用户名: 密码: 验证码:
形貌调控的Bi_2S_3基纳米晶光催化剂合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米晶作为光催化剂在污水处理领域中有着非常重要的作用。本论文即主要研究了Bi2S3纳米结构和Bi2S3-TiO2异质结构的形貌控制合成,以及它们的光催化性能。
     本文第一章综述了半导体非均相光催化的基本理论及光催化剂Bi2S3纳米结构的研究进展。
     本文第二章主要介绍了不同维度Bi2S3纳米结构的合成及它们在降解三种典型染料时的光催化性能。本实验利用单一前驱物Bi(S2CNEt2)3在有机胺中热分解得到了高质量的Bi2S3纳米点,纳米棒和分散的单晶纳米片。通过对结构的进一步研究发现Bi2S3纳米棒和纳米片分别是由纳米点和纳米棒自组装而成的,并在此基础上提出了粘附-重结晶的生长机理。在光催化方面,这三种纳米晶体可以选择性地光降解罗丹明B,亚甲基蓝和甲基橙这三种染料,并且不同维度的Bi2S3纳米结构催化活性不同。
     为了提高Bi2S3在可见光下的催化效率,本文的第三章通过水热法简便地合成出了Bi2S3-TiO2异质结构。实验条件对产物的结构和形貌有着显著的影响。在优化铋源浓度,钛源与铋源浓度比例和丙酮含量等实验参数后,我们确定了使Bi2S3纳米棒对TiO2纳米颗粒负载率较高,且Bi2S3-TiO2异质结构催化性能最优的实验条件。同时,通过对比研究Bi2S3-TiO2异质结构,德固赛P 25,空白的TiO2和Bi2S3,以及二者的机械混合物的在可见光下的催化活性,我们发现Bi2S3和TiO2之间的协同作用促使了电子-空穴对的转移,从而使Bi2S3-TiO2异质结构具有优异的催化性能。
Nano-scaled semiconductors have received increasing interests to serve as photocatalysts in wastewater treatment. In this thesis, morphology-tunable Bi2S3 nanostructures and Bi2S3-TiO2 heterostructures have been synthesized and their morphology-dependent photocatalytic performances have been studied.
     In Chapter 1, the principle theories of heterogenerous photocatalysis and recent progress of Bi2S3 nanostructures have been reviewed.
     In Chapter 2, Bi2S3 nanostructures with different dimensionalities have been synthesized and the research of their photocatalytic performance on three different dyes has been carried out. Bi2S3 nanostructures including nanodots, nanorods, and discrete single-crystal nanosheets were synthesized through the thermal decomposition of a single-source precursor Bi(S2CNEt2)3 in amine media. The morphology evolution revealed that the Bi2S3 nanorods and nanosheets were developed through the assembling of metastable nanodots and nanorods, and an attachment-recrystallization growth mechanism was proposed for the formation of nanorods and nanosheets. As for the photocatalysis, the three kinds of nanocrystals could selectively enhance the photodegradation of three typical dyes including rhodamine B, methylene blue, methyl orange, and the efficiencies were dependent on dimensionalities.
     In order to improve the photocatalytic efficiency of Bi2S3 under visible light irradiation, in Chapter 3, Bi2S3-TiO2 heterostructures were conveniently synthesized by hydrothermal method. Experimental variables had obvious influence on the structure and morphology of the heterostructures. After optimizing the experimental parameters, such as the concentration of Bi precursor, molar ratio of Ti/Bi and the volume of acetone, we determined the most suitable conditions, under which there was a high coverage of TiO2 nanoparticles on Bi2S3 nanorods, and the photocatalytic activities of Bi2S3-TiO2 heterostructures reached the maximum. Through the comparison of photocatalytic activities between Bi2S3-TiO2 heterostructures and P 25, blank TiO2 and Bi2S3, as well as the mechanical mixture of them, we found that there was an interaction between TiO2 and Bi2S3, leading to an improved electron-hole pairs separation and causing the excellent photocatalytic performance.
引文
[I]A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature.1972,238:37-38.
    [2]A. Fujishima, T.N. Rao, D.A. Tryk. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C:Photochem. Rev.2000,1:1-21.
    [3]M.R. Hoffmann, S.C. Martin, W. Choi, D.W. Bahnemann. Environmental applications of semiconductor photocatalysis. Chem. Rev.1995,95:69-96.
    [4]O. Legrini, E. Oliveros, A.M. Braun. Photochemical processes for water treatment. Chem. Rev.1993,93:671-698.
    [5]O. Carp, C.L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide. Solid State Chem.2004,32:33-177.
    [6]U.I. Gayaa, A.H. Abdullah. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems. J. Photochem. Photobiol. C:Photochem. Rev.2008,9:1-12.
    [7]D. Lawless, N. Serpone. Role of hydroxyl radicals and trapped holes in photocatalysis. A pulse radiolysis study. J. Phys. Chