用户名: 密码: 验证码:
牙科纳米氧化锆氧化铝(Al_2O_3/ZrO_2)复合陶瓷的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙科修复材料发展经历了从异体牙齿、动物牙齿到现在采用的金属材料、树脂材料和陶瓷材料的过程。由于牙科陶瓷修复体形态色泽与天然齿类似,应用时显得自然、逼真。此外,瓷修复体质地致密、耐磨,表面光洁,菌斑不易附着,有良好的生物相容性,使用安全等其它材料所不具有的优点。因此,陶瓷已成为当前最常采用的制作义齿的材料。
     目前应用的牙科陶瓷有金属烤瓷牙和全瓷牙两类。牙科陶瓷合金(DentalCeramic Allloys,DCA)用于制作瓷熔附金属(PFM)修复体的金属底层。PFM修复体是临床上修复牙体、牙列缺损最常采用的一类修复体,它不仅具有金属的韧性和强度,同时兼有瓷的美观性和耐磨性,因此是一种较理想的修复方法。自1950年在美国出现以来,取得了迅速的发展。我国在80年代后期引进此种技术,现已成为目前口腔修复的最主要方法。在临床上,据粗略统计,70%以上的修复病例采用此种方法。烤瓷牙的适应症是非常广泛的,变色牙、畸形牙、牙面发育不良,牙体较大缺损无法充填修补的牙,牙错位、扭转等不宜或不能作正畸治疗的牙,牙缺失后基牙条件符合生物力学要求的牙,均可考虑做烤瓷牙。
     烤瓷牙的类型主要根据瓷粉和内冠金属的成份来区分,林林总总,可供选择的一般有二、三十种。目前国内使用的瓷粉多为德国vita普通、vita3D、wieland、日本松风、瑞士义获嘉瓷粉,还有一些纳米瓷粉、低温瓷粉,它们各有特点、物理特性有一定差别,但都能满足一般牙齿功能要求。表面区别主要在于美学性能,例如,德国vita3D的比色体系更加完善,透明度、立体感更接近天然牙,日本松风瓷粉颜色红黄成份更多,更适合东方人的皮肤和天然牙。这些区别带给人的总体感觉有所差异,但肉眼下,一般人很难区分。
     因此,造成不同类型烤瓷牙品质差异的最大因素在于金属底冠所用合金成份。可供我们选择的合金有数十种,但可以归纳为两大类型,即普通金属烤瓷牙和贵金属烤瓷牙。普通金属烤瓷牙金属成份主要为镍铬合金,它的优点在于经济实用,是目前国内应用最多的烤瓷牙。缺点在于金属耐腐蚀性差,在口腔唾液和食物形成的复杂的电解质环境和酸碱环境中不够稳定。时间长(一般数年后)大多出现龈缘变黑(因金属离子的渗透)、红肿、出血、萎缩,影响美观和牙齿健康。因此普通烤瓷牙在国外越来越少有医生和客人去选用。普通烤瓷牙金属还有无铍合金、钛合金等选择,它们的理化性能能满足一定的要求,但达不到贵金属修复的效果。贵金属烤瓷采用贵金属底冠制作烤瓷牙,其中最好的、也是最有代表性的是黄金烤瓷(也叫金钯烤瓷,含86%黄金),它的耐腐蚀性、延展性等理化性能优异,与瓷粉结合牢固,在唾液中不易氧化或析出,生物相容性极佳,牙颈部不会变色。目前在欧美国家大多数选用黄金烤瓷,它的缺点就是价格贵,一般是普通烤瓷牙的数倍。根据合金中金属成份的不同,贵金属烤瓷还有铂金(含铂15%左右)、钯金(含钯62%,金4%)等供选择,它们的特点是比黄金烤瓷便宜,性价比较高。
     目前国内口腔修复中较为常用的瓷熔附金属修复体(PFM)虽能解决强度问题,但其工艺复杂,而且金属底胎常常影响修复体的美观效果,因瓷体的脆性过大和与金属结合不良,而经常出现崩瓷失败,严重影响了临床的远期效果。而且目前普遍使用的Ni-Cr合金等金属在口腔内长期使用可能会溶出有毒的元素,这些对人体组织和器官都会有一定的潜在危害。
     与金属烤瓷牙冠相比,全陶瓷牙冠(全瓷冠)具有良好的生物相容性,能够栩栩如生地再现自然牙的色泽及色深度,越来越受到牙病患者的青睐。氧化锆复合陶瓷是其中优秀的代表。氧化锆增韧氧化铝(Zirconia-Toughening-Alumina,简记为ZTA)是比较典型的氧化锆增韧陶瓷,其强度在1200MPa,韧性在16MPa·m~(1/2)左右。ZTA优良的力学性能、生物相容性和较好的美观性广泛应用于牙科全瓷修复。目前已有多种系列的全瓷修复材料面世,如Procera Allceram、Vita In-Ceram、IPS·Empress 2和GⅠ·Ⅱ等。其中VITA公司生产的In-Ceram系列是迄今应用于临床最为成功的全瓷系列。In-Ceram陶瓷属于ZrO_2增韧的Al_2O_3陶瓷(ZTA,ZirconiaToughed Alumina),其拥有足够的力学性能,可用于后牙冠桥修复。Mclaren等介绍了应用于全瓷固定桥并取得满意修复效果的玻璃渗透氧化锆/氧化铝基底陶瓷,Probster等用玻璃渗透氧化铝瓷核材料(In-Ceram)对患牙行全冠固定桥修复。观察表明该核材料的高抗弯强度(bending strength)使其能支撑桥架结构,并使修复体具有良好的边缘适合性及审美性。Suarez等对18例氧化锆增韧玻璃渗透陶瓷修复的后牙固定桥进行了为期3年的临床观察,只有1例因基牙根折失败,更长期的临床观察正在进行中。
     但是现有的全瓷材料也仍然存在着强度不够、加工工艺复杂以及韧性较低等缺陷,还未完全达到临床广泛应用的要求,如何提高该材料的韧性和抗冲击性已是研究的重点。合成高强度、高韧性的新型牙科全瓷材料,实现在现有牙科操作条件下将全瓷修复体的应用范围扩展到后牙冠、桥及桩冠等修复领域的目标,降低瓷粉及临床加工的成本,使全瓷修复技术可以真正应用于临床,提高口腔修复体的质量,促进全瓷修复体的运用与普及有重要意义。
     本文通过水溶胶法制备性能优良的氧化锆/氧化铝复合粉体,探讨了不同组分对复合粉体晶型晶貌的影响。比较了溶胶法和机械混合法制备材料的力学性能,探讨氧化锆氧化铝相互作用机制。
