用户名: 密码: 验证码:
一维功能纳米材料的合成与组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过电纺丝技术作为基底模板,对高分子和陶瓷纳米纤维上的纳米材料结构进行了控制,获得了多种不同的纳米粒子/纳米纤维以及纳米棒/纳米纤维组装体。以及研究了铜片基底上生长氧化/硫化铜纳米棒的生长情况,随着深入研究一维纳米功能材料的合成和随后对其进行的再加工,可以成功的合成和组装构建多功能材料结构,从而得到更多的实际应用以及进一步发展。
     第一,制备多种纳米纤维/无机材料纳米粒子复合材料。
     ①以聚丙烯腈纤维为模板,利用其在氯化钯溶液相中溶胀吸收钯离子,并且在原位还原的方法成功对其掺杂金属钯纳米粒子。
     ②采用掺杂了二氯化铁的聚丙烯腈纤维在碱性三氯化铁溶液相中还原的方法合成出四氧化三铁纳米粒子/聚丙烯腈纳米纤维复合材料。
     ③制备二氧化钛纳米纤维/钯纳米粒子复合材料。
     第二,通过电纺丝技术和化学气相沉积法制备树枝状异质结纳米材料。利用表面分布有金/铂纳米粒子的二氧化钛纳米纤维作为基底,通过化学气相沉积法在较低温度下以金纳米粒子为催化剂生长出单晶金属锗/硅纳米棒,并且对合成条件进行了考察。进一步将此技术推广,在相应条件下成功的合成出硅/二氧化钛,锗/聚酰亚胺树枝状异质结纳米材料,证明此方法的广泛应用性。
     第三,考察了在金属铜片表面利用气固反应合成单晶氧化铜/氧化亚铜纳米棒生长情况,考察了反应温度、反应体系水分的影响,以及通过对铜片进行加工使其中缺陷集中于局部,促使纳米棒在缺陷部位富集生长,研究了经过加工过的位置与纳米棒形成之间的关系从而提出了缺陷生长的机理。由于纳米棒材料具有大的电化学活性面积的结构特点,纳米氧化铜棒/铜片的电化学葡萄糖传感器具有优异的电催化活性。该传感器有高的灵敏读,低的检出限,快速的响应等特点。
     第四,考察了气固反应合成单晶硫化亚铜纳米棒生长情况,通过对铜片进行加工使其中缺陷集中于局部,由于纳米棒在缺陷部位富集生长,提出了缺陷生长的机理。
One dimensional nanomaterials have attracted more and more attentions duo to their unique properties within electronic, photonic, magnetic and catalytic areas. Many synthetic and fabrication routes have already been developed for modifing different functional materials to one dimensional nanostructure such as fibers, wires, rods, belts, tubes, spirals and rings. Among these methods, Electrospinning has become a widely acknowledged nanostructuring technique which not only easily producing nanofibers but also a highly versatile of controlling of their morphology and surface topology, as well as in terms of the properties of the final structures. Many functions can be incorporated into the nanofibers and providing extremely broad range of potential applications exist in which electrospun fibers can express major contributions, include not only textile, filter, and mechanical reinforcement applications but can be further extend to tissue engineering, drug delivery, wound healing, sensors design and production, optoelectronics, catalysis, and many more. As the demands increasing, preparation of hybrids nanofibers with multi-functional properties has been of current interest. However, how to fabricate and assembly of composite nanomaterials with controlled morphologies based on electrospun nanofibers and assemble them into controlled heterojunction structures are still big challenges.
     In this thesis, we have prepared aligned array electrospun nanofibers by adjusting electronic field, and also produced various composite organic/inorganic nanostructures by combining electrospinning and sol-gel technique or chemical vapour deposition technique. In which conclude:
     1) Preparation of nanoparticles/nanofibers composition structures.
     ①Synthesis of decorating single crystal Pd nanoparticles well dispersed on polyacrylonitrile electrospun fibers by post treatment of sol-gel technique. The PAN nanofibers were rinsed in PdCl2 solution for a little while and then in-situ reduced by glycol to generate Pd nanoparticles.
     ②Polyacrylonitrile/F_e3O_4 nanocomposite fibers have been successfully obtained through electrospinning and sol-gel technology. Electrospun polyacrylonitrile /FeCl_3 nanofibers were prepared as templates and immerged into composite Fe salts/water solution for Fe_3O_4 nanoparticles growing on. The Magnetic Fe_3O_4 nanoparticles are homogeneously distributed on the surfaces of the PAN nanofibers, uniform and most of them are approximately spherical with the mean diameters of 8±3 nm. By simply adjusting the experimental parameters, the diameters of polyacrylonitrile nanofibers and nanoparticles can be easily controlled, respectively.
