用户名: 密码: 验证码:
矩形钢管混凝土柱在循环荷载作用下的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着建筑技术的发展,钢管混凝土结构逐渐被广泛应用于建筑结构尤其是在高层建筑结构中。与圆、方钢管混凝土结构相比,矩形钢管混凝土有着与梁连接简单,稳定性能好,防火造价低等优势;与实心钢管混凝土结构相比,中空夹层钢管混凝土结构有着抗弯刚度大,自重轻、抗震性能好,抗火性能好等优势。但目前国内外对矩形钢管混凝土特别是矩形中空夹层钢管混凝土的相关研究很少,因此其受力机理及承载力方面的研究具有重要的理论意义和工程参考价值。
     本文利用有限元ANSYS软件,在确定钢材和核心混凝土在往复荷载作用下的应力-应变关系模型的基础上,考虑长细比、轴压比、含钢率和高宽比等参数,进行了4个系列13根实心矩形钢管混凝土柱在循环荷载作用下绕弱轴弯曲的模拟计算;在相同轴压力作用下只考虑不同截面空心率的情况,进行了4根矩形中空夹层钢管混凝土柱试件在循环荷载作用下绕强轴弯曲的模拟计算。通过对计算结果包括P-△曲线、滞回曲线、轴向压缩、刚度退化、能量耗散、骨架曲线和变形能力等的变化规律进行了分析、比较和研究。结果表明:①矩形实心钢管混凝土柱绕弱轴弯曲的滞回曲线均呈比较饱满的“梭形”,没有明显的捏缩现象;达到极限荷载后,仍表现出良好的延性和后期变形能力;能量耗散系数在2.64~2.94之间,说明矩形钢管混凝土柱绕弱轴弯曲时也具有良好的抗震性能和耗能能力;②通过分析得出了循环荷载作用下长细比、轴压比、含钢率和高宽比对矩形实心钢管混凝土柱抗震性能的影响规律,表明长细比、轴压比、含钢率和高宽比都是影响实心矩形钢管混凝土柱抗震性能的主要因素;③矩形中空夹层钢管混凝土柱绕强轴弯曲的滞回曲线均呈比较饱满的“梭形”,没有明显的捏缩现象;达到极限荷载后,仍表现出良好的延性和后期变形能力,随着截面空心率的增大,试件的水平承载力随之增大,但试件的耗能系数及等效粘滞阻尼系数逐渐降低,其抗震性能逐渐降低。
     本文全面、系统、深入地分析了矩形实心钢管混凝土柱绕弱轴弯曲和矩形中空夹层钢管混凝土柱绕强轴弯曲时在循环荷载作用下的受力性能,研究工作和得到的结论对于指导工程设计具有一定的参考价值,为进一步研究矩形钢管混凝土柱的抗震性能打下了良好的基础。
In recent years, as the architectural technical developments, the concrete-filled steel structures has gradually been applied in the architectural structure especially in the high buildings. Compared with the circular concrete-filled steel tubular, concrete-filled rectangular steel tubular have some advantages: easier to connect with beams; better stability; and the low cost of fire prevention etc. Compared with the solid concrete-filled rectangular steel tubular(SCFRST); Concrete filled rectangular double skin steel Tubes (CFDRST) have some advantages:easier to connect with beams; ethereal of deadweight; and the low cost of fire prevention etc.But few research studies have been dealt with in this area in the past,so the study of it possesses important theoretic and engineering reference value.
     In this paper, based on the finite element program of ANSYS, on the basis of the stress-strain models of determining the steel and concrete under dynamic actions; In this paper, 4 series 13 specimens of SCFRST columns which around the weak-axis bending and 4specimens of CFDRST columns which around the strong-axis bending are tested under cycle loading, the main parameters are axial compressive force ratio, steel ratio, slenderness ratio and section height to width ratio. The results of the experiment have been analysed and compared, which in cludes the rule of P-△behavior, hysteretic behavior, axial shortening, stiffness decay, energy dissipation, skeleton curve, ductility capacity. The test results show that:①the SCFRST columns which around the weak-axis bending has plump hysteretic loops; good ductility and evening deformation ability after the joints reach ultimate load;The energy dissipation coefficient is between 2.64 and 2.94,which shows that the SCFRST columns which around the weak-axis bending has superior seismic behavior and energy dissipation ability;②Through analyzing the curves we can know that the influence of the axial compressive force ratio, steel ratio, slenderness ratio and section height to width ratio on the hysteretic behavior of the SCFRST columns is concluded, and the axial compressive force ratio, steel ratio, slenderness ratio and section height to width ratio are the main keys influence factor for the hysteretic behavior;③The CFDRST columns which around the strong-axis bending has plump hysteretic loops; good ductility and evening deformation ability after the joints reach ultimate load; With the hollow section ratio increased, the level of bearing capacity of the manufacturing increases, but the energy dissipation coefficient decreased gradually reduce, and its seismic behavior decreased gradually reduce.