     采用水溶胶法制备Al_2O_3/ZrO_2复合粉体前驱体,研究原料浓度、分散剂、干燥方式、pH值对溶胶体系的影响,确定了适宜的反应条件:氨水反滴定方式、pH值为9.0、铝盐锆盐浓度为0.3mol/L、添加1wt.%PEG800+PEG2000、正丁醇共沸蒸馏干燥,制备的前驱粉体分散性好,粉体由近似球状的颗粒组成,颗粒粒径30nm左右。采用相同方法制备了不同组成的前驱体,复合粉体粒径在15-40nm左右。
     研究了pH值、煅烧温度和锆铝比例对粉体晶型晶貌的影响。采用XRD,IR,SEM等检测手段对制备的复合前驱粉体在煅烧过程中的性质变化进行表征。结果表明:随反应溶胶体系pH值递增和前驱粉体煅烧温度的增加,四方相衍射峰的强度增加,t-ZrO_2晶型发育渐好。适量的Al_2O_3颗粒能抑制ZrO_2晶粒的长大,氧化铝相对含量的增加,提高了氧化锆的结晶温度。溶胶法复合粉制备的材料比球磨混合粉制备的材料成分分布均匀,这是复合粉制备的材料的力学性能优异的原因。以水溶胶法制备的复合粉体为原料,制备了不同组分的烧结体。测量得出烧结体的相对致密度、抗弯强度、断裂韧性、硬度等性能优于对应组分的机械混合粉体为原料制备的烧结体。制备的锆铝摩尔比例为1的瓷体在1450℃下烧成最致密,其综合力学性能最佳,抗弯强度,断裂韧性和硬度分别为786MPa,8.3MPa·m~(1/2),14.2GPa。通过对烧结体表面和断口SEM和XRD分析得知锆铝比例为1时,氧化锆氧化铝晶粒细小,结合致密,应力诱导相变对韧性提高贡献较大,断裂方式主要为沿晶断裂。
     通过一系列的生物相容性的检测手段对在1450℃烧结成型的ZrO_2/Al_2O_3复合陶瓷试件进行检测,其溶血实验阴性,毒性评级为0-1级,可以初步认为所检测的ZrO_2/Al_2O_3复合陶瓷材料作为牙科修复材料对人体是安全的。
     初步研究证明,本研究所制备的复合材料有近似于天然牙的体积密度,比天然牙高的强度和硬度以及优良的断裂韧性,能满足牙科材料的性能要求和特殊使用环境。
The development of dental prosthetic materials go through from the variant teeth,animal teeth,metal material,resin material and procelain.The colour and figure of dental ceramic prosthetic materials were similar to natural tooth.Besides,ceramic prosthetic materials have the advantages that other materials don't have,such as compact texure,good wear resistance,smooth surface,good biocompatibility and security.So ceramic prosthetic materials become the popular materials for false tooth.
     Dental ceramic materials were divided into metal-porcelain and porcelain in recent application.Dental Ceramic Alloys was used for metal button of porcelain fuse metal(PFM) restoration.PFM restoration was popular for dentition defect and tooth defect,which has the advantages of toughness and intensity of metal and beauty and good resistance of porcelain.This technology have developed quickly since 1950,it was introduced in our country in late 1980,and it become the major method for dental repair. The indications of metal-porcelain was very wide.Many situation were suitable for metal-porcelain,such as bad colour tooth,abnormal and torsion,and so on.
     Metal-porcelain was divided by ceramic powder and metallic inside conolar,it has thirty kinds more or less to choose.Most of them were from German (vita,vita3d,wieland) Japan and switzerl.They have their own different characters,but they can satisfy the request of dental function.The difference between them were esthetics.The colour of German vita3d was more perfect and transparent,it was more close to natural tooth.The colour of Japan tooth powder was more sutiable for easterner skin and tooth.The difference was hard to distinguish by people eyes.