     ③In-situ synthesis of homogeneous gold nanoparticles well dispersed on TiO2 electrospun nanofibers by adding HAuCl_4.3H_2O into the electrospinning precursor Ti (isopropoxide)4 solution and then electrospinning following by heat treatment.
     ④Synthesis of homogeneous Pt nanoparticles well dispersed on TiO2 electrospun nanofibers. Using as-prepared TiO_2 nanofibers as template, Pt nanoparticles were added by absorption inside a solution atmosphere.
     2) We have demonstrated that single-crystal Germanium or Silicon nanowires could directly grow on electrospun Titanium dioxide composite nanofibers by combining electrospinning and chemical vapor deposition. Not only these semiconductor nanowires on oxides nanofibers materials were synthesized, but also produced Germanium nanowires on Polyimide electrospun nanofibers structures. The size of the resulting nanowires could be controlled by the composition of the fibers and the parameters during CVD. This work provides a simple general route to the nanowire-on-nanofiber hierarchical structure also suggests that post spinning treatment of electrospun nanofibers of different materials offers an additional means to further modify the phase structure and morphology of nanofibers, enabling the fabrication of complex architectures and functional materials.
     3)We investigate the synthesis of CuO/Cu_2O nanorods on copper foil, investigate how the experiment parameters affect the nanorods formation, also the CuO nanorods are then used to construct a non-enzymatic glucose sensor which presents some attractive analytical features such as high sensitivity, good stability, reproducibility, and selectivity as well as fast response time.
     4) We investigate the mechanism of formation of Cu_2S nanorods on copper foil through a vapor-solid phase reaction by treating Cu foil under H_2S/O2 atmosphere at room temperature. At first, we studied the formation of Cu_2S nanorods on copper foil by introducing dislocations through physical machining, draw the conclusions that the rods are dislocation driven related because they were prone to form in dislocation accumulated areas. As reaction went on, an uneven dense film of Cu_2S was formed on copper foil in which the copper ions can diffuse with, following by forming single crystal nanorods at dislocation points because those domains have lower surface energy which can provide a more efficient way to grow than at the other areas.
引文
[1] Z. M. Huang, Y. Z. Zhan, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 2003, 63, 2223.
    [2] D. Li, Y. Xia, Adv. Mater. 2004, 16, 1151.
    [3] A. Greiner, J. H. Wendorff, Angew. Chem, Int. Ed. 2007, 119, 5670.
    [4] D. H. Reneker, A. L. Yarin, E. Zussman, H. Xu, Adv. Appl. Mech. 2007, 41,44.
    [5] A. Greiner, J. H. Wendorff, Adv. Polym. Sci. 2008, 219, 207.
    [6] S. Agarwal, J. H. Wendorff, A. Greiner, Polymer 2008, 49, 5603.
    [7] J. Hagewood, A. Wilkie, Nonwovens World 2003, 69.
    [8] A. Formhals, US Patent No. 1,975,504, 1934.
    [9] G. Taylor, Proc. R. Soc. Lond. A 1964, 280, 383.
    [10] S. N. Reznik, A. L. Yarin, A. Theron, E. Zussman, J. Fluid Mech. 2004, 516, 349.
    [11] M. Cloupeau, B. Prunet-Foch, J. Electrostat. 1989, 22, 135.
    [12] A. L. Yarin, S. Koombhongse, D. H. Reneker, J. Appl. Phys. 2001, 90, 4836.
    [13] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, J. Appl. Phys. 2000, 87, 4531.
    [14] A. L. Yarin, S. Koombhongse, D. H. Reneker, J. Appl. Phys. 2001, 89, 3018.
    [15] M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Phys. Fluids 2001, 13, 2201.
    [16] M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, Phys. Fluids 2001, 13, 2221.
    [17] J. Zeng, H. Hou, A. Schaper, J. H.Wendorff, A. Greiner, e-Polym. 2003, 009.
    [18] J. Zeng, H. Hou, A. Schaper, J. H.Wendorff, A. Greiner, e-Polym. 2003, 038.
    [19] J. T. McCann, M. Marquez, Y. Xia, J. Am. Chem. Soc. 2006, 128, 1436.
