用户名: 密码: 验证码:
纳米复合陶瓷刀具材料多尺度模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷刀具材料具有高的强度、较强的红硬性和耐磨性,是一类极具发展前途的刀具材料,但是由于断裂韧度较低,限制了其广泛应用。纳米复合陶瓷刀具材料的出现有望从根本上解决陶瓷刀具材料断裂韧度低的问题。材料的宏观力学性能主要取决于微观组织,对材料进行宏、微观尺度耦合模拟,研究微观组织和宏观力学性能之间的关系,对纳米复合陶瓷刀具材料的研发具有重要的理论指导意义。
     本文研究了烧结过程中陶瓷刀具材料晶粒生长理论和Monte Carlo模拟方法,建立了无缺陷两相纳米复合陶瓷刀具材料微观组织演变的Monte Carlo Potts模型,基于微软公司开发的Visual C++6.0平台,利用C++编程语言,开发了模拟程序,对微观组织演变过程进行了模拟和试验验证。
     模拟研究了纳米第二相的粒径及含量对纳米复合陶瓷刀具材料微观组织演变的影响。结果表明,纳米颗粒对基体晶粒的生长具有阻碍作用,能够细化基体晶粒。在含量相同的情况下,尺寸大的纳米颗粒钉扎作用弱;在尺寸相同的情况下,纳米颗粒含量越高,其钉扎作用越强。同时模拟得到了晶内/晶间型的微观组织。纳米颗粒的位置取决于其尺寸和含量。粒径较小的颗粒容易进入基体晶粒内部,而粒径大的纳米颗粒则主要位于基体晶粒边界上。当纳米相含量较低时,由于总的钉扎力较小,因而纳米颗粒更易进入基体晶粒内部。
     模拟研究了不同晶界能比率对纳米复合陶瓷刀具材料微观组织演变的影响。结果表明,晶界能与界面能的竞争会影响纳米复合陶瓷刀具材料的微观组织和晶粒生长过程。当界面能高于晶界能时,纳米颗粒可能进入基体晶粒,形成晶内/晶间型的纳米复合陶瓷刀具材料,并且纳米颗粒对基体晶粒的生长产生较强的钉扎作用;当界面能低于晶界能时,纳米颗粒则主要位于晶界上,形成晶间型的纳米复合陶瓷刀具材料。
     模拟研究了初始基体晶粒尺寸对纳米复合陶瓷刀具材料微观组织演变的影响。结果表明,初始基体晶粒尺寸影响纳米复合陶瓷刀具材料的微观组织类型及晶粒生长过程。当纳米晶粒的尺寸及含量一定时,初始基体晶粒尺寸越大,最终复合材料的晶粒尺寸越大,但是晶粒生长速率越低,进入基体晶粒内部的纳米颗粒越少,越难得到晶内型的微观组织。
     建立了烧结温度和晶粒生长速度之间的关系模型、烧结压力和晶粒生长速度之间的关系模型、模拟时间和保温时间之间的关系模型,并将这些模型耦合到模拟程序中,建立了考虑烧结工艺参数的纳米复合陶瓷刀具材料微观组织模拟模型,实现了不同烧结温度、烧结压力和保温时间下的模拟。结果表明,随着模拟时间的增长,平均晶粒半径呈抛物线规律不断增大;随着烧结温度、烧结压力的升高,平均晶粒半径不断增大,烧结温度对晶粒生长的影响大于烧结压力对晶粒生长的影响。
     建立了含有气孔的纳米复合陶瓷刀具材料微观组织演变Monte Carlo Potts模型,开发了模拟程序,模拟研究了纳米颗粒和气孔对微观组织演变、晶粒生长和致密化过程的影响。模拟结果表明,纳米颗粒阻碍晶粒生长;气孔对基体相晶粒长大具有明显的阻碍作用,致密度较低时,晶粒生长缓慢,而致密度较高时,晶粒的生长速度明显加快;陶瓷刀具材料的致密度随模拟时间的增加而增大,晶粒生长抑制致密化。
     将Monte Carlo算法与有限元法耦合,建立了纳米复合陶瓷刀具材料微观尺度有限元模型,对残余热应力及外力作用下的应力场进行了模拟,实现了宏微观尺度耦合模拟。
     模拟研究了Al2O3/SiC纳米复合陶瓷刀具材料的残余热应力场。结果表明,纳米SiC颗粒内主要是残余压应力;基体材料内不仅存在拉应力区,而且存在不同程度和不同范围的压应力区和剪应力区。残余热应力大小和分布形式与第二相颗粒的含量、颗粒尺寸及基体相初始粒径密切相关。最大残余拉应力随着第二相粒径和体积含量的增加而增大,而最大残余压应力则随着第二相体积含量的增加呈现先上升后下降的趋势。
     模拟研究了Al2O3/SiC纳米复合陶瓷刀具材料在单轴拉力作用下的应力场。结果表明,残余热应力的存在使材料内部产生较大的残余压应力区,有利于裂纹尖端闭合,对增韧有一定作用。
     结合残余应力的有限元模拟结果,分析了纳米复合陶瓷刀具材料的残余应力增韧机理。材料内部的残余压应力对裂纹尖端具有闭合作用,纳米相周围产生的局部拉应力能够诱发穿晶断裂,同时促使裂纹分叉和偏转,从而提高陶瓷刀具材料的断裂韧度。为减小拉应力范围,降低拉应力值,可对第二相的含量和粒径以及基体相初始粒径应加以控制,保证残余压应力较大而拉应力较小。
     对Al2O3/SiC纳米复合陶瓷刀具材料进行了烧结试验,实验获得的微观组织特征与模拟的微观组织特征吻合较好,证明了模拟模型和模拟结果的正确性。
Ceramic tool material has been one of the most important cutting tools because of its high hardness, favorable high-temperature hardness and good wear resistance. However, the fracture toughness of ceramics is low which limits the application of ceramic tools. The appearance of nanocomposite ceramic tool materials can substantially solve the problem of low fracture toughness of ceramic materials. The macro mechanical properties of materials are governed by their microstructures, it is very meaningful to simulate the micro structure of nanocomposite ceramic tool materials by coupling macro-scale and micro-scale simulation methods and study the relationship between microstructure and mechanical properties.