     The quality difference between different metal-porcelain lied with alloy component of metallic inside conolar.There were few ten kinds of alloy to choose,and they can reduced to two types,which were common metal-porcelain and nobal metal-porcelain.The major component of common metal-porcelain was Cr-Ni Alloy,it was the most popular metal-porcelain because of economy.The defect of Cr-Ni Alloy was poor corrosion resistence and inadequate stable in the complicated Oral electrolytes and Acid-base Environment.The gum edge would changed black,red swelling,hemorrhage and shrink after severage year,which affect the beauty and health of tooth.So less doctor and patient choose common metal-porcelain overseas,common metal-porcelain also included freeBeryllium alloy and Titanium alloy.The physical and chemical property can satisfy a definite request,but it can not reach the best effect of nobal metal-porcelain.Gold-porcelain was the most typical roast Porcelain tooth.It showed good corrosion resistence,good ductibility performance,good biocompatibility,hard to oxide or precipitate,firm adhesion with porcelain powder and tooth cervical would not chang colour.Most occidental patient choose gold-porcelain,but the price is several times higher than common metal-porcelain.The nobal metal-porcelain also included palladium gold and platinum gold,they were more cheapper than gold-porcelain and had high ratio performence and price.
     The PFM tecnology can save the intensity problem,but the complex tecnics,poor aesthetic effect,procelain brittleness and bad adhesion with metal affect the long-term clinical effect.More over the Cr-Ni Alloy was likely to dissolve poisonous elements for long time use,which would do damage to tissues and organs.
     Compared to metal-porcelain,full porcelain showed good biocompatibility and the colour was semilar to natural tooth.It regains more and more dental patients favour. Zirconia-Toughening-Alumina ceramics was the typical full porcelain restoration.The intensity and toughness of it were 1200MPa and 16MPa·m~(1/2) more or less.ZTA widely applied dental full porcelain restoration bacause of good mechanical properties,biocompatibility and good appearance.There were several kinds full porcelain restoration in the market,such as Procera Allceram,Vita In-Ceram,IPS·Empress 2 and GI·ⅡThe In-Ceram series from VITA company was the most successful restoration in clinic.In-Ceram belonged to Zirconia Toughed Alumina caramic.It possessed enough intensity for posterior tooth crown restoration.Mclaren intruduced the Dental Glass-infiltrated Zirconia/Alumina Composite ceramic,it was applied all-ceramic bridges restoration and reached satified effect.Probster studied Glass-infiltrated Alumina for all-ceramic restoration,the result showed the material can supposed frame structure because of its high bending strength,the restoration presented good marginal adaptation and perfect esthetic attribute.Suarez examined the Glass-infiltrated Zirconia caramic for posterior tooth crown restoration in clinic for 3 years,only one experiment fail,long time examination was on the way.
     But the existing full porcelain did not reach the widely standard of clinical application,they also had some limitations,such as inadequate intensity,complex tecnics,low toughness and so on.How to improve the toughness and shock resistance was the major problem.It was meaningful to synthesize high strength,high toughnss dental porcelain materials,expand full porcelain restoration applied areas,reduce ceramic powder and processing cost,improve the quality of porcelain restoration,Spur the applications and popularization of porcelain restoration.
     ZrO_2/Al_2O_3 composite porcelain has excellent biocompatibility and mechanical properties.lt is a proper dental prosthetic materials.This study prepared an excellent ZrO_2/Al_2O_3 composite precursor powder by sol method.The crystal transfomation at different hot treatment temperature and different component ratio was examined.Also the mechanical properties of porcelain prepared by sol method and mechanical mixing method was studied.The reaction mechanism between zirconia and alumina was discussed.
     The ZrO_2/Al_2O_3 composite podwer was prepared by sol method.The effect of the concentration of inorganic precursors,dispersing agent,drying method and pH value on sol solution were studied.The proper conditions was confirmed.The dispersion of precursor composite powder was better at pH=9.0,1wt%PEG800+PEG2000,the inorganic precursors's concentration of 0.3mol/L,n-butanol azeotropic distillation,ammonia inverse titration method.The particles was spherical and the average particle size was 30nm.
     The effect ofpH value,calcined temperature and ratio of ZrO_2/Al_2O_3 on the crystal was studied.The result showed:the t-ZrO_2 intensities increaseed with the pH values of sol solution and calcined temperature.Proper alumina can inhibit the growth of zirconia grain.With the relative content of alumina increased,the crystallization temperature of zirconia improved.
     The mechanical properties of porcelain prepared by sol method was better than that prepared by mechanical mixing method.The Sem and EDS analysis also indicates that the composition which prepareed by sol method distribution was more homogeneous.
     The composite porcelain of different ratio of ZrO_2/Al_2O_3 were prepared by composite powder from sol method.The composite porcelain with 50at%zirconia content has the best mechanical properties as calcined at 1450℃,the flexural strength, fracture toughness and hardness were 786MPa,8.3MPa·m~(1/2) and 14.2GPa.It can satisfy the clinical treatment request.
     The surface morphology and fracture characteristics were examined by SEM and XRD.The results showed that the grains of zirconia and alumina were small and combined tightly.Zirconia stress-induced phase transformation toughening effect plays an important role in improving the composite material fracture toughness.The fracture mode of the composites was mainly intracrystalline fracture.
     The results of heamolysis-test were negative in either of material.All the grades of cytotoxicity were 0-I.Nano ZrO_2/Al_2O_3 composite ceramics was pveliminarily safe for dental application.
     In the research,the composites of ZrO_2/Al_2O_3 ceramic have fine physical, chemical properties and aesthetics effect.The bulk density is close to that of natural dental,and the strength and rigidity are higher than it.It can satisfy the mechanical property request and special application environment.
引文
1 Hannink R H J,kelly P M,Muddle B C.Transformation toughening in zirconia-containing ceramics.Journal of American Ceramic Society.2000,83(2):461-486.
    2 Guazzato M,Proos K,Quach L,et al.Strength,reliability and mode of fracture of bilayered porcelain/zirconia(Y-TZP)dental ceramics.Biomateriais.2004,25(20):5045-52.