    [20] T. Ro¨cker, A. Greiner, e-Polym. 2008, 111.
    [21] M. S. Abdel-Ghani, G. A. Davies, Chem. Eng. Sci. 1985, 40, 117.
    [22] M. M. Tomadakis, S. V. Sotirchos, AIChE J. 1991, 37, 74.
    [23] M. M. Tomadakis, S. V. Sotirchos, AIChE J. 1993, 39, 397.
    [24] N. Ogata, S. Yamaguchi, N. Shimada, L. Gang, T. Iwata, K. Nakane, T. Ogihara, J. Appl. Polym. Sci. 2007, 104, 1640.
    [25] N. Ogata, N. Shimada, S. Yamaguchi, K. Nakane, T. Ogihara, J. Appl. Polym. Sci. 2007, 105, 1127.
    [26] S. Agarwal, A. Greiner, J. H. Wendorff, Chem. Ing. Tech. 2008, 80, 1671.
    [27] L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Browlin, D. G. Simpson, G. E. Wnek, Chem. Mater. 2003, 15, 1860.
    [28] J. Zeng, H. Hou, J. H. Wendorff, A. Greiner, e-Polym. 2004, 078.
    [29] S. J. Lee, S. G. Lee, H. Kim, W. S. Lyoo, J. Appl. Polym. Sci. 2007, 106, 3430.
    [30] B. Ding, H. Y. Kim, A. C. Lee, C. L. Shao, D. R. Lee, S. J. Park, G. B. Kwag, K. J. Choi, J. Polym. Sci. Polym. Chem. 2002, 40, 1261.
    [31] P. Taepaiboon, U. Rungsardthong, P. Supaphol, Nanotechnology 2007, 18, 175102.
    [32] J. Zeng, H. Hou, J. H. Wendorff, A. Greiner, Macromol. Rapid Commun. 2005, 26, 1557.
    [33] A. Stoiljkovic, M. Ishaque, W. Justus, L. Hamel, E. Klimov, W. Heckmann, B. Eckhardt, J. H. Wendorff, A. Greiner, Polymer 2007, 48, 3974.
    [34] P. D. Dalton, K. Klinkhammer, J. Salber, D. Klee, M. Mo¨ller, Biomacromolecules 2006, 7, 686.
    [35] H.-J. Kim, Y.-H. Jung, M.-S. Khil, H.-Y. Kim, H.-J. Bang, J. Korean Fiber Soc. 2004, 41, 424.
    [36] R. Rangkupan, D. H. Reneker, J. Met. Mater. Miner. 2003, 12, 81.
    [37] M. Becker, PhD Thesis, Philipps-Universita¨t Marburg, 2006.
    [38] S. B. Mitchell, S. B. Sanders, J. Biomed. Mater. Res, Part A 2006, 78, 110.
    [39] L. Larrodo, R. St. John Manley, J. Polym. Sci, Polym. Phys. Ed. 1981, 19, 909.
    [40] L. Larrodo, R. St. John Manley, J. Polym. Sci, Polym. Phys. Ed. 1981, 19, 933.
    [41] L. Larrodo, R. St. John Manley, J. Polym. Sci, Polym. Phys. Ed. 1981, 19, 921.
    [42] J.-S. Kim, D.-S. Lee, Polym. J. 2000, 32, 616.
    [43] S. Lee, S. K. Obendorf, J. Appl. Polym. Sci. 2006, 102, 3430.
    [44] C. H. Lee, H. J. Shin, I. H. Cho, Y.-M. Kang, I. A. Kim, K.-D. Park, J. W. Shin, Biomaterials 2004, 26, 1261.
    [45] A. Holzmeister, M. Rudisile, A. Greiner, J. H. Wendorff, Eur. Polym. J. 2007, 43, 4859.
    [46] J. Kameoka, R. Orth, Y. Yang, D. Czaplewski, R. Mathers, G. W. Coates, H. G. Craighead, Nanotechnology 2003, 14, 1124.
    [47] D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 2006, 6, 839.
    [48] J. Belardi, R. Dersch, C. Hellmann, A. Greiner, J.H.Wendorff, Polymer 2009, 50, 1197.
    [49] C. H. Chang, K. Limkrailassiri, L. Lin, Appl. Phys. Lett. 2008, 93, 123111.
    [50] H. Hou, Z. Jun, A. Reuning, A. Schaper, J. H. Wendorff, A. Greiner, Macromolecules 2002, 35, 2429.
