts weighted method, goal attainment method,ε-constraint method, to focus on the key areas and directions in the optimization. Simulation analysis showed that the new strategay can combine the advantages of NSGAII and OCMs and it is a flexible and practical approach with high optimization efficiency.
     Robust RPO based on Monte Carlo integration is proposed. It adopts a Monte Carlo integral form of the objective functions, calculating the approximate expectations of system loss and voltage deviation in the presense of load fluctuations and searching for robust solution that is immune with load perturbations. To reduce the error of Monte Carlo integration, a samplingetechnique is proposed for RPO.It expresses a sample solution as two parameters, the percentage of the system load increase and the direction of power growth, and then select the appropriate sample solution in accordance with load changes. Genetic algorithms and NSGAII is used to solve robust RPO on IEEE-118 test system and the results show that during the fluctuations of the system load, the robust solutions can better maintain their quality with higher performance.
     A genetic-algorithm-based approach is proposed for the grouping of control variables in the coevolutionary computation for RPO.In this approach, the control variable grouping problem is converted to a reduced network partition problem, and a mathematic model is formulated. The new model not only adopted the typical cluster validity index, and taken the uniformity of group size of control variables into account. On this basis, a genetic-algorithm-based partition method is introduced to solve the new model. This method employs a seed encoding scheme that can adaptively choose the partition number with high flexibility. The simulation result on IEEE 118-bus system demonstrates that the new partition approach can automatically determine the partition number, grouping the control variables fast in a reasonably way. It can further improve the parallel efficiency of coevolutionary computation for RPO.
引文
[1]D. Thukaram, D. Thukaram, G. Yesuratnam. Optimal reactive power dispatch in a large power system with ac/dc and facts controllers. IET Generation Transmission & Distribution,2008.2(1):71-81.
    [2]周玲,王宽,钱科军,等.计及UPFC的电力系统无功优化.中国电机工程学报,2008.28(04):37-41.
    [3]P. Preedavichit, S. C. Srivastava. Optimal reactive power dispatch considering FACTS devices. Electric Power Systems Research,1998.46(3):251-257.
    [4]X. Lin, A. K. David, C. W. Yu. Reactive power optimisation with voltage stability consideration in power market systems. IEE Proceedings-Generation Transmission and Distribution,2003.150(3):305-310.
    [5]黄志刚,李林川,杨理,等.电力市场环境下的无功优化模型及其求解方法.中国电机工程学报,2003.23(12):79-83.
    [6]舒隽,张粒子,刘易,等.电力市场下日无功计划优化模型和算法的研究.中国电机工程学报,2005.25(13):80-85.
    [7]聂宏展,张冰冰,王新,等.基于改进粒子群优化算法的电力市场下的无功优化.电网技术,2007.31(21):85-90.
    [8]刘瀚,盛兆俊.电力市场条件下的无功优化研究.电力自动化设备,2004.24(12):33-35.
    [9]赵大溥,何光宇,钟金,等.解决电力市场无功优化问题的序优化级联编码遗传算法.电力自动化设备,2008.28(02):1-5.
    [10]J. Yu, W. Yan, W. Y. Li, et al. Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls. Electric Power Systems Research,2008.78(3):302-310.
    [11]邸弢,李华强,范锫.基于奇异值分解和内点法的交直流系统无功优化.电工技术学报,2009.24(02):158-163.
    [12]颜伟,张海兵,田甜,等.交直流系统的动态无功优化.电力系统自动化,2009. 33(10):43-46.
    [13]彭磊,张建平,吴耀武,等.基于GA、PSO结合算法的交直流系统无功优化.高电压技术,2006.32(04):78-81.
    [14]陈海焱,陈金富,段献忠.含风电机组的配网无功优化.中国电机工程学报,2008.28(07):40-45.
    [15]陈琳,钟金,倪以信,等.含分布式发电的配电网无功优化.电力系统自动化,2006.30(14):20-24.
    [16]石嘉川,刘玉田.计及分布式发电的配电网多目标电压优化控制.电力系统自动化,2007.31(13):47-51.
    [17]张伯明,孙宏斌,吴文传,等.智能电网控制中心技术的未来发展.电力系统自动化,2009.33(17):21-28.
    [18]余贻鑫,栾文鹏.智能电网述评.中国电机工程学报,2009.29(34):1-8.
    [19]丁晓群.智能AVC研讨会在河海大学召开.电力自动化设备,2009.29(10):34.