     In this paper, the grain growth theory for ceramic tool materials during fabrication and Monte Carlo simulation algorithm have been analyzed. The Monte Carlo Potts model for microstructure evolution in two-phase nanocomposite ceramic tool materials has been established. Based on Microsoft Visual C++6.0 compiler, the simulation program has been developed using C++language and the microstructure evolution has been simulated and verified by experiments.
     The effect of nanoparticles with various size and area fraction on microstructure evolution of nanocomposite ceramic tools has been simulated. It is shown that the nanoparticles have inhibition effect on matrix grain growth and refine the ceramic matrix grain. Large-sized nanoparticles have weaker pinning effect than the small one for a specific area fraction, and nanoparticles with high area fraction have stronger pinning effect on matrix for a given grain size. The microstructure of nanocomposite ceramic obtained from simulation is intra/intergranular-type, and the positions of nanoparticles depend on the size and area fraction of nano-phase. The small-sized nanoparticles are easier to enter into the matrix grains, whereas the large one prefers to locate on the grain boundaries. When the area fraction is lower, the total pinning force is weaker, as a result the nanoparticle is easier to be entrapped inside the matrix grains.
     The effect of grain boundary energy ratio on microstructure evolution of nanocomposite ceramic tools has been simulated. It is shown that the competition between the boundary energy and the interfacial energy affects the microstructure and grain growth of nanocomposite ceramic tool materials. When the interfacial energy is higher than the grain boundary energy, the nanoparticles may enter into the matrix grains and form an intra/intergranular-type nanocomposite ceramic material and the nanoparticles have a stronger pinning effect on matrix grain growth. When the interfacial energy is lower than the grain boundary energy, the nanoparticles mainly locate at the grain boundaries and form an intergranular-type nanocomposite ceramic material.
     The effect of initial matrix grain size on microstructure evolution of nanocomposite ceramic tools has been simulated. It is shown that the initial matrix grain size affects the microstructure type and grain growth process. For a given grain size and area fraction of the nano-phase, the larger the initial matrix grains, the larger the final grain size is, but the lower the grain growth rate is. There are less nanoparticles entering into the matrix grains, and it is more difficult to obtain an intragranular-type microstructure.
     The relationship between fabrication temperature and grain growth velocity, the relationship between fabrication pressure and grain growth velocity, and the relationship between simulation time and real duration time have been establishied. These three relationships have been incorporated into simulation program. The microstructure of nanocomposite ceramic tool materials has been simulated allowing for the fabrication parameters. It is shown that the average grain radius increases with an increment in simulation time, fabrication temperature and fabrication pressure. But the effect of fabrication temperature on grain growth is bigger than that of fabrication pressure.
     The Monte Carlo Potts model for microstructure evolution in nanocomposite ceramic tool material containing pores has been set up and programmed. The effect of nanoparticles and pores on the microstructure evolution, grain growth and densification has been simulated. It is shown that the nanoparticles inhibit grain growth, and the pores affect grain growth and densification. The inhibition by pores is very obviously, the grain growth is slower at a lower density and vice versa. The densification of nanocomposite ceramic tool material increases with an increment in simulation time, and the grain growth restrains densification.
     The microscale finite element simulation model for nanocomposite ceramic tool materials has been established by coupling Monte Carlo algorithm with finite element method. The residual thermal stress and the stress generated by applied load has been simulated, and the coupling simulation at macro-scale and micro-scale is accomplished.