    3 Studart A R,Filser F,Kocher P,et al.Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges.Dental Materials.2007,23(1):106-14.
    4 Papanagiotou H P,Morgano S M,Giordano R A.,et al.In vitro evaluation of low- temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics.The Journal of Prosthetic Dentistry.2006,96(3):154-64.
    5 Andh A,SjAigren G.Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering.Dental Materials.2006,22(8):778-84.
    6 Niihara K,Unal N,Nakahira A.Mechanical propertiesof(Y-TZP)-alumina-silicon carbide Nanocomposites and the phases tability of Y-TZP particles in it.J Mater Sci.1994,29(2):164-168.
    7 Vasylkiv O,Sakka Y.Low-temperature processing and mechanical of zirconia and zirconia-alumina nanoceramics.J Am Cerm Soc.2003,86(2):299-304.
    8 Huang X W,Wang S W,Huang X X.Microstructure and mechanical properties of ZTA fabricated by liquid phase sintering.Ceramics International.2003,29(7):765-769.
    9 于庆华,王介强,郑少华,等.液相沉淀法制备ZTA纳米复相陶瓷.复合材料学报.2006,23(3):108.
    10 林洁,杨建,刘娇,等.用包裹纳米复合粉体制备ZTA陶瓷.材料科学与工程学报.2007,25(5):760-6.
    11 王昕,于薛刚,单妍,等.纳米ZrO_2与微米Al_2O_3复合陶瓷的断裂模式.材料研究学报.2007,21(5):482-88.
    12 王绍艳,吕玉珍,朱晓明,等.均匀设计在沉淀法制备纳米二氧化锆中的应用.精细化工.2001,18(1):662-665.
    13 Rong T J,Huang X X,Wang Sh W.State of Magnesia in Magnesia(10.4 mol percent)-Doped zirconia powder Prepared from Coprecipitation.J Am Ceramic Soc.2002,85(5):1324-1326.
    14 段国荣,杨绪杰,陆路德,等.溶胶-凝胶/共沸蒸馏法制备单相氧化锆超细粉.人工晶体学报.2006,35(2):327-31.
    15 崔学民.内晶型ZTA纳米复合陶瓷制备与形成机理研究.学位论文.济南:山东大学材料学.2000.
    16 梁晓峰,杨世源,尹光福.氧化锆增韧氧化铝陶瓷复合粉体的研究进展.山东陶瓷.2004,27(1):13-16.
    17 孙静,高濂,郭景坤.分散剂用量对几种纳米氧化锆粉体尺寸表征的影响.无机材料学报,1999,14(3):465-69.
    18 郑忠.胶体科学导论.北京:高等教育出版社.1989:306
    19 尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社.2004,2.
    20 国家技术监督局.多孔陶瓷显气孔率、容重试验方法(GB/T1966-1996).中国标准出版社.2006,2.
    21 国家技术监督局.工程陶瓷维氏硬度试验方法(GB/T16534-1996).中国标准出版社.2005.8.
    22 赵克,巢永烈,杨争.牙科用氧化锆增韧纳米复相铝瓷粉体的制备与性能研究.中华口腔医学杂志.2003,38(5):384-386.
    23 柴枫,徐凌,廖运茂,等.氧化铅增韧纳米复合陶瓷粉体粒度与基体强度的关系.中华口腔医学杂志.2003;38(4):300-303.
    24 李国星,陈昌平,李玮,等.陶瓷材料断裂韧性测试方法.河南建材.2003,(4):15-17.
    25 国家技术监督局.工程陶瓷弯曲强度试验方法(GB6569-86).中国标准出版社.1987,2.
    26 International standard ISO 6872 for Dental ceramic.Ref No.ISO 6872-1984(E).
    27 王继辉,舒庆琏,邓京兰.结构陶瓷断裂韧性测试方法的研究.武汉工业大学学报.1997,22(2):83-87.
    28 王继辉,邓京兰,舒庆琏.陶瓷材料断裂韧性新技术.硅酸盐通报.1997,14(5):60-64.
    29 虞伟良.硬度测试技术的新动态与发展趋势.理化检验:物理分册.2003,39(8):401-405.
    30 王航,廖运茂,巢永烈,等.GI-11型渗透陶瓷热膨胀性能分析.口腔领面修复学杂志.2000,20(2):42-43.
    31 David JG,龚江宏,译.陶瓷材料的力学性能导论.北京:清华大学出版社.2003,11:192-210.
    32 穆柏春.陶瓷材料的强韧化.北京:冶金工业出版社.2002,7:35-40.
    33 Kerkuijk B,Winnubst L,Mulder EJ,et al.Processing of homogeneous zirconia-toughened alumina ceramics with high dry-sliding wear resistance.J Am Ceram Soc.1999,82(8):2087-2093.
    34 刘维良,喻佑华.先进陶瓷工艺学.武汉:武汉理工大学出版社.2004,8:37-69.
    35 周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社.1995,10:173.
    36 荣天君,赵云风,王士维,等.可切削的氧化锆陶瓷牙科修复体的制备.无机材料学报.2003,15(2):94-98.
    37 Singh R,Gill C,Lawson S.Sintering,microstructure and mechanical properties of commercial Y-TZPs.J Mater Sc.1996,31:6055-6062.
    38 赵克,杨世源,巢永烈,等.牙科纳米氧化锆陶瓷粉体的制备.实用口腔医学杂志.2002,18(2):99-101.