    [20]张勇军,任震,李邦峰.电力系统无功优化调度研究综述.电网技术,2005.29(02):50-56.
    [21]盛戈皞,涂光瑜,罗毅.人工智能技术在电力系统无功电压控制中的应用.电网技术,2002.26(06):22-27.
    [22]K. Iba. Reactive power optimization by genetic algorithm IEEE Transactions on Power Systems,1994.9(2):685-692.
    [23]马晋弢,杨以涵.遗传算法在电力系统无功优化中的应用.中国电机工程学报,1995.15(05):347-353.
    [24]Q. H. Wu, J. T. Ma. Power system optimal reactive power dispatch using evolutionary programming. IEEE Transactions on Power Systems,1995.10(3): 1243-1249.
    [25]潘哲龙,张伯明,孙宏斌,等.分布计算的遗传算法在无功优化中的应用.电力系统自动化,2001.25(12):37-41.
    [26]J. R. Gomes, O. R. Saavedra. Optimal reactive power dispatch using evolutionary computation:Extended algorithms. IEE Proceedings-Generation Transmission and Distribution,1999.146(6):586-592.
    [27]丁晓群,邓勇,黄伟,等.基于遗传算法的无功优化在福建电网的实用化改进.
    电网技术,2004.28(16):44-47.
    [28]郭庆来,吴越,张伯明,等.地区电网无功优化实时控制系统的研究与开发.电力系统自动化,2002.26(13):66-69.
    [29]周任军,段献忠,周晖.计及调控成本和次数的配电网无功优化策略.中国电机工程学报,2005.25(09):23-28.
    [30]H. Yoshida, K. Kawata, Y. Fukuyama, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment IEEE Transactions on Power Systems,2000.15(4):1232-1239.
    [31]周任军,任铁平,彭高辉,等.配电网运行及设备控制综合经济性的无功电压优化.电力系统自动化,2005.29(07):70-74.
    [32]Peter Merz, Bernd Freisleben. Fitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning. Evolutionary Computation,2000.8(1): 61-91.
    [33]G Folino, C. Pizzuti, G Spezzano. Parallel hybrid method for SAT that couples genetic algorithms and local search.IEEE Transactions on Evolutionary Computation,2001.5(4):323-334.
    [34]J. Knowles. ParEGO:a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,2006.10(1):50-66.
    [35]B. D. Thukaram, K. Parthasarathy. Optimal reactive power dispatch algorithm for voltage stability improvement International Journal of Electrical Power & Energy Systems,1996.18(7):461-468.
    [36]A. M. Chebbo, M. R. Irving, M. J. H. Sterling. Reactive power dispatch incorporating voltage stability. IEE Proceedings-Generation, Transmission and Distribution,1992.139(3):253-260.
    [37]L. D. Arya, S. C. Choube, D. P. Kothari.Reactive power optimization using static voltage stability index. Electric Power Components and Systems,2001.29(7): 615-628.
    [38]B. Venkatesh,G.Sadasivam, M. A. Khan. A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique. IEEE Transactions on Power Systems,2000.15(2):844-851.
    [39]D. Chattopadhyay, B. B. Chakrabarti. Reactive power planning incorporating voltage stability. International Journal of Electrical Power & Energy Systems,2002. 24(3):185-200.
    [40]H. F. Liu, L. C. Jin, J. D. McCalley, et al. Planning Reconfigurable Reactive Control for Voltage Stability Limited Power Systems. IEEE Transactions on Power Systems, 2009.24(2):1029-1038.
    [41]H. Song, B. Lee, Y. H. Moon. Reactive optimal power flow incorporating margin enhancement constraints with nonlinear interior point method IEE Proceedings-Generation Transmission and Distribution,2005.152(6):961-968.
    [42]L. Franchi, M. Innorta, P. Marannino. Evaluation of economy and\or security oriented objective functions for reactive power scheduling in large scale systems. IEEE Transactions on Power Apparatus and Systems,1983.102(10):3481-3488.
    [43]M. R. Bjelogrlic, M. S. Calovic, P. M. Ristanovic. System voltage and reactive power control:a computer-assisted mannual/automatic concept IEE Proceedings-Generation Transmission and Distribution,1992.139(6):491-498.
    [44]任晓娟,邓佑满,赵长城,等.高中压配电网动态无功优化算法的研究.中国电机工程学报,2003.23(01):32-37.
    [45]吴文传,张伯明.能量损耗最小的无功补偿动态优化算法研究.中国电机工程学报,2004.24(04):72-77.