     The residual thermal stress of Al2O3/SiC nanocomposite ceramic tool materials has been simulated. The results show that there are mainly residual compressive stresses in nano SiC particles, and there are not only residual tensile stresses but also compressive stresses and shearing stresses in matrix. The magnitude and distribution of residual thermal stress is closely related to the content and size of nano-phase and the size of matrix-phase. The maximum residual tensile stress increases with an increment in the size and content of nano-phase, and the maximum residual compressive stress increases at first and then decreases with the content of nano-phase.
     The stress field of Al2O3/SiC nanocomposite ceramic tool materials has been simulated under uniaxial pressure. The results show that the residual thermal stress can cause bigger compressive stress field which is helpful to close the crack tip and result in toughening effect.
     The toughening mechanism by residual thermal stress in nanocomposite ceramic tool materials has been analyzed by using the simulation results of finite element method. The internal residual compressive stress can close crack tip, and the partial tensile stress around nano particles can induce intragranular failure, make crack branch and deflect, to improve the fracture toughness of nanocomposite ceramic tool materials. In order to reduce the distribution scope and magnitude of tensile stress, the nano-phase content and size as well as the initial matrix grain size should be controlled.
     A kind of nanocomposite ceramic tool material Al2O3/SiC has been developed to verify the simulated results. The characteristics of the micro structure of the developed material Al2O3/SiC are in well agreement with those of the simulated microstructure. Therefore the established models and the simulation results in the dissertation are convinced.
引文
[1]苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报,2004,14(5):237-242.
    [2]郭景坤.中国结构陶瓷的进展及其应用前景[J].硅酸盐通报,1995,(4):18-28.
    [3]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅰ)—二组元陶瓷复合材料的研究与开发[J].硅酸盐通报,1996,(5):43-48.
    [4]徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(11)—高组元陶瓷复合材料的研究与开发[J].硅酸盐通报,1996,(6):42-46.
    [5]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):193-202.
    [6]Niihara K. New design concept of structural ceramics:Ceramic nanocomposites [J]. The Centennial Memorial Issue of the Ceramic Society of Japan,1991,99(10): 974-982.
    [7]Niihara K, Nakahira A. Particulate strengthended oxide nanocomposites[C].7th International Meeting on Modern Ceramics Technologies. Montecatini Terme:The American Ceramic Society,1990,637-664.
    [8]Niihara K, Nakahira A. Strengthening and toughening mechanisms in nanocomposite [J]. Annales de Chimie,1991,16(4):479-482.
    [9]Nakahira A, Niihara K and Hirai T. Microstructure and Mechanical Properties of Al2O3-SiC Composites[J]. J. Ceram. Soc. Jpn.,1986,94,767-972.
    [10]新原皓一,伊崎正宽,中平敦.高温超强度Si3N4-SiCナノ复合材料[J].粉体および粉末冶金,1990,37(2):352-356.
    [11]靳喜海,高濂.纳米复相陶瓷的制备、显微结构和性能[J].无机材料学报,2001,16(2):200-206.
    [12]王丽丽,郑伟涛等Al2O3-SiC(?)内米复合陶瓷的制备及其表征[J].吉林大学学报(理学版),2006,44(1):96-100.
    [13]梁艳媛,郭英奎,郭海峰.纳米ZrO2/Al2O3复合陶瓷粉体的制备及XRD分析 [J].哈尔滨理工大学学报,2006,11(4):95-98.
    [14]Yutaka Shinoda, Takayuki Nagano, Hui Gu, Fumihiro Wakai. Superplasticity of Silicon Carbide [J]. J.Am.Ceram.Soc,1999,82(10):2916-2918.
    [15]李国军,黄校先,郭景坤.晶内/晶间复合型Al2O3/Ni纳米金属陶瓷显微结构和力学性能的研究[J].无机材料学报,2003,18(1):71-77.
    [17]Niihara K, Hirano T, Nakahira A and Izaki K. The correlation between interface structure and mechanical properties for silicon nitride based nanocomposites[J]. Grain Boundary Controlled Properties of Fine Ceramics, Elsevier Applied Science. London,1992,103-111.
    [18]周新贵,张长瑞,陈大明,彭应国.纳米Si-C-N粒子增强Si3N4复合材料的结构和性能[J].国防科技大学学报,1999,(3):38-40.
    [19]谢峰,张崇高,刘宁,杨海东.Ti(C,N)基金属陶瓷刀具与纳米改性[J].中国机械工程,2002,13(12下):1062-1064.
    [20]仝建峰,陈大明,陈宇航,雷景轩.热压工艺参数对纳米SiC-Al2O3/TiC新型陶瓷刀具材料力学性能的影响[J].粉末冶金技术,2002,18(2):102-105.
    [21]宋世学,艾兴,赵军,吴齐Al2O3/TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料,2003,27(12):35-37.
    [22]Zener C. Private communication to C.S.Smith, "Grains, Phases and Interfaces:An Interpretation of Microstructure"[J]. Trans AIME,1948,175(15):47-48.