    39 高镰,宫本大树.高温等静压烧结Al2O3-ZrO2纳米陶瓷.无机材料学报.1999,14,(3):495-498.
    40 单妍,王听,尹衍升,等.ZTA纳米复合陶瓷的研究.硅酸盐通报.2002,11(2):43-46.
    41 余明清,范仕刚,孙淑珍,等.Al2O3增强ZrO2陶瓷的制备及性能研究.硅酸盐通报.2001,21(2):7-10.
    42 钦征骑主编.新型陶瓷材料学手册.江苏:江苏科学技术出版社.1996.
    43 Becher PF.Grain-size-dependent transformation in polycrystalline tetragonal Zirconia.J Am Ceram Soc.1992,75(3):493-502.
    44 De Aza AH,Chevalier J,Fantozzi G,et al.Crack growth resistance of alumina,zirconia and zirconia toughened alumina ceramics for joint prostheses.Biomaterials.2002,(23):937-45.
    45 Chen HY,Hickel R,Setcos J C.Efects of surface finish and fatigue testing on the fratuer strength of CAD-CAM and pressed-ceramic crowns.J Prosthet Dent.1999,(82):468.
    46 Tinschert J,Natt G,Spiekermann H.Fracture resistance of lithium disilicate-,alumina-,and zirconia-based three-unit fixed partial dentures:a laboratory study.Int J Prosthodont.2001.14(3):231-8.
    47 Tinschert J,Schulze KA,Natt G,et al.Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon:3-year results.Int J Prosthodont.2008,21(3):217-22.
    48 Mclean JW,Odont D.Evolution of dental ceramics in the twenties century.J Prosthet Dent.2001,85(1):61-6.
    49 Goodacre C J,Campagni W V,Aquilino S A.Tooth preparations for complete crowns:An art form based on scientific principles.J Prosthet Dent.2001,85(4):363-76.
    50 Heintze S D,Cavalleri A,Forjanic M,et al.A comparison of three different methods for the quantification of the in vitro wear of dental materials.Dental Materials.2006,22(11):1051-62.
    51 张长瑞,等.陶瓷基复合材料-原理、工艺、性能和设计.国防科技大学出版.2001:1.
    52 李廷凯,丁子上,吴速兴.ZrO2增韧陶瓷中四方相氧化锆的相变量、相变区宽度及其增韧机理的研究.硅酸盐学报.1988,16(3):248-53.
    53 Guazzato M,Albakry M,Ringer S P,et al.Strength,fracture toughness and microstructure of a selection of all-ceramic materials.Part Ⅱ.Zirconia-based dental ceramics.Dental Materials.2004,20:449-56.
    54 Smith D C,Williams D F.Biocompatibility of Dental Materials.VolIVBoca Raton,Florida:CRC Press Inc.1982:43-49.
    55 ISO10993-1:1997.Biological evaluation of medical devices[s].
    56 ISO 10993- 5:1999(E).Biological evaluation of medical devices.Part 5:tests for in vitro cytotoxicity.
    57 Hideki W,Sakano S,Kitamura S.Biological reaction to alumina,zirconia,titanium and polyethylene particle s implant edontomurine calvaria biomaterials.2003,(24):21.
    58 Bosetti M,Vern □□ E,Ferraris M,et al.In vitro characterisation of zirconia coated by bioactive glass.Biomaterials.2001,9(22):987-94..
    59 Kumar R;Cheang P;Khor KA.Radio frequency(RF) suspension plasma sprayed ultra-fine hydroxyapatite(HA)/zirconia composite powders.Biomaterials.2003,24(15):2611-21.
    60 Kong YM,Bae CJ,Lee SH,et al.Improvement in biocompatibility of ZrO2-Al2O3nano-composite by addition of HA..Biomaterials.2005,26(5):509-17.
    61 Gu YW,Yap AU,Cheang P,et al.Effects of incorporation of HA/ZrO(2) into glass ionomer cement(GIC).Biomaterials.2005,26(7):713-20.
    62 Piconi C,Maceauro G.Zirconia as a ceramic biomatedal.Biomat.1999,20(1):1-25.
    63 Covacci V,Bruzzese N,Maccauro G,et al.In vitro evaluation of the mutagenic and carcinogenic power of high purity zirconia ceramic.Biomat.1999,20(4):371-376.
    64 Uo M,Sj(?)gren G,Sundh A,et al.Cytotoxicity and bonding property of dental ceramics.Dent Mater.2003,19(6):487-92.
    65 Willmann G.The color ofbioceramics.Key Engineering Materials.2003,240(2):785-788.
    66 Stanley H R.Biological evaluation of dental materials.Int Dent J.1992,42(1);37-46.
    67 ISO 7405:1997(E).Dentistry-Preclinical evaluation of biocompatibility of medical devices used in dentistry-test methods for dental materials.
    68 中国标准出版社第一编辑室.医疗器械标准汇编.口腔材料卷,北京:中国标准出版社.2002:15-16,33-35,54-55,78-90.
    69 Mosmann T.Rapid colorimetric assays for cellular growth and survival application to proliferation and cytotoxicity assays.J Immunol Methods.1983,65(1-2):55-63.
    70 司徒镇强,吴军正.细胞培养.西安:世界图书出版公司.2004,3:250-252.
    71 ISO 10993-4:2002.Biological evaluation of medical devices.Part 4:Selection of tests for interactions with blood.
    72 Nakahira A,Tamai M,Aritani H,et al.Biocompatibility of dense hydroxyapatite prepared using an SPS process.J Biomed Mater Res.2002;62(4):550-57
    73 中国卫生部.《生物材料和医疗器材生物学评价技术要求》.北京:人民卫生出版社.1997.附件五:溶血实验.505-506.