    [46]B. Venkatesh, G. Sadasivam, M. Abdullah Khan. An efficient multi-objective fuzzy logic based successive LP method for optimal reactive power planning. Electric Power Systems Research,2001.59(2):89-102.
    [47]B.Venkatesh, R. Ranjan. Fuzzy EP algorithm and dynamic data structure for optimal capacitor allocation in radial distribution systems. IEE Proceedings-Generation, Transmission and Distribution,2006.153(1):80-88.
    [48]陈星莺,钱锋,杨素琴.模糊动态规划法在配电网无功优化控制中的应用.电网技术,2003.27(02):68-71.
    [49]袁辉,徐贵光,周京阳.基于模糊线性规划的无功电压优化.电网技术,2003. 27(12):42-45+57.
    [50]宋军英,刘涤尘,陈允平.电力系统模糊无功优化的建模及算法.电网技术,2001.25(03):22-25.
    [51]K. H. Abdul-Rahman, S.M. Shahidehpour. A fuzzy-based optimal reactive power control. IEEE Transactions on Power Systems,1993.8(2):662-670.
    [52]Y. L. Chen, C. C. Liu. Interactive fuzzy satisfying method for optimal multi-objective VAr planning in power systems. IEE Proceedings-Generation, Transmission and Distribution,1994.141(6):554-560.
    [53]Chen Yuan-Lin. An interactive fuzzy-norm satisfying method for multi-objective reactive power sources planning. IEEE Transactions on Power Systems,2000.15(3): 1154-1160.
    [54]李亚男,张粒子,杨以涵.考虑电压约束裕度的无功优化及其内点解法.中国电机工程学报,2001.21(09):2-5.
    [55]梁国坚,梁冠安,高明振.电力系统无功功率的模糊优化控制.电网技术,1997.21(11):42-44.
    [56]李乃湖,丁恰,王晓东.基于原—对偶内点法的电压无功实时优化控制算法.电力系统自动化,2000.24(05):20-23+60.
    [57]Akbar Rahideh, M. Gitizadeh, Abbas Rahideh. Fuzzy logic in real time voltage/reactive power control in FARS regional electric network Electric Power Systems Research,2006.76(11):996-1002.
    [58]岑文辉,王祖佑.电力系统无功功率最优控制.电网技术,1984.8(Z1):60-70.
    [59]沈如刚.电力系统无功功率综合优化——二次规划法.中国电机工程学报,1986.6(05):42-50.
    [60]金崇智.隐函数求导法求解电力系统无功优化分配.电网技术,1984.8(Z1):71-82+36.
    [61]罗铸.电力系统无功和电压的优化调节.电力系统自动化,1988.12(01):9-15.
    [62]李林川,夏道止,杨振平,等.电力系统电压和网损优化计算.电力系统自动化,1995.19(07):30-33.
    [63]丁恰,李乃湖,武寒.电压无功功率优化控制中不可行问题的研究.电网技术,1999.23(09):19-22.
    [64]刘明波,朱春明,钱康龄,等.计及控制设备动作次数约束的动态无功优化算法.中国电机工程学报,2004.24(03):34-40.
    [65]颜伟,熊小伏,徐国禹.基于进化规划方法的新型电压无功优化模型和算法.电网技术,2002.26(06):14-17.
    [66]顾丹珍,徐瑞德.一种地区电网多目标无功优化的新方法——改进模拟退火算法.电网技术,1998.22(01):73-76.
    [67]刘玉田,马莉.基于Tabu搜索方法的电力系统无功优化.电力系统自动化,2000.24(02):61-64.
    [68]钟红梅,任震,张勇军,等.免疫算法及其在电力系统无功优化中的应用.电网技术,2004.28(03):16-19.
    [69]郭创新,朱承治,赵波,等.基于改进免疫算法的电力系统无功优化.电力系统自动化,2005.29(15):23-29.
    [70]刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流.电力系统自动化,2005.29(07):53-57.
    [71]娄素华,吴耀武,熊信艮.电力系统无功优化的变尺度混沌优化算法.电网技术,2005.29(11):20-24+29.
    [72]熊虎岗,程浩忠,胡泽春,等.基于混沌免疫混合算法的多目标无功优化.电网技术,2007.31(11):33-37.
    [73]余娟.无功优化新模型和算法研究及其在电压稳定风险评估中的应用[博士学位论文].重庆大学,·2007.
    [74]梁才浩.基于新型进化算法和微机集群的电力系统并行无功优化研究[博士学位论文].华中科技大学,2005.