    [23]Hirano T, Niihara K. Microstructure and mechanical properties of Si3N4/SiC composites[J]. Materials Letters,1995,22(5-6):249-254.
    [24]Rigueiro J P, Pastorl J Y, Lorca J, et al. Revisiting the mechanical behavior of alumina/silicon carbide nanocomposites[J]. Acta Mater,1998,46(15):5399-5411.
    [25]H.Z. Wang, L. Gao, J.K. Guo. The effect of nanoscale SiC particles on the microstructure of Al2O3 ceramics[J]. Ceramics International,2000,26(6):391-396.
    [26]李理,杨丰科,侯耀永.纳米颗粒复合陶瓷材料[J].材料导报,1996,(4):67-73.
    [27]候耀永,李理,张巨先Al2O3/SiCnano纳米复合材料显微结构及强韧化机理研究[J].电子显微学报,1998,17(2):156-161.
    [28]郭小龙,陈沙鸥,戚凭等.纳米颗粒对陶瓷材料力学性能的影响[J].青岛大学学报(自然科学版),2000,(2):60-64.
    [29]张巨先,高陇桥.晶内型结构的Al2O3-SiCp纳米复相陶瓷[J].硅酸盐学报,2001,29(5):471-474.
    [30]Tatsuki Ohji, Young-Keun Jeong, Yong-Ho Choa, et al. Strengthening and toughening mechanism of ceramic nanocomposites[J]. J Am Ceram Soc,1998, 81(6):1453-1460.
    [31]仝建峰,陈大明,陈宇航.纳米SiC-Al2O3/TiC多相陶瓷复合材料显微结构的研究[J].硅酸盐学报,2001,29(5):427-430.
    [32]Honglai Tan, Wei Yang. Toughening mechanisms of nano-composite ceramics [J]. Mechanics of Materials,1998,30(2):111-123.
    [33]王宏志,高濂,归林华等.晶内型Al2O3-SiC纳米复合陶瓷的制备[J].无机材料学报,1997,12(5):671-674.
    [34]王宏志,高濂,郭景坤Al2O3-SiC纳米复合陶瓷中的残余应力分析[J].中国科学(E),1999,29(3):200-205.
    [35]焦绥隆,Borsa C E氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增):89-93.
    [36]王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析[J].陶瓷学报,2000,21(2):107-111.
    [37]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,(3):259-270.
    [38]Martin Sternitzke. Review: Structural ceramic nano composites [J]. Journal of the European Ceramic Society,1997,17(9):1061-1082.
    [39]郭俊梅,邓德国,潘健生,胡明娟.计算材料学与材料设计[J].贵金属,1999,20(4):62-67.
    [40]D. Raabe著.项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002:3-10.
    [41]罗旋,费维栋,李超,姚忠凯.材料科学中分子动力学模拟研究进展[J].材料科学与工艺,1996,4(1):124-128.
    [42]Verlet L. Computer Experiments on Classical Fluids:I Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review,1967,159(1):98-103.
    [43]陈明和,谢兰生,朱知寿.计算机模拟与预测方法在材料科学研究中的应用[J].机械工程材料,2005,29(6):1-3.
    [44]Paul C. Millett, R. Panneer Selvam, Ashok Saxena. Molecular dynamics simulations of grain size stabilization in nanocrystalline materials by addition of dopants [J]. Acta Materialia,2006,54(6):297-303.
    [45]周国荣,李蓓琪,耿浩然等.Al纳米线凝固过程的分子动力学模拟[J].物理化学学报,2007,23(7):1071-1074.
    [46]王慧娟,陈成等.硅晶体中点缺陷结合过程的分子动力学模拟[J].材料科学与工程学报,2007,25(2):298-300.
    [47]罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究[J].中国机械工程,2000,11(8):860-862.
    [48]陈时锦,初文江,孙西芝,程凯.多晶体纳米切削的分子动力学仿真研究[J].机械设计与制造,2006,(4):117-119.
    [49]Kobayashi Ryo. Modeling and numerical simulation of dendritic crystal growth [J]. Phys.D,1993,63(1):410-423.
    [50]Chen L Q, Yang W. Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters:The grain-growth kinetics[J]. Phys Rev B,1994,50(21):15752-15756.
    [51]Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater,1997,45(2):611-622.
    [52]N. Moelans, B. Blanpain, P. Wollants. Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles [J]. Acta Materialia,2006,54(4):1175-1184.
    [53]赵松年.元胞自动机和复杂性研究[J].物理,1994,23(9):566-570.
    [54]N. Govindaraju, B Q Li. A macro-micro model for magnetic stirring and microstructure formation during solidification[J]. Energy Conversion and Management,2002,43(3):335-344.
    [55]王同敏.金属凝固过程微观模拟研究[D].大连理工大学博士学位论文,2000:79-93.
    [56]康秀红,杜强,李殿中等.用元胞自动机与宏观传输模型耦合方法模拟凝固组织[J].金属学报,2004,40(5):452-456.