    [51] M. Bognitzki, H. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, A. Greiner, Adv. Mater. 2000, 12, 637.
    [52] R. Caruso, J. H. Schattka, A. Greiner, Adv. Mater. 2001, 13, 1577.
    [53] Z. Sun, J. Zeng, H. Hou, H. Wickel, J. H. Wendorff, A. Greiner, Prog. Colloid Polym. Sci. 2005, 130, 15.
    [54] F. Ochanda, W. E. Jones, Jr, Langmuir 2005, 21, 10791.
    [55] K. Mu¨ller, J. F. Quinn, A. P. R. Johnston, M. Becker, A. Greiner, F. Caruso, Chem. Mater. 2006, 18, 2397.
    [56] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner, Adv. Mater. 2003, 15, 1929.
    [57] G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I. G. Loscertales, J. Am. Chem. Soc. 2003, 125, 1154.
    [58] J. H. Yu, S. V. Fridrikh, G. C. Rutledge, Adv. Mater. 2004, 16, 1562.
    [59] D. Li, Y. Xia, Nano Lett. 2004, 4, 933.
    [60] Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim, S. Ramakrishna, Chem. Mater. 2004, 16, 3406.
    [61] D. Li, J. T. McCann, Y. Xia, Small 2005, 1, 83.
    [62] H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, W. Chen, J. Controlled Release 2005, 108, 237.
    [63] S. N. Reznik, A. L. Yarin, E. Zussman, L. Bercovici, Phys. Fluids 2006, 18, 062101/01.
    [64] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, Macromolecules 2006, 39, 1102.
    [65] X.-J. Han, Z.-M. Huang, C.-L. He, L. Liu, X.-J. Han, Q.-S. Wu, Polym. Compos. 2006, 27, 381.
    [66] Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, S. Ramakrishna, Biomacromolecules.2006, 7, 1049.
    [67] Y. Dror, W. Salalha, R. Avrahami, E. Zussman, A. L. Yarin, R. Dersch, A. Greiner, J. H. Wendorff, Small 2007, 6, 1064.
    [68] M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva, M. G. Sulman, Macromolecules 2004, 37, 1787.
    [69] M. Graeser, E. Pippel, A. Greiner, J. H. Wendorff, Macromolecules 2007, 40, 6032.
    [70] M. Graeser, M. Bognitzli, W. Massa, C. Pietzonka, A. Greiner, J. H. Wendorff, Adv. Mater. 2007, 19, 4244.
    [71] M. Graeser, PhD Thesis, Philipps-Universita¨t Marburg, 2007.
    [72] M. Wang, H. Singh, T. A. Hatton, G. C. Rutledge, Polymer 2004, 45, 5505.
    [73] K. Stratford, R. Adhikari, I. Pagonabarraga, J. C. Desplat, M. E. Cates, Science 2005, 309, 2198.
    [74] Y. Wang, M. Aponte, N. Leon, I. Ramos, R. Furlan, S. Envoy, I. J. Santiago-Aviles, Semicond. Sci. Technol. 2004, 19, 1057.
    [75] H. Guan, C. Shao, B. Chen, J. Gong, X. Yang, Inorg. Chem. Commun. 2003, 6, 1409.
    [76] M. Bognitzki, M. Becker,M. Graeser,W.Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Go¨lzha¨user, A. Greiner, Adv. Mater. 2006, 18, 2384.
    [77] M. Yun, N. V. Myung, R. P. Vasquez, C. Lee, E. Menke, R. M. Penner, Nano Lett. 2004, 4, 419.
    [78] Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, S. Ramakrishna, Biomacromolecules.2006, 7, 1049.
    [79] M. Gensheimer, M. Becker, A. Brandis-Heep, J. H. Wendorff, R. K. Thauer, A. Greiner, Adv. Mater. 2007, 19, 2480.
    [80] W. Salalha, J. Kuhn, Y. Dror, E. Zussman, Nanotechnology 2006, 17, 4675.
    [81] O. Kriha, M. Becker, M. Lehmann, D. Kriha, J. Krieglstein, M. Yosef, S. Schlecht, R. B. Wehrspohn, J. H. Wendorff, A. Greiner, Adv. Mater. 2007, 19, 2483.
    [82] A. Stoiljkovic, S. Agarwal, Macromol. Mater. Eng. 2008, 293, 895.
    [83] B. Zhao, N. Toshima, Chem. Express 1990, 5, 721.