    [75]熊虎岗.计及静态电压稳定性的多目标无功潮流优化[博士学位论文].上海交通大学,2008.
    [76]Holland J H. Adaption in natural and artificial system. Ann Arbor:The University of Michigan Press 1975.
    [77]Fogel L J, Owens A J, Walsh M J. Artificial intelligence through simulation evolution. New York:John Wiley 1966.
    [78]Ingo Rechenberg. Evolution strategies:Optimizer technique systematic principle under biologist evolution. Stuttgart:Frommann-Holzboog Verlag 1973.
    [79]Koza J. Genetic programming:A Paradigm for genetically breeding populations of computer programs to solve problems[博士学位论文].Stanford University,1990.
    [80]杨凤芹.基于粒子群的优化方法研究[博士学位论文].吉林大学,2009.
    [81]V. Miranda, D. Srinivasan, L. M. Proenca. Evolutionary computation in power systems. International Journal of Electrical Power & Energy Systems,1998.20(2): 89-98.
    [82]M. R. Alrashidi, M. E. El-Hawary. A survey of particle swarm optimization applications in power system operations. Electric Power Components and Systems, 2006.34(12):1349-1357.
    [83]M. R. AlRashidi, M. E. El-Hawary.A Survey of Particle Swarm Optimization Applications in Electric Power Systems. IEEE Transactions on Evolutionary Computation,2009.13(4):913-918.
    [84]K. Y. Lee, F. F. Yang. Optimal reactive power planning using evolutionary algorithms:A comparative study for evolutionary programming, evolutionary strategy, genetic algorithm, and linear programming. IEEE Transactions on Power Systems,1998.13(1):101-108.
    [85]Q. H. Wu, Y. J. Cao, J. Y. Wen. Optimal reactive power dispatch using an adaptive genetic algorithm. International Journal of Electrical Power & Energy Systems, 1998.20(8):563-569.
    [86]W. Zhang, Y. T. Liu, M. Clerc. Adaptive particle swarm for reactive power optimization in power systems. Engineering Intelligent Systems for Electrical Engineering and Communications,2006.14(3):161-167.
    [87]张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用.电网技术,2006.30(08):19-24.
    [88]余欣梅,李妍,熊信艮,等.基于PSO考虑谐波影响的补偿电容器优化配置.中国电机工程学报,2003.23(02):26-30.
    [89]方兴,郭志忠.配电网时变无功电压优化方法.电力系统自动化,2005.29(09):40-44.
    [90]夏可青,赵明奇,李扬.用于多目标无功优化的自适应遗传算法.电网技术,2006.30(13):55-60.
    [91]倪炜,单渊达.具有优化路径的遗传算法应用于电力系统无功优化.电力系统自动化,2000.24(21):40-44.
    [92]李亚男,张粒子,舒隽,等.结合专家知识的遗传算法在无功规划优化中的应用.电网技术,2001.25(07):14-17.
    [93]赵书强,马燕峰,贺春.抑制谐波的配电网无功优化规划.电网技术,2004.28(06):71-75.
    [94]颜伟,孙渝江,罗春雷,等.基于专家经验的进化规划方法及其在无功优化中的应用.中国电机工程学报,2003.23(07):76-80.
    [95]W. Yan, S. Lu, D. C. Yu. A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique. IEEE Transactions on Power Systems,2004.19(2):913-918.
    [96]张勇军,任震,钟红梅,等.基于灾变遗传算法的无功规划优化.电力系统自动化,2002.26(23):29-32.
    [97]张勇军,俞悦,任震,等.实时环境下动态无功优化建模研究.电网技术,2004.28(12):12-15.
    [98]向铁元,周青山,李富鹏,等.小生境遗传算法在无功优化中的应用研究.中国电机工程学报,2005.25(17):48-51.
    [99]A. Esmin, G.Lambert-Torres, A. C. Zambroni de Souza. A hybrid particle swarm optimization applied to loss power minimization. IEEE Transactions on Power Systems,2005.20(2):859-866.
    [100]D. B. Das, C. Patvardhan. A new hybrid evolutionary strategy for reactive power dispatch.Electric Power Systems Research,2003.65(2):83-90.
    [101]娄信明,盛戈皞,罗毅,等.改进遗传算法在水电站自动电压控制中的应用研究.电力系统自动化,2000.24(24):41-44.
    [102]张勇军,任震,钟红梅,等.实时无功优化调度中的邻域搜索改进遗传算法.电网技术,2003.27(01):22-25.