    [57]Namin Xiao, Mingming Tong, Yongjun Lan, et al. Coupled simulation of the influence of austenite deformation on the subsequent isothermal austenite-ferrite transformation[J]. Acta Materialia,2006,54(5):1265-1278.
    [58]申孝民,关小军,张继祥等.有限元与Monte Carlo方法耦合的冷轧纯铝板再结晶模拟[J].中国有色金属学报,2007,17(1):124-130.
    [59]K. Mori, H. Matsubara, N. Noguchi. Micro-macro simulation of sintering process by coupling Monte Carlo and finite element methods[J]. International Journal of Mechanical Sciences,2004,46(6):841-854.
    [60]毛卫民,赵新兵.金属的再结晶和晶粒长大[M].北京:冶金工业出版社,1994:14,47-57,64,181,218-219,236-239.
    [61]果世驹.粉末烧结理论[M].北京:冶金工业出版社,2002.
    [62]H.V. Atkinson. Theory of Normal Grain Growth in Pure Single Phase Systems[J]. Acta Metall.,1988,36(3):469-491.
    [63]J.E. Burke, D. Turnbull. Recrystallization and Grain Growth[J]. Progress in Metal Physics,1952,3,220-292.
    [64]Hu. Hsun, Rath B B. On the Time Exponent in Isothermal Grain Growth[J]. Metallurgical Transactions,1970,1(11):3181-3184.
    [65]Gil F X, Rodriguez D, Planell J A. GrainGrowth Kinetics of Pure Titanium[J]. Script Metll.Mater.,1995,33(8):1361-1366.
    [66]R. B. ALLEY, J. H. PEREPEZKO and C. R. BENTLEY. GRAIN GROWTH IN POLAR ICE: 1.THEORY[J]. Joural of Glaciology,1986,32(112):415-424.
    [67]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2001:284.
    [68]M. Yoshimura, T. Ohji, M. Sando, Y. H. Choa, T. Sekino and K. Niihara. Oxidation-Induced Strengthening and Toughening Behavior in Micro- and Nano-Composites of Y2O3/SiC System[J]. J.Mater.Sci.Lett,1998,35(3-4):139-143.
    [69]Natter H, Loffler M S, Krill C E. Crystallite Growth of Nanocrystal Line Transition Metals Studied in Situ by High Temperature Synchrotron X-ray Diffraction [J]. Scripta Materialia,2001,44(8-9):2321-2325.
    [70]Dong S S, Xou G T, Yang H B. Thermal Characteristic of Ultrafine-grained Aluminum Produced by Wire Electrical Explosion [J]. Scripta Materialia,2001, 44(1):17-23.
    [71]沈晓勇.陶瓷晶粒生长的微观演化模型及其仿真研究[D].厦门大学硕士学位论文,2000.
    [72]浙江大学等编.硅酸盐物理化学[M].北京:中国建筑工业出版社,1980:365.
    [73]L.A. Xue, I.W. Chen. Deformation and Grain Growth of Low-temperature-sintered High-purity Alumina [J]. J.Am.Ceram.Soc,1990,73(11):3518-3521.
    [74]Y. S. Kwon, K. T. Kim. High Temperature Densification Forming of Alumina Powder Constitutive Model and Experiments [J]. J.Eng.Mater.Tech,1996,118(4): 448-455.
    [75]Y. S. Kwon, K. T. Kim. Densification Forming of Alumina Powder—effects of Power-law Creep and Friction [J]. J.Eng.Mater.Tech.,1996,118(4):471-477.
    [76]K. T. Kim, H. G. Kim and H. M. Jang. Densification Behavior and Grain Growthl of Zirconia Powder Compact under High Temperature [J]. Int.J.Eng.Sci.,1998, 36(11):1295-1312.
    [77]J. Besson, M. Abouaf. Rheology of Porous Alumina and Simulation of Hot-isostatic Pressing [J]. J. Am. Ceram. Soc,1992,75(8):2165-2172.
    [78]Morhac M, Morhacova E. Monte Carlo Simulation Algorithms of Grain Growth in Polycrystalline Materials [J]. Crystal Research and Technology,2000,35(1):117-128.
    [79]Ising E., Beitrag Z. A contribution to the theory of ferromagnetism[J]. Zeitschrift fur Physik,1925,31(1-4):253-258.
    [80]Wu F. Y. The Potts model [J]. Reviews of Modern Physics,1982,54(1):235-268.
    [81]Anderson M P, Srolovitz D J, Grest G S, et al. Computer Simulation of Grain Growth-Ⅰ.Kinetics[J].Acta Metallurgica 1984,32(5):783-791.
    [82]Srolovitz D J, Anderson M P, Sahni P S, Grest G S. Computer siumulation of grain growth-Ⅱ.Grain size distribution, topology, and local dynamics[J]. Acta Metallurgica,1984,32(5):793-802.