    [84] Y. M. Chung, H. K. Rhee, J. Mil, Catal. A: Chem. 2003, 206, 291.
    [85] M. Stasiak, A. Studer, A. Greiner, J. H. Wendorff, Chem. Eur. J. 2007, 13, 6150.
    [86] M. Stasiak, C. Ro¨ben, N. Rosenberger, F. Schleth, A. Studer, A. Greiner, J.H. Wendorff, Polymer 2007, 48, 5208.
    [87] C. Ro¨ben, M. Stasiak, B. Janza, A. Greiner, J. H. Wendorff, A. Studer,Synthesis 2008, 14, 2163.
    [88] Z. G. Wang, L. S. Wan, Z. M. Liu, X. J. Huang, Z. K. Xu, J. Mol. Catal. B:Enzym. 2009, 56, 189.
    [89] R. Langer, J. P. Vacanti, Science 1993, 260, 920.
    [90] C. J. Koh, A. Atala, J. Am. Soc. Nephrol. 2004, 15, 1113.
    [91] U. Boudriot, R. Dersch, A. Greiner, J. H. Wendorff, Artif. Organs 2006, 30,785.
    [92] U. Boudriot, R. Dersch, B. Goetz, P. Griss, A. Greiner, J. H. Wendorff,Biomed. Tech. 2004, 49, 242.
    [93] S. Liao, B. Li, Z. Ma,H.Wei, C. Chan, S. Ramakrishna, Biomed. Mater. 2006,1, R45.
    [94] S. Agarwal, A. Greiner, J. H. Wendorff, unpublished. Adv. Mater. 2009, DOI:10.10021adma.20083092.
    [95] W.-J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, F. K. Ko, J. Biomed.Mater. Res. 2002, 60, 613.
    [96] C. H. Lee, H. J. Shin, I. H. Cho, Y.-M. Kang, I. A. Kim, K.-D. Park, J. W. Shin, Biomaterials 2004, 26, 1261.
    [97] T. Sun, S. Mai, D. Norton, J. W. Haycock, A. J. Ryan, S. MacNeil, Tissue Eng. 2005, 11, 1023.
    [98] J. Li, R. Tuli, X. Huang, P. Laquerriere, R. S. Tuan, Biomaterials 2005, 26,
    [1] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, [J].Science 2001, 293 : 269.
    [2] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, [J].Nano Lett. 2006,6 :1080.
    [3] S. Sakthivel, H. Kisch, Angew. [J].Chem. Int. Ed. 2003, 42: 4908.
    [4] W. Choi, A. Termin, M.R. Hoffmann, [J]. J. Phys. Chem. 1994, 98 : 13669.
    [5] A. Fujishima, K. Hashimoto, T. Watnabe, TiO2 Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo, 1999.
    [7] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, Annu. [J]. Rev. Mater. Res. 2005, 35: 1.
    [8] A. Mills, S. Le Hunte, [J]. J. Photochem. Photobiol. A 1997, 108: 1.
    [9] F. Kiriakidou, D.I. Kondarides, X.E. Verykios, [J]. Catal. Today 1999, 54: 119.
    [10] J. Krysa, M. Keppert, G. Waldner, J. Jirkovsky, [J]. Electrochim. Acta 2005,50: 3679.
    [11] T. Kemmitt, T., Al-Salim, N. I., Waterland, M., Kennedy, V. J., and Markwitz, A, [J]. Curr. Appl. Phys. Martyanov, I. N., and Klabunde, K. J., J. Catal., 2004, 225: 408–416.
    [1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
    [2] Y. Huang, C. M. Lieber, Pure Appl. Chem. 2004, 76, 2051.
    [3] J. C. Hulteen, C. R. Martin, J. Mater. Chem. 1997, 7, 1075.
    [4] S. J. Hurst, E. K. Payne, L. Qin, C. A. Mirkin, Angew. Chem. 2006, 118, 2738, Angew. Chem. Int. Ed. 2006, 45, 2672.
    [5] L. J. Lauhon, M. S. Gudiksen, C. M. Lieber, Philos. Trans. R. Soc. London Ser. A 2004, 362, 1247.
    [6] M. Law, J. Goldberger, P. Yang, Annu. Rev. Mater. Res. 2004, 34, 83.
    [7] J. G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. R 2006, 52, 49.
    [8] J. Perez-Juste, I. Pastoriza-Santos, L. Liz-Marzan, P. Mulvaney, Coord. Chem. Rev. 2005, 249, 1870.