    [103]A. G. Bakirtzis, P. N. Biskas, C. E. Zoumas, et al. Optimal power flow by enhanced genetic algorithm.IEEE Transactions on Power Systems,2002.17(2):229-236.
    [104]张粒子,舒隽,林宪枢,等.基于遗传算法的无功规划优化.中国电机工程学报,2000.20(06):5-8.
    [105]王志华,尹项根,李光熹.伪并行遗传算法在无功优化中的应用.电网技术,2003.27(08):33-35.
    [106]王东,魏庆海,孙辉,等.基于过渡状态的无功补偿装置的最优配置.电网技术,2005.29(21):41-45.
    [107]王建学,王锡凡,陈皓勇,等.基于协同进化法的电力系统无功优化.中国电机工程学报,2004.24(09):124-129.
    [108]C.H. Liang, C. Y. Chung, K. P. Wong, et al. Parallel Optimal Reactive Power Flow Based on Cooperative Co-Evolutionary Differential Evolution and Power System Decomposition. IEEE Transactions on Power Systems,2007.22(1):249-257.
    [109]赵波,郭创新,张鹏翔,等.基于分布式协同粒子群优化算法的电力系统无功优化.中国电机工程学报,2005.25(21):1-7.
    [110]戴雯霞,吴捷.无功功率优化的改进退火选择遗传算法.电网技术,2001.25(11):33-37.
    [111]D. B. Das, C. Patvardhan. Reactive power dispatch with a hybrid stochastic search technique. International Journal of Electrical Power & Energy Systems,2002.24(9): 731-736.
    [112]胡泽春,王锡凡.配电网无功优化的分时段控制策略.电力系统自动化,2002.26(06):45-49.
    [113]V. Miranda, N. Fonseca. EPSO-evolutionary particle swarm optimization, a new algorithm with applications in power systems.in Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES.2002.
    [114]B. Mozafari, A. M. Ranjbar, T. Amraee, et al. A hybrid of particle swarm and ant colony optimization algorithms for reactive power market simulation. Journal of Intelligent & Fuzzy Systems,2006.17(6):557-574.
    [115]谭涛亮,张尧.基于遗传禁忌混合算法的电力系统无功优化.电网技术,2004.28(11):57-61.
    [116]C.W. Jiang, E. Bompard. A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation. Mathematics and Computers in Simulation,2005.68(1):57-65.
    [117]Yutian Liu, Li Ma, Jianjun Zhang. Reactive power optimization by GA/SA/TS combined algorithms. International Journal of Electrical Power & Energy Systems, 2002.24(9):765-769.
    [118]刘方,颜伟,David C. Yu.基于遗传算法和内点法的无功优化混合策略.中国电机工程学报,2005.25(15):67-72.
    [119]W. Yan, F. Liu, C. Y. Chung, et al. A hybrid genetic algorithm-interior point method for optimal reactive power flow. IEEE Transactions on Power Systems,2006.21(3): 1163-1169.
    [120]王淑芬,万仲平,樊恒,等.基于二层规划的无功优化模型及其混合算法.电网技术,2005.29(09):22-25.
    [121]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法.中国电机工程学报,2005.25(05):1-7.
    [122]B. Zhao, C. X. Guo, Y.J. Cao. A multiagent-based particle swarm optimization approach for optimal reactive power dispatch. IEEE Transactions on Power Systems, 2005.20(2):1070-1078.
    [123]C. Y. Chung, C. H. Liang, K. P. Wong, et al. Hybrid algorithm of differential evolution and evolutionary programming for optimal reactive power flow. IET Generation Transmission & Distribution,2010.4(1):84-93.
    [124]Yong-jun Zhang, Zhen Ren. Real-time optimal reactive power dispatch using multi-agent technique. Electric Power Systems Research,2004.69(2-3):259-265.
    [125]G. R. Yousefi, H. Seifi, M. S.Sepasian, et al. A new reactive power planning procedure for Iranian Power Grid. Electric Power Systems Research,2004.72(3): 225-234.
    [126]Chen Yuan-Lin, Liu Chun-Chang. Optimal multi-objective VAr planning using an interactive satisfying method IEEE Transactions on Power Systems,1995.10(2): 664-670.
    [127]Hsiao Ying-Tung, Chiang Hsiao-Dong, Liu Chung-Chang, et al. A computer package for optimal multi-objective VAr planning in large scale power systems. IEEE Transactions on Power Systems,1994.9(2):668-676.