    [83]Srolovitz D J, Anderson M P, Grest G S, Sahni P S. Computer siumulation of grain growth-Ⅲ.Influence of a particle dispersion[J]. Acta Metallurgica,1984, 32(9):1429-1438.
    [84]Grest G S, Srolovitz D J, Anderson M P. Computer siumulation of grain growth-IV. Anisotropic grain boundary energies [J]. Acta Metallurgica,1985,33 (3):509-520.
    [85]Srolovitz D J, Grest G S, Anderson M P. Computer siumulation of grain growth-Ⅴ.Abnormal grain growth[J]. Acta Metallurgica,1985,33(12):2233-2247.
    [86]Holm E A, Srolovitz D J, Cahn J W. Microstructural evolution in two-dimensional two-phase polycrystals [J]. Acta Metallurgica Materialia,1993,41(4):1119-1136.
    [87]Rollett A D, Srolovitz D J, Anderson M P, Doherty R D. Computer simulation of recrystallization.Ⅲ.Influence of a dispersion of fine particles [J]. Acta Metallurgica Materialia,1992,40(12):3475-3495.
    [88]Rollett A. D., Luton M. J., Srolovitz D. J. Microstructural simulation of dynamic recrystallization [J]. Acta Metallurgica Materialia,1992,40(1):43-55.
    [89]Radhakrishnan B, Zacharia T. Monte Carlo Simulation of Stored Energy Driven Interface Migration [J]. Materials Science and Engineering,2003,11 (3):307-319.
    [90]Tikare V, Holm E A. Simulation of Grain Growth and Pore Migration in a Thermal Gradient [J]. Journal of the American Ceramic Society,1998,81(3):480-484.
    [91]Srolovitz D J, Grest G S. Anderson M P. Computer Simulation of Recrystalization-I Geneous Nucleation and Growth [J]. Acta Metallurgica,1986, 34(9):1833-1845.
    [92]Holm E A, Glazier J A, Srolovitz D J, Grest G S. Effects of lattice anisotropy and temperature on domain growth in the 2-dimensional Potts-model [J]. Physical Review A,1991,43(6):2662-2668.
    [93]Tikare V, Cawley J D. Application of the Potts model to simulation of Ostwald ripening [J]. Journal of the American Ceramic Society,1998,81(3):485-491.
    [94]SONG X Y, LIU G Q. Kinetics and grain size distribution of two dimensional normal grain growth with the modified Monte Carlo simulation[J]. Journal of Materials Science,1998,14(6):506-510.
    [95]C.Ming Huang, C.L. Joanne, B.S.V. Patnaik, R Jayaganthan. Monte Carlo simulation of grain growth in polycrystalline materials [J].Applied Surface Science, 2006,252:3997-4002.
    [96]Y. Saito. Monte Carlo simulation of grain boundary precipitation[J]. Materials Science and Engineering,1997, A223:125-133.
    [97]Qiang Yu, Michael Nosonovsky, Sven K. Esche. Monte Carlo simulation of grain growth of single-phase systems with anisotropic boundary energies[J]. International Journal of Mechanical Sciences,2009,51(6):434-442.
    [98]方斌.烧结过程中陶瓷刀具材料微观组织结构演变模拟研究[D].山东大学博士学位论文,2007:32-36,95,97.
    [99]Jinhua Gao, Thompson R.G.. Real Time-Temperature Models for Monte Carlo Simulations of Normal Grain Growth[J]. Acta Mater,1996,44(11):4565-4570.
    [100]M.F.Ashby. Sintering and Isostatic Pressing Diagrams, Technical Report, Cambridge University,1990.
    [101]Laura C, Strearns, Martin P, Harmer. Particle-inhibited Grain Growth in Al2O3-SiC: Ⅱ Equilibrium and Kinetic Analysis [J]. Journal of the American Ceramic Society,1996,79(12):3020-3028.
    [102]高瑞平,李晓光,施剑林,周玉,傅正义.先进陶瓷物理与化学原理及技术[M].北京:科学出版社,2001:98.
    [103]Wenming Zeng, Lian Gao, Linhua Gui, Jinkun Guo. Sintering Kinetics of αa-Al2O3 Powder [J]. Ceramics International,1999,25(8):723-726.
    [104]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002:72.
    [105]Zeming He, J Ma. Grain-growth Law during Stage I Sintering of Materials [J]. Journal of Physics D:Applied Physics,2002,35(17):2217-2221.
    [106]R.W. Steinbrech. Toughening mechanisms for ceramic materials [J]. Journal of the European Ceramic Society,1992,10(3):131-142.
    [107]H.L. Liu, C.Z. Huang, J. Wang, X.Y. Teng. Fabrication and mechanical properties of Al203/Ti(C0.7N0.3) nanocomposites[J]. Materials Research Bulletin,2006,41(7): 1215-1224.