    [9] C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj, Prog. Solid State Chem. 2003, 31, 5.
    [10] L. Samuelson, Mater. Res. Materials Today 2003, 6, 22.
    [11] L. Samuelson, C. Thelander, M. T. Bjork, M. Borgstrom, K. Deppert, K. A. Dick, A. E. Hansen, T. Martensson, N. Panev, A. I. Persson, W. Seifert, N. Skold, M.W. Larsson, L. R. Wallenberg, Phys. E 2004, 25, 313.
    [12] Y. Xiong, B. T. Mayers, Y. Xia, Chem. Commun. 2005, 5013.
    [13] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu, W. E. Buhro, Inorg. Chem. 2006, 45, 7511. G. Shen, D. Chen, C. J. Lee, J. Phys. Chem. B 2006, 110, 15689.
    [14] S. Y. Bae, H.W. Seo, H. C. Choi, J. Park, J. Park, J. Phys. Chem. B, 2004, 108, 12318.
    [15] R. Ostermann, D. Li, Y. Yin, J. T. McCann, Y. Xia, Nano Lett. 2006, 6, 1297.
    [1] A.Soon, X.Cui, B. Delley, Su. Wei, C. Stampfl, Phys.Rev. B,2009, 79, 035205
    [2] M. Nolan and S. D. Elliott, Phys. Chem. Chem. Phys. 2006, 8, 5350
    [3] A. F. Wright and J. S. Nelson, J. Appl. Phys., 2002, 92, 5849 [4 ]H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B, 2007, 76, 045209
    [5] O. Porat and I. Riess, Solid State Ionics, 1994, 74, 229
    [6] O. Porat and I. Riess, Solid State Ionics, 1995, 81, 29
    [7] S. Kitashima, A. Kuroda, K. Hirose, M. Senna, A. Y. Yermakov, and M. A. Uimin, J. Alloys Compd. 2007, 434-435, 646
    [8] Y. B. Vassilyev, O. A. Khazova and N. N. Nikolaeva, J. Electroanal. Chem., 1985, 196, 105.
    [9] Y. Li, Y.-Y. Song, C. Yang and X.-H. Xia, Electrochem. Commun., 2007, 9, 981.
    [10] Y. Sun, H. Buck and T. E. Mallouk, Anal. Chem., 2001, 73, 1599.
    [11] P. Luo, F. Zhang and R. P. Baldwin, Anal. Chim. Acta, 1991, 244, 169.
    [12] I. G. Casella, M. Gatta, M. R. Guascito and T. R. I. Cataldi, Anal. Chim. Acta, 1997, 357, 63.
    [13] S. T. Farrell and C. B. Breslin, Electrochim. Acta, 2004, 49, 4497.
    [14] J. Zhao, F. Wang, J. Yu and S. Hu, Talanta, 2006, 70, 449.
    [15] A. Salimi and M. Roushani, Electrochem. Commun., 2005, 7, 879.
    [16] G. Wittstock, A. Stru¨bing, R. Szargan and G. Werner, J. Electroanal. Chem., 1998, 444, 61.
    [17] S. B. Aoun, G. S. Bang, T. Koga, Y. Nonaka, T. Sotomura and I. Taniguchi, Electrochem. Commun., 2003, 5, 317.
    [18] F. Matsumoto, M. Harad, N. Koura and S. Uesugi, Electrochem. Commun., 2003, 5, 42.
    [19] Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, Analyst, 2008, 133, 126–132
    [20] A. Salimi and M. Roushani, Electrochem. Commun., 2005, 7, 879
    [1] Y. Xia et al., Adv. Mater. 2003, 15, 353
    [2] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89
    [3] R. S. Wagner, W. C. Ellis, S. M. Arnold, J. Appl. Phys.1964, 35, 2993
    [4] D. R. Veblen, J. E. Post, Am. Mineral. 1983,68, 790.
    [5]O. Porat and I. Riess, Solid State Ionics.1994, 74, 229
    [6]O. Porat and I. Riess, Solid State Ionics. 1995, 81, 29
    [7]S. Kitashima, A. Kuroda, M. A. Uimin, J. Alloys Compd. 2007, 434, 646
    [8]H. Raebiger, S. Lany, and A. Zunger, Phys. Rev. B 2007, 76, 045209
    [9] M. Bierman, Y. K. Albert Lau, A. Kvit, A. Schmitt, S. Jin, Science, 2008,320,1060

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700