    [128]Y. L. Chen, C.C.Liu. Multiobjective VAr planning using the goal-attainment method. IEE Proceedings-Generation, Transmission and Distribution,1994.141(3): 227-232.
    [129]Chen Yuan-Lin. Weak bus-oriented optimal multi-objective VAr planning. IEEE Transactions on Power Systems,1996.11(4):1885-1890.
    [130]Y. L. Chen. Weighted-norm approach for multiobjective VAr planning. IEE Proceedings-Generation, Transmission and Distribution,1998.145(4):369-374.
    [131]B. Venkatesh, G Sadasivam, M. A. Khan. Optimal reactive power planning against voltage collapse using the successive multiobjective fuzzy LP technique. IEE Proceedings-Generation, Transmission and Distribution,1999.146(4):343-348.
    [132]C.Erbas, S.Cerav-Erbas, A. D. Pimentel. Multiobjective optimization and evolutionary algorithms for the application mapping problem in multiprocessor system-on-chip design. IEEE Transactions on Evolutionary Computation,2006. 10(3):358-374.
    [133]R. M. Everson, J. E. Fieldsend. Multiobjective optimization of safety related systems:an application to short-term conflict alert.IEEE Transactions on Evolutionary Computation,2006.10(2):187-198.
    [134]耿光飞,杨仁刚.基于定向变异遗传算法的地区电网无功功率优化.电网技术,2004.28(10):42-44.
    [135]张丰田,宋家骅,李鉴,等.基于混合差异进化优化算法的电力系统无功优化.电网技术,2007.31(09):33-37.
    [136]John H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press 1975.
    [137]William M. Spears. Evolutionary algorithms:the role of mutation and recombination. Berlin:Springer-Verlag press 2000.
    [138]D. E. Goldberg, S. Voessner. Optimizing global-local search hybrids.in Gecco-99: Proceedings of the Genetic and Evolutionary Computation Conference.1999.
    [139]Lawrence Davis. Handbook of Genetic Algorithms. New York:Van Nostrand reinhold 1992.
    [140]D. H. Ackley. A connectionist machine for genetic hill climbing. Boston:Kluwer Academic Press 1987.
    [141]Heinz Muhlenbein. How genetic algorithms really work. Part Ⅰ:Mutation and hillclimbing. in Parallel Problem Solving from nature.1992:Elsevier science Publishers.
    [142]Martina Gorges-Schleuter. ADPARAGOS:an asynchronous parallel genetic optimization strategy.in Proceedings of the Third International Conference on Genetic Algorithms.1989. San mateo.
    [143]P.Moscato, M. G. Norman. A "memetic" approach for the travelling salesman problem--implementation of a computational ecology for combinatorial optimisation on message-passing systems.in International Conference on Parallel Computing and Transputer Applications.1992.Amsterdam.
    [144]L. He, N. Mort. Hybrid genetic algorithms for telecommunications network back-up routeing. Bt Technology Journal,2000.18(4):42-50.
    [145]William E. Hart, Natalio Krasnogor. Recent advances in memetic algorithms. New York:Springer 2005.
    [146]N. Krasnogor, S.Gustafson. A study on the use of "Self-generation" in memetic algorithms. Natural Computing,2004.20(3):53-76.
    [147]N.Krasnogor, W. E. Hart, J. Smith, et al. Protein structure prediction with evolutionary algorithms.in Gecco-99:Proceedings of the Genetic and Evolutionary Computation Conference.1999.
    [148]D. Whitley, V. S.Gordon, K. Mathias. Lamarckian evolution, the Baldwin effect and function optimization.in 3rd International Conference on Parallel Problem Solving from Nature (PPSN Ⅲ).1994. Jerusalem, Israel.
    [149]P Merz. Memetic Algorithms for Combinatorial Optimization Problems:Fitness Landscapes and Efective Search Strategies[博士学位论文].University of Siegen, 2000.
    [150]N Krasnogor. Studies in the Theory and Design Space of Memetic Algorithms[博士学位论文].University of the West of England,2002.
    [151]Choi Sung-Soon, Moon Byung-Ro. A graph-based Lamarckian-Baldwinian hybrid for the sorting network problem. IEEE Transactions on Evolutionary Computation, 2005.9(1):105-114.
    [152]Tang Maolin, Yao Xin. A Memetic Algorithm for VLSI Floorplanning. IEEE Transactions on Systems, Man and Cybernetics, Part B-Cybernetics,2007.37(1): 62-69.
    [153]Eiben A, Smith J. Introduction to evolutionary computing. Berlin:Springer 2003.