    1 顾汗卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司.1993.
    2 Robert K J.Ceramics in dentistry:Historical roots and current perspectives.J Proth Den.1996,75(1):18-31.
    3 陈治清主编.口腔材料学.第二版.人民卫生出版社,2000,6.
    4 Heymann H O,Bayne S C,Sturdevant J R,et al.The clinical performance of CAD-CAM-generated ceramic inlays:a four-year study.J Amer Dent Assoc.1996,12(7):1171-1181.
    5 Mclean JW,Odont D.Evolution of dental ceramics in the twenties century.J Proth Dent.2001,85(1):61-66.
    6 Bergman M,Bergman B,Soremark R.Tissue accumulation of nickel released due to electrochemical corrosion of non-precious dental casting alloys.J Oral Rehabil.1980,7(4):325-330.
    7 Vaidyanathan T K,Vaidyanathan J,Prasad A.Properties of a new Dental porcelain.Scanning Microsc.1989,3(4):1023-1033.
    8 张怡,杜传诗.烤瓷用镍基合金的体外细胞毒性试验.华西口腔医学杂志.1990,8(1):19-22.
    9 Pang I C,Gilbert J L,Chai J,et al.Bonding characteristics of low-fusing porcelain bonded to pure titanium and palladium-copper alloy.J Prosthet Dent.1995,73(1):17-25.
    10 Wang R R,Fenton A.Titanium for prosthodontic application:rev iew of the literature.Quint Int.1996,27:401-408.
    11 Andersson M,Razzoog M E,Oden A,et al.Prooera:a new way to achieve an all-ceramic crown.Quintessence Int.1998,(29):285-92.
    12 Luthardt R G,Sandkuhl O,Reitz B.Zirconia-TZP and alumina advanced technologies for the manufacturing of single crowns.Eur J Prosthodont Rest Dent.1999,(7):113-19.
    13 马轩祥主编.口腔修复学.第五版.人民卫生出版社.2004,12.
    14 徐君伍主编.口腔修复理论与临床.北京:人民卫生出版社.1999,8:39.
    15 Seghi R R,Sorensen J.Relative flexural strength of six new ceramic materials..Int J Prosthodont.1995,8(3):239-46.
    16 Siegward D,Heintze.Bridges made of all-ceramic materials(IPS Empress 2) Indication,clinical aspects,prognosis.Ivoclar-Vivadent Peport.1998,12:11-31.
    17 Kelly J R,Nishimura I.Campbell S D.Ceramic in dentistry:Historical roots and current perspeetives.J Prosthet Dent.1996,75:18-32.
    18(英)D.F.威廉姆斯,Williams主编,朱鹤孙,等,译.医用与口腔材料.材料与科学技术丛书,第14卷.科学技术出版社.1998,9.
    19 Asmussen E,Peutzfeldt A,Heitamann T.Stiffness elastic limit,and strength of newer types of endodontic posts.J of Dentistry.1999,27(4):275-278.
    20 Hideki W,Sakano S,Kitamura S.Biological reaction to alumina,zirconia,titanium and polyethylene particles implant edontomurine calvaria biomaterials.2003,(24):21-27.
    21 Boseti M,Verne E,Ferraris M.In vitro characterization of zirconia coated by bioactive glass.Biomaterials.2001,22(9):987-94.
    22 Rajendra K,Cheang P,Khor K.Radio frequency(RF)suspension Plasma sprayed ultra-fine HA/zirconia composite powders.Biomaterials.2003,24(15):2611-21.
    23 Malament K A,Socransky S S.Survival of Dicor glass-ceramic dental restorations over 14years:Part 1.Survival of Dicor complete coverage restorations and effect of internal surface acid etching,tooth position,gender,and age.J Prosthet Dent.1998,1(1):23-32.
    24 陈吉华,森修一,永野清司.现代临床金属烤瓷修复学.西安:陕西科技出版社.1998,8.
    25 Marquis P M.Dental ceramics.Metals and Materials.1989,4:145-148.
    26 Goodacre C J,Campagni W V,Aquilino S A.Tooth preparations for complete crowns:An art form based on scientific principles.J Prosthet Dent.2001,85(4):363-376.
    27 Messer P F,Piddock V,Lloyd C H.Vita High Ceramics.J Dent.1991,19:51.
    28 钦征骑,钱杏南,贺盘发.新型陶瓷材料手册.南京:江苏科学技术出版社.1996,6.
    29 周玉.陶瓷材料学.哈尔滨:哈尔滨工业大学出版社.1995,10:13-18.
    30 王零森著.特种陶瓷(精).长沙:中南工业大学出版社.2005,3:139-153.
    31 Vita.Vita In-Ceram Alumina,Spinell,Vitadur-alpha,high-tech infiltration ceramic crown and bridge technology with proven featuers,brilliant aesthetics.Bad Sackingen,Germany:Vita Zahnartzi.1995.
    32 玉龙,金学军,徐祖耀,等.Ce-Y-TZP陶瓷中的马氏体相变与形状记忆效应.上海交通大学学报.2001,35(3):385-388.
    33 Anderson M,Oden A.A new all-ceramic crown-a dense-sinteerd,high purity alumina coping with porcelain.Aeta Odontol Scan.1993,51:59.