     The paper analyzes bearing capacity of the SCFRST columns which around the weak-axis bending and the CFDRST columns which around the weak-axis bending under the monotone circle load deeply. It is valuable to modify related codes, and to direct practical engineering design. It is a good foundation for earth-quake resistance of the concrete filled steel-tubular structure.
引文
[1]韩林海.钢管混凝土结构——理论与实践.科学出版社, 2007.
    [2]钟善桐.钢管混凝土结构(第3版).清华大学出版社, 2003.
    [3]蔡绍怀.现代钢管混凝土结构.人民交通出版社, 2007.
    [4]韩林海,杨有福.现代钢管混凝土结构技术.中国建筑工业出版社, 2007.
    [5]张素梅,钟善桐.空心钢管混凝土的研究及构件计算.土木工程学报,1994,27(3): 4-32.
    [6] Song.Y.L,Chen.J.F.Structural Behabiour of short Steel-Concrete Composite Spun Tubular Columns.Magazine of Concrete Research,2000,52(6):411-418.
    [7]卢孝哲.设肋方形薄壁钢管混凝土柱滞回性能试验研究.哈尔滨工业大学硕士学位论文.2006.
    [8] Kwon.Y.B,Song.J.Y,Kon.K.S.The structural behaviour of concrete-filled steel piers. Iucerne,Switzerland:Proceedings of 16th congress of IABSE,2000.
    [9]陶忠,韩林海,王志滨.Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural(HSS)stub columns.Journal of Constructional Steel Research,2004.
    [10]黄宏.方中空夹层钢管混凝土力学性能及承载力研究.[硕士学位论文].江西:华东交通大学,2002.
    [11]许協隆,林江麟.中空双钢管混凝土构件承载行为.中国台湾第四届结构工程研讨会论文集,1998.1915-1922.
    [12] S WEI, S T MAU, C VIPULANANDAN, S K MANTRALA. Performance of New Sandwich Tube under Axial Loading: Experiment. Journal of Structural Engineering. 1995a, 121(12): 1806-1814.
    [13] Lin Min-Lang, Keh-Chyuan Tsai. Behavior of Double-Skinned Composite Steel Tubular Columns Subjected to Combined Axial and Flexural Loads. First International Conference on Steel & Composite Structures. Pusan, Korea, June 14-16, 2001:1145-1152.
    [14] X L ZHAO, R GRZEBIETA. Strength and Ductility of Concrete Filled Double Skin (SHS Inner and SHS Outer) tubes. Thin-Walled Structures. 2002, 40: 199-233.
    [15] X L ZHAO, R GRZEBIETA. A.Ukur and M.Elchalakani. Tests of Concrete-Filled Double Skin (SHS Outer and CHS Inner) Composite Stub Columns. Advances in Steel Structures. 2002, Vol.1: 567-574.
    [16] YAGISHITA, H KITOH, M SUGIMOTO, T TANIHIRA, K SONODA. Double Skin Composite Tubular Columns Subjected to Cyclic Horizontal Force and Constant Axial Force. Proc. of 6th Inter. Confer. On Steel and Concrete Composite Structures. USA, Apr., 2000: 497~503.
    [17] Lin.M.L,Tsai.K.C.Behaviour of Double-skined Composite SteelTubular Columns subjected to Combined Axial and Flexural Loads.Pusan,Korea:First International Conference on Steel&Composite Structures,2001.1145-1152.
    [18]韩邦飞,夏建国,赵建明.同种双钢管混凝土轴心受压构件的承载力的研究.石家庄铁道学院学报, 1995, 8 (3): 75-80.
    [19]夏桂云,曾庆元,李传习,等.复式空心钢管混凝土柱抗压刚度.长安大学学报(自然科学版), 2003, 23(4): 41-45.
    [20]谢力,陈梦成,张安哥.矩形中空夹层钢管混凝土短柱力学性能的数值分析.华东交通大学学报, 2005, 22(1):4-6.
    [21]王志滨.矩形中空夹层钢管混凝土压弯构件力学性能研究.[硕士学位论文].福州:福州大学, 2005.
    [22] Zhong Tao, Lin-hai Han. Behaviour of concrete-filled double skin rectangular steel tubular beam-columns. Journal of Constructional Steel Research, 2006, 62(7): 631-646.