    [154]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社1996.
    [155]G. Ramakrishna, N. D. Rao. Adaptive neuro-fuzzy inference system for volt/var control in distribution systems. Electric Power Systems Research,1999.49(2): 87-97.
    [156]Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele. Comparison of Multiobjective Evolutionary Algorithms:Empirical Results. Evolutionary Computation,2000.8(2): 173-195.
    [157]E. Zitzler, L. Thiele. Multiobjective evolutionary algorithms:a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,1999.3(4):257-271.
    [158]Liao Pei-Kai, Chang Min-Kuan, C.C. Jay Kuo. A distributed approach to contour line extraction using sensor networks.in Vehicular Technology Conference,2005. VTC-2005-Fall.2005 IEEE 62nd.2005.
    [159]Liao Pei-Kai, Chang Min-Kuan, C. C. J. Kuo. Contour line extraction with wireless sensor networks.in Communications,2005. ICC 2005.2005 IEEE International Conference on.2005.
    [160]L. Q. Gao, K. Wang, D. Li, et al. Adaptive particle swarm optimization algorithm for reactive power optimization of power system.in International Conference on Sensing, Computing and Automation.2006. Chongqing, China.
    [161]Liao Pei-Kai, Chang Min-Kuan, C. C. J. Kuo. Contour line extraction in a multi-modal field with sensor networks.in Global Telecommunications Conference, 2005.GLOBECOM'05.IEEE.2005.
    [162]Amgad A. El-Dib, Hosam K. M. Youssef, M. M. El-Metwally, et al. Optimum VAR sizing and allocation using particle swarm optimization. Electric Power Systems Research,2007.77(8):965-972.
    [163]David A. Van Veldhuizen, Gary B.Lamont. Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation,2000.8(2):125-147.
    [164]C.H. Antunes, D. F. Pires, C.Barrico, et al. A multi-objective evolutionary algorithm for reactive power compensation in distribution networks. Applied Energy, 2009.86(7-8):977-984.
    [165]M. A. Abido, J. M. Bakhashwain. Optimal VAR dispatch using a multiobjective evolutionary algorithm. International Journal of Electrical Power & Energy Systems, 2005.27(1):13-20.
    [166]Li Furong, J. D. Pilgrim, C.Dabeedin, et al. Genetic algorithms for optimal reactive power compensation on the national grid system. IEEE Transactions on Power Systems,2005.20(1):493-500.
    [167]M. Varadarajan, K. S.Sworup. Solving multi-objective optimal power flow Using differential evolution. IET Generation Transmission & Distribution,2008.2(5): 720-730.
    [168]Fourman M P. Compaction of symbolic layout using genetic algorithms.in Int. Conf. Genetic Algorithms and Their Applications.1985.Pittsburgh.
    [169]Goldberg D E. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading:Addison-Wesley 1989.
    [170]Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation,1994.2(3):221-248.
    [171]C.M. Fonseca, P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part Ⅰ:A unified formulation. IEEE Transactions on Systems, Man, and Cybernetics, Part A-Systems and Humans,1998. 28(1):26-37.
    [172]C. M. Fonseca, P. J. Fleming. Multiobjective optimization and multiple constraint handling with evolutionary algorithms-Part Ⅱ:Application example. IEEE Transactions on Systems, Man, and Cybernetics, Part A-Systems and Humans,1998. 28(1):38-47.
    [173]Abraham A, Jain L. Evolutionary multiobjective optimization:theoretical advances and applications. New York:Springer Science 2005.
    [174]E. Zitzler, M. Laumanns, L. Thiele. SPEA2:Improving the strength Pareto evolutionary algorithm.in Computer Engineering and Networks Laboratory (TIK), Swiss Federal Inst. Technology (ETH),.2001.Zurich, Switzerland.
    [175]K. Deb, A. Pratap, S.Agarwal, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation,2002.6(2): 182-197.
    [176]G. G Yen, Lu Haiming. Dynamic multiobjective evolutionary algorithm:adaptive cell-based rank and density estimation. IEEE Transactions on Evolutionary Computation,2003.7(3):253-274.
    [177]K. C. Tan, T. H. Lee, E. F. Khor. Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Transactions on Evolutionary Computation,2001.5(6):565-588.
    [178]Kalyanmoy Deb, Himanshu Gupta.Introducing Robustness in Multi-Objective Optimization.Evolutionary Computation,2006.14(4):463-494.