    34 Probster L,Diehl J.Slip casting alumina ceramics for crown and bridge restorations.Quint Int.1992,23(1):25-31.
    35 Wagner W C,Chu T M.Biaxial flexural strength and indentation fracture toughness of three dental core ceramics.J Prosthet Dent.1996,76(2):140-144.
    36 Probster L.Four-year clinical study of glass-infiltrated sintered alumina crowns.J Oral Rehabil.1996,23(2):147-151.
    37 Malament K A,Socransky S S.Survival of Dicor glass-ceramic dental restorations over 14years:Part 1.Survival of Dicor complete coverage restorations and effect of internal surface acid etching,tooth position,gender,and age.J Prosthet Dent.1999,81(1):23-32.
    38 Sjogren G,antoR,Tillberg A.Clinical evaluation of all-ceramic crowns(Dicor)in general practice.J Prosthet Dent.1999,81(3):277-84.
    39 Hobo S,Iwata T.Castable apatite ceramics as a new biocompatible restorative material.Theoretical considerations.Quint Int.1985,16(2):207-316.
    40 Iijima H,Hakamazuka Y,Ito S,et al.Clinical application and evaluation of Olympus castable Ceramics(OCC).J Dent Res.1991,70:757.
    41 Grossman D G.Biaxial flexure strength of CAD/CAM materials(IADR Abstract No.1341).J Dent Res.199,70(1):433.
    42 Krejci I,Lutz F,Reimer M.Wear of CAD/CAM ceramic inlays:Restorations,opposing cusps,and luting cements.Quint Int.1994,25(3):199-207.
    43 Taira M.Dental cutting behavior of mica-based and apatite-based machinable glass ceramic for CAD/CAM.J Oral Rehabil.1990,17:461-472.
    44 秦燕军,王忠义,曹小刚,等.晶化温度对牙科用云母玻璃陶瓷微观结构的影响.第四军医 大学学报.2001,22(12):742-745.
    45 李江,王忠义,张云龙,等.氧化锆添加剂对牙科用氧化铝玻璃复合体性能的影响.实用口腔医学杂志.2000,16(3):1-4.
    46 Liithy H,Wohlwend A,Schorer P.Heat-pressed Ceramic technology and strength.Int J Prosthodont.1992,5(1):9-16.
    47 Uctasli S,Wilson HJ,Unterrbrind G,et al.The sterngth of a heat-pressed all ceramic restorative material.J Oral Rehabil.1996,3(3):257-261.
    48 Holand W,Schweiger M,Frank M,et al.A comparison of the micro structure and properties of the IPS EmpressII and the IPS Empress glass-ceramics.J Biomedical Mat.Res.2000,53(3):297-303.
    49 Catell M J.et al.Flexural strength optimisation of a leuciteer in forced glass ceramic.Dent Mater.2001,17(1):21-25.
    50 Luo XP.AFM and SEM study of the effects of etching on IPS -EmperssII dental ceramic.J Surface Science.2001,49(1):388-390.
    51 骆小平,钱冬冬,王宁,等.Empress II高强度全瓷冠桥的临床制作.临床口腔医学杂志.2003,19(8):476-477.
    52 Kern M,Thompson V P.Bonding to Zirconia ceramic:Adhesive methods and their durability.Dent Mater.1998,14(1):64-71.
    53 Kakehashi Y,Luthy H,Naef R,et al.A new all-ceramic post and coer system:clinical,technical,and in vitro results.Int J Perio Restor Dent.1998,18(6):586-593.
    54 Koutayas S O,Kern M.All ceramic post and cores:the state of the art.Quint Int,1999,30(6):383-392.
    55 Filser F,Kocher P,Weibel F,et al.Reliability and strength of all- ceramic dntal restoration fabricated by DCM.Int J Comput Dent.2001,4(2):89-106.
    56 Garvie R C,Hannink R H,Pascoe R T.Ceramic steel? Nature.1975,258:703-704.
    57 Hannink RH J,Kely P M,Muddle B C.Transformation toughening in zirconia -containing ceramics.J Am Ceram Soc.2000,83(3):461-487.
    58 Lange F F.Transformation toughening part 1:size effects associated with the thermodynamics of constrained transformation.J Mater Sci.1982,17(3):225-234.
    59 Marshall D B.Strength characteristic of transformation-toughened zirconia.J Am Ceram Soc.1986,69(3):173-180.
    60 Mcmeeking M M,Evans A G.Mechanism of transformation toughening in brittle materials.J Am Ceram Soc.1983,65(5):242-46.
    61 Rice R W.Microcracking in toughening of zirconia ceramics.Ceram Eng Sci Proc.1981,2(4):661-68.
    62 Evans A G,Faber K T.Toughening of ceramics by circumferential micro-cracking.J Am Ceram Soc.1981,64(7):394-99.
    63 Glass S J,Green D J.Surface Modification of Ceramics by Particle infiltration.Adv.Ceram Mater.1987,2:129-31.
    64 Lange F F.A Technique for introducing Surface Compression into Zirconia Ceramics.J Am Ceram Soc.1983,66(10):178-79.
    65 郭瑞松,蔡舒,季惠明,等.工程结构陶瓷.天津:天津大学出版社.2002,5.
    66 黄传真,孙静,孙高祚,等.ZrO2/Al2O3陶瓷刀具材料的增韧补强机理分.机械工程.2003,8:3-6.
    67 蔡舒,袁启明.氧化锆(氧化钇)增韧莫来石陶瓷的组成与强韧化机理的研究.硅酸盐通报.2000,19(6):11-15.
    68 仇越秀.溶胶-凝胶法制备氧化锆增韧微晶玻璃牙科材料的研究.陕西科技大学硕士学位论文.2005,05,03.