    [23]赵均海,郭红香,魏雪英.圆中空夹层钢管混凝土柱承载力研究.建筑科学与工程学报. 2005, 22(1): 50-5.
    [24]蔡克銓,林敏郎.双钢管填充混凝土中空桥柱耐震行为(一).中兴工程顾问社专案研究计划期中报告.台北.2001.
    [25] SHAKIR KHALIL H,ZEGHICHE J. Experimental behavior of concrete-filled rolled rectangular hollow–section columns. The Structural Engineering, 1989, 67(19) :346-353.
    [26] SHAKIR KHALIL H,MOULI M. Further tests on concrete-filled hollow-section columns. The structural 1990, 68 (20) :405-413.
    [27] LIANG Q Q,UY B. Parametric study on the structural behavior of steel plates in concrete-filled fabricated thin-walled box columns .Advanced in Structural Engineering, l998,2(1) :57-71.
    [28] Cederwall, K, Engstrom, B. and Grauers, M. "High-Strength Concrete Used in Composite Columns.”High-Strength Concrete, SP121-11:195-210.
    [29] Usami,T. and Ge,H.B.. Ductility of concrete-filled steel box columns under cyclic loading. Journal of Structural Engineering.1994,120(7) :2021-2040.
    [30] Boyd,P.F., Cofer,W.F. and Mclean,D.I.. Seismic performance of steel-encasedconcrete columns under flexural loading。ACI Structural Journal,1995,92(3) :355-364.
    [31] Ge, H.B. and Usami, T.. Cyclic Tests of Concrete-Filled Steel Box Columns. Journal of Structural Engineering.1996,122(10):1169-1177.
    [32] Hajjar, J. F. and Gourley, B. C..A cyclic nonlinear model for concrete-filled tubes, Informulation. Journal of Structural Engineering, ASCE,1997,123(6):736-744.
    [33] Hajjar,J.F., Gourley,B.C. and Olson,M.C..A cyclic nonlinear model for concrete-filled tubes,II:verification. Journal of Structural Engineering,ASCE,1997,123(6) :745-754.
    [34] Usami,T. and Ge,H.B. and Saizuka K.. Behavior of partially concrete-filled steel bridge piers under cyclic and dynamic loading. Journal of Constructional Steel Research.1997,41(2/3) :121-136.
    [35] Hajjar,J.F., Molodan,A. and Schiler,P.H..A distributed plasticity model for cyclic analysis of concrete-filled tube beam-columns and composite frames. Engineering Structures,1998,20(4-6) :398-412.
    [36] Han, L.H. Yang, Y.F. and Tao, Z.. Concrete-filled thin walled steel RHS beam-columns subjected to cyclic loading. Thin-walled Structures,2003,41(9),801-833.
    [37] Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T. and Mori, K.. Behavior of concrete-filled steel tube beam columns. Journal of Structural Engineering.2004,130(2):189-202.
    [38]张正国,左明生.方钢管混凝土轴压短柱在短期一次静载下的性能研究.郑州工学院院报. 1985(2):19-32.
    [39]张正国.方钢管混凝土中长轴压柱稳定分析和实用计算方法.建筑结构学报。1993(4):28-39.
    [40]屠永清.钢管混凝土压弯构件恢复力特性研究.哈尔滨建筑大学博士学位论文.1994.
    [41]吕西林,陆伟东.反复荷载作用下方钢管混凝土柱的抗震性能试验研究.建筑结构学报,2000,21(2) :2-11.
    [42]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报。2001(4):22-31.
    [43]王庆国.利用纤维模型有限元方法对钢管混凝土柱动力性能的研究.四川大学硕士学位论文,2002.
    [44]蒋涛,沈之容,余志伟.矩形钢管混凝土轴压短柱承载力计算。特种结构。2002(2) :4-6.
    [45]许月华.钢管混凝土压弯构件滞回性能分析.大连交通大学硕士学位论文.2005.
    [46]张素梅,刘界鹏,王玉银,郭兰慧.双向压弯方钢管混凝土构件滞回性能试验与分析.建筑结构学报,2005,26(3):9-18.
    [47]郝艳峨.矩形钢管混凝土短柱轴压性能分析.长安大学硕士论文. 2005.
    [48]赵经文,王宏钰.结构有限元分析[M].北京:科学技术出版社,2001.
    [49]江见鲸,陆新征,叶列平.钢筋混凝土有限元分析[M].北京:清华大学出版社,2005.
    [50]黄晓宇.方钢管混凝土柱抗震性能试验研究.天津大学硕士学位论文.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700