    [108]JinHua Gao, Raymond G. Thompson, et al. Computer simulation of grain growth with second phase particle pinning [J]. Acta Materialia,1997,45(9):3653-3658.
    [109]Hassold G N, Chen I W, Srolovitz D J, Computer simulation of final-stage sintering:I, model, kinetics, and microstructure[J]. J. Am. Ceram. Soc.,1990,73 (10):2857-2864.
    [110]Tikare V, Braginsky M, Olevsky E A. Numerical simulation of solid-state sintering: I, sintering of three particles[J]. Journal of the American Ceramic Society,2003,86(1):49-53.
    [111]Michael Braginsky, Veena Tikare, Eugene Olevsky. Numerical simulation of solid state sintering[J]. International Journal of Solids and Structures,2005,42(2): 621-636.
    [112]Y.G. Shen, Y.H. Lu, Z.J. Liu. Microstructure evolution and grain growth of nanocomposite TiN-TiB2 films:experiment and simulation [J]. Surface and Coatings Technology,2006,200(22-23):6474-6478.
    [113]S. Gustafsson, L.K.L. Falk, E. Liden, E. Carlstro"m. Alumina/silicon carbide composites fabricated via in situ synthesis of nano-sized SiC particles[J]. Ceramics International,2009,35(3):1293-1296.
    [114]I.P. Shapiro, R.I. Todd, J.M. Titchmarsh, S.G. Roberts. Effects of Y2O3 additives and powder purity on the densification and grain boundary composition of Al2O3/SiC nanocomposites[J]. Journal of the European Ceramic Society,2009,29 (9):1613-1624.
    [115]B. Zou, C.Z. Huang, H.L. Liu, M. Chen. Preparation and characterization of Si3N4/TiN nanocomposites ceramic tool materials[J]. Journal of Materials Processing Technology,2009,209(9):4595-4600.
    [116]H.L. Liu, C.Z. Huang, X.Y. Teng and H. Wang. Effect of special microstructure on the mechanical properties of nanocomposite[J]. Materials Science and Engineering:A,2008,487(1-2):258-263.
    [117]M. Poorteman, P. Descamps, F. Cambier, et al. Silicon nitride/silicon carbide nanocomposite obtained by nitridation of SiC:fabrication and high temperature mechanical properties[J]. Journal of the European Ceramic Society,2003,23(13): 2361-2366.
    [118]王宏志,高濂,郭景坤.SiC颗粒尺寸对Al2O3-SiC纳米复合陶瓷的影响[J].无机材料学报,1999,14(4):679-683.
    [119]余龙文,曾照强,苗赫濯,江作昭Al2O3/nano-SiC复相陶瓷力学性能及显微结构[J].清华大学学报(自然科学版),1996,36(8):34-38.
    [120]S. Jiao, M.L. Jenkins, R.W. Davidge. Interfacial Fracture Energy-mechanical Behaviour Relationship in Al2O3/SiC and Al2O3/TiN Nanocomposites [J]. Acta Materialia,1997,45(1):149-156.
    [121]Koji Tanaka, Masanori Kohyama. Atomic Structure Analysis of ∑=3,9 and 27 Boundary, and Multiple Junctions in (3-SiC [J]. JEOL News,2003,38(2):60-62.
    [122]Tatsuki Ohji, Young-Keun Jeong, Yong-Ho Choa and Koichi Niihara. Strengthening and Toughening Mechanisms of Ceramic Nanocomposites [J]. J. Am Ceram. Soc.,1998,81(6):1453-1460.
    [123]H.Z. Wang, L. Gao, J.K. Guo. The effect of nanoscale SiC particles on the microstructure of Al2O3 ceramics [J]. Ceramics International,2000,26(4):391-396.
    [124]G N Hassold, I-Wei Chen, D J Srolovtz. Computer Simulation of Final-stage:I, Model, Kinetics and Microstructure[J]. J.Am.Ceram.Soc,1990,73(10):2857-2864.
    [125]Veena T, Michael B. Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of Elongated Particles [J]. Journal of the American Ceramic Society, 2005,88(1):59-65.
    [126]张明涛.纳米陶瓷刀具材料微观组织模拟研究[D].山东大学硕士学位论文,2009:57-59.
    [127]DeHoff R T. Stereological Theory of Sintering [M]. In:Uskokovic, D.P. et al.(Eds.), Science of Sintering. Plenum Press, New York,1989:55-71.
    [128]Tikare V, Miodownik M A, Holm E A. Three-dimensional Simulation of Grain Growth in the Presence of Mobile Pores[J]. Journal of the American Ceramic Society,2001,84(6):1379-1385.
    [129]Handwerker C A, Dynys J M, Cannon R M, Coble R L. Dihedral Angles in Magnesia and Alumina:Distributions from Surface Thermal Grooves[J]. J. Am. Ceram. Soc.,1990,73(5):1371-1377.
    [130]唐仁政.物理冶金基础[M].北京:冶金工业出版社,1997:17-20,300-305.