    69 Hench L L.Bioceramics.J Am Ceram Soc.1996,79(9):1705-23.
    70 Landau M V,Titelman L,Vradman L,et al.Thermostable sulfated 2-4nm tetragonal ZrO2 with high loading in nanotubes of SBA-15:a superior acidic catalytic material.Chem Commum (Camb).2003,7(5):594-5.
    71 陈伟民,陈楷.ZrO2在微晶玻璃中的增韧作用.材料科学与工程.1998,16(3),73-76.
    72 郭景坤.关于先进结构陶瓷的研究.无机材料学报.1999,14(2):193-200.
    73 Piconi C,Maccauro G.Zirconia as a ceramic biomaterial.Biomaterials.1999,20(1):1-25.
    74 Keith O,Kusy R P,Whitley J Q.Zirconia Brackets:an Evaluation of morphology and coefficients of friction.Am J Orthod Dentofacial Orthop.1994,106(6):605-14.
    75 Meyenberg K H,Luthy H,Scharer P.Zirconia posts a new all ceramic concept for nonvital abutment teeth.J Esthet Dent.1995,7:73-80.
    76 Vigolo P,Fonzi F,Majzoub Z.An in vitro evaluation of ZiReal abutments with hexagonal connection:in original state and following abutment preparation.Int J Oral Maxillofac Implants.2005,20(1):108-114.
    77 Kittipibul P,Godfrey K.In vitro shearing force testing of the Australian zirconia-based ceramic Begg bracket.Am J Orthod Dentofacial Orthop.1995,108(3):308-15.
    78 金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社.2000,3:50-51,131.
    79 玉龙,金学军,徐祖耀,等.Ce-YTZP陶瓷中的马氏体相变与形状记忆效应.上海交通大学学报.2001,35(3):385-388.
    80 Evans A G,Faber K T.Toughening of ceramics by circumferential micro-cracking.J Am Ceram Soc.1981,64(7):394-399.
    81 Rice R W.Microcracking in toughening of zirconia ceramics.Ceram Eng Sci Proc.1981,2(4):661-668.
    82 尹衍升,李嘉.氧化锆陶瓷及其复合材料.北京:化学工业出版社.2004,2.
    83 Paolo F M,Pierfrancesco R,Raffaelli L.An overview of zirconia ceramics:Basic properties and clinical applications.Journal of Dentistry.2007,35(11):819-826.
    84 Kosmac T,Oblak C,Jevnikar P.The effect of grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic.Dent Mat.1999,15(16):426-433.
    85 Matthias K,Stefan M,Wegner.Bonding to zirconia ceramic:adhesion methods and their durability.Dental Materials.1998,14(1):64-71.
    86 Guido H,Frank B,Hussein A,et al.Fracture strength after dynamic loading of endodontically treated teeth restored with different post-and-core systems.The Journal of Prosthetic Dentistry.2002,87(4):438-445.
    87[澳大利亚]M V 斯温,郭景坤译.陶瓷的结构与性能.材料科学与技术丛书:第11卷.北京:科学技术出版社.1998,1:99.
    88 Guazzato M,Albakry M,Ringer S P,et al.Strength,fracture toughness and microstructure of a selection of all-ceramic materials.Part Ⅱ Zirconia-based dental ceramics.Dental Materials. 2004,20:449-456.
    89 Guazzato M,Quach L,Albakry M.Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic.Journal of Dentistry.2005,33(1);9-18.
    90 Tinschert J,Zwez D,Marx R,et al.Structural reliability of alumina-,feldspar-,leucite-,micaand zirconia-based ceramics.J Dent.2000,28(7):529-35.
    91 Quinn J B,Sundar V,Lloyd I K.Influence of microstructure and chemistry on the fracture toughness of dental ceramics.Dent Mater.2003,19(7):603-611.
    92 Mclaren E A,White S N.Glass-infiltrated zirconia/alumina-based ceramic for crowns and fixed partial dentures.Pract Periodontics Aesthet Dent.1999,11(8):985-994.996.
    93 Probster L,Weber H,Diem J,et al.First clinical and materials experience with full porcelain crowns and In-Ceram bridge system.ZWR,1990,99(10):816-819.
    94 Fischer H,Weber M,Marx R.Lifetime prediction of all-ceramic bridges by computational methods.J Dent Res.2003,82(3):238-242.
    95 Studart A R,Filser F,Kocher P,et al.Fatigue of zirconia under cyclic loading in water and its implicationsf or the design of dental bridges.Dental Materials.2006.
    96 Studart A R,Filser F,Kocher P,et al.Cyclicfatigue in water of veneer-framework composites for all-ceramic dental bridges.Materials.2006.
    97 Komine F,Gerds T.Witkowski S,et al.Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks.Acts Odontol Scand.2005,63(6):361-66.
    98 Sutter D.Lava zirconia crowns and bridges.Int J Comput Dent.2004,7(1):67-76.
    99 Yang Y,Ong J,Tian I.Deposition of highly adhesive Zr02 coating on Ti and CoCrMo implant materials using plasma spraying.Biomaterials.2003,24:619-27.
    100 Hsu H C,Yen S K.Eveluation of metalion release and corrosion resistance of ZrO2 thin coatings on the dental Co-Cr alloys.Dent Mater.l998,14(5):339-46.
    101 Zeng Y,Lee S W,Gao L,et al.Atmospheric plasma sprayed coating of nanostructured zirconia.J Eur Ceram Soc.2002,22:347-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700