    [179]D. Wiesmann, U. Hammel, T. Back. Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Transaction on Evolutionary Computation, 1998.2(4):162-167.
    [180]H. Greiner. Robust optical coating design with evolutionary strategies. Applied Optics,1996.35(28):5477-5483.
    [181]S.Tsutsui, S.Tsutsui, A. Ghosh. Genetic algorithms with a robust solution searching scheme. IEEE Transactions on Evolutionary Computation,1997.1(3):201-208.
    [182]Jin Yaochu, J.Branke. Evolutionary optimization in uncertain environments-a survey. IEEE Transactions on Evolutionary Computation,2005.9(3):303-317.
    [183]C. K. Goh, K. C. Tan. An Investigation on Noisy Environments in Evolutionary Multiobjective Optimization.IEEE Transactions on Evolutionary Computation, 2007.11(3):354-381.
    [184]J. Branke. Creating robust solutions by means of evolutionary algorithms. Parallel Problem Solving from Nature-Ppsn V,1998.1498:119-128.
    [185]N. Amjady. Short-term bus load forecasting of power systems by a new hybrid method.IEEE Transactions on Power Systems,2007.22(1):333-341.
    [186]张勇军,任震.无功电压动态控制的分布式协同优化.中国电机工程学报,2004.24(04):34-38.
    [187]P. Lagonotte, J. C. Sabonnadiere, J. Y. Leost, et al. Structural analysis of the electrical system:application to secondary voltage control in France. IEEE Transactions on Power Systems,1989.4(2):479-486.
    [188]S. B. Yusof, G. J. Rogers, R. T. H. Alden. Slow coherency based network partitioning including load buses. IEEE Transactions on Power Systems,1993.8(3): 1375-1382.
    [189]吴冀湘,涂光瑜,罗毅.基于模糊模式识别的分布式电压控制实时分区算法.电力系统自动化,2006.30(03):34-37.
    [190]倪向萍,阮前途,梅生伟,等.基于复杂网络理论的无功分区算法及其在上海电网中的应用.电网技术,2007.31(09):6-12.
    [191]Han Jiawei, Kamber M. Data mining:concepts and techniques. San Fransisco: Morgan Kaufmann Publisher 2006.
    [192]H. Mori, K. Takeda. Parallel simulated annealing for power system decomposition. IEEE Transactions on Power Systems,1994.9(2):789-795.
    [193]胡泽春,王锡凡,王秀丽,等.用于无功优化控制分区的两层搜索方法.电网技术,2005.29(24):37-41.
    [194]熊虎岗,程浩忠,孔涛.基于免疫—中心点聚类算法的无功电压控制分区.电力系统自动化,2007.31(02):22-26.
    [195]M. Halkidi, Y. Batistakis, M. Vazirgiannis. On clustering validation techniques. Journal of Intelligent Information Systems,2001.17(2-3):107-145.
    [196]N. Bolshakova, F. Azuaje. Cluster validation techniques for genome expression data Signal Processing,2003.83(4):825-833.
    [197]S.Gunter, H. Bunke. Validation indices for graph clustering. Pattern Recognition Letters,2003.24(8):1107-1113.
    [198]刘大鹏,唐国庆,陈珩.基于Tabu搜索的电压控制分区.电力系统自动化,2002.26(06):18-22.
    [199]S.O. Orero, M. R. Irving. A genetic algorithm for network partitioning in power system state estimation.in Control'96, UKACC International Conference on (Conf. Publ.No.427).1996.
    [200]L. Y. Tseng, S.B.Yang. A genetic approach to the automatic clustering problem. Pattern Recognition,2001.34(2):415-424.
    [201]王耀瑜,张伯明,孙宏斌,等.一种基于专家知识的电力系统电压/无功分级分布式优化控制分区方法.中国电机工程学报,1998.18(03):221-224.
    [202]Jin Yaochu, M. Olhofer, B.Sendhoff. A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation,2002.6(5):481-494.
    [203]R. G. Regis, C. A. Shoemaker. Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary Computation,2004.8(5):490-505.
    [204]M. T. M. Emmerich, K. C. Giannakoglou, B.Naujoks. Single-and multiobjective evolutionary optimization assisted by Gaussian random field metamodels. IEEE Transactions on Evolutionary Computation,2006.10(4):421-439.
    [205]D. Buche, N. N. Schraudolph, P. Koumoutsakos. Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Transactions on Systems, Man, and Cybernetics, Part C-Applications and Reviews,2005.35(2): 183-194.
    [206]Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation.Soft Computing,2005.9(1):3-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700