    [131]Neal Myers, Tim Meuller and Randall German. Production of Porous Refractory Metals with Controlled Pore Size. In Particle Packing Characteristics, Metal Powder Industries Federation, Edited by Randall German,1989,298-300.
    [132]W.D. Kingery, B. Francois. Grain Growth in Porous Compacts[J]. J. Am. Ceram. Soc.,1965,48:546-547.
    [133]Coble R. L. (a) Sintering crystalline solids—Ⅰ intermediate and final state diffusion Models; (b) Sintering crystalline solids—Ⅱ experimental test of diffusion models in powder compacts[J]. J Appl Phys,1961,32:(a) 787-792; (b) 793-799.
    [134]Lange F F, Kellet B J. Thermodynamics of Densification:Part Ⅱ Grain Growth in Porous Compacts and Relation to Densification[J]. Journal of the American Ceramic Society,1989,72(5):735-742.
    [135]Kellet B J, Lange F F. Advanced Processing Concepts for Increased Ceramic Reliability[J]. In:Binner J G Ped. Advanced Ceramic Processing and Technology, New Jersey:Noyes Publications,1990,1:1-38.
    [136]Gupta T K. Possible Correlations between Density and Grain Size during Sintering[J]. Journal of the American Ceramic Society,1972,55(5):276-277.
    [137]Harmer M.P. Use of Solid Solution Additives in Ceramic Processing[J]. In Advances in Ceramics, Ed. Kingery W D, The American Ceramic Society, Columbus, Ohio,1985,10:679-696.
    [138]施剑林.固相烧结Ⅱ—粗化与致密化关系及物质传输途径[J].硅酸盐学报,1997,25(6):657-668.
    [139]施剑林.固相烧结Ⅰ—气孔显微结构模型及其热力学稳定性,致密化方程[J].硅酸盐学报,1997,25(5):499-513.
    [140]R J Brook. Pore Grain Boundary Interactions and Grain Growth [J]. J. Am. Ceram. Soc.,1969,52:56-57.
    [141]Becher P F. Microstructural design of toughened ceramics[J]. J Am Ceram Soc, 1991,74(2):255-260.
    [142]权高峰,柴动郎等.复合材料中增强粒子与基体中微观应力和残余应力分析[J].复合材料学报,1995,12(3):70-75.
    [143]庄茁,由小川,廖剑晖.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2009:63-66.
    [144]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:103.
    [145]Chawla N, Patel B V, Koopman M, Chawla K K, Saha R, Patterson B R, Fuller E R, Langer S A. Microstructure-Based Simulation of Thermomechanical Behavior of Composite Materials by Object-Oriented Finite Element Analysis[J]. Materials Characterization,2002,49(5):395-407.
    [146]Vedula V R, Glass S J, Saylor D M, Rohrer G S, Carter W C, Langer S A, Fuller Jr E R. Residual-Stress Predictions in Polycrystalline Alumina[J]. Journal of the American Ceramic Society,2001,84(12):2947-2954.
    [147]Lippmann N, Steinkopff T, Schmauder S, Gumbsch P.3D Finite Element Modelling of Microstructures with the Method of Multiphase Elements[J]. Computational Materials Science,1997,9(1-2):28-35.
    [148]Zhang K S, Wu M S, Feng R. Simulation of Microplasticity Induced Deformation in Uniaxially Strained Ceramics by 3D Voronoi Polycrystal Modeling[J]. International Journal of Plasticity,2005,21(4):801-834.
    [149]闫超,周慎杰.纳米复合陶瓷残余热应力的有限元模拟[J].工具技术,2007,41(1):53-55.
    [150]朱小辉.陶瓷刀具材料微观尺度有限元模拟模型及其应用研究[D].山东大学硕士学位论文,2011:31-38.
    [151]Ku T W, Kang B S. FE Approach and Experiments for an Axisymmetric Micro-Yoke Part Forming Using Grain Element and Grain Boundary Element[J]. Journal of Materials Processing Technology,2003,140(1-3):65-69.
    [152]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报,1994,22(3):259-268.
    [153]张宏图,陈易之.固体的形变与断裂[M].北京:高等教育出版社,1989,175-180.
    [154]艾红军,修稚萌,秦小梅,王际超.Al2O3/SiC纳米陶瓷复合材料的制备及力学性能[J].东北大学学报(自然科学版),2002,23(5):451-454.
    [155]Y.L. Dong, F.M. Xu, X.L. Shi, et al. Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites[J]. Materials Science and Engineering A, 2009,504(1-2):49-54.
    [156]Carroll L, Stemotzke M, Derby B. Silicon carbide particle size effects in alumina-based nanocomposites[J]. Acta Mater,1996,44(11):4543-4552.
    [157]刘含莲.多元多尺度纳米复合陶瓷刀具材料的研制及其切削性能研究[D].山东大学博士学位论文,2005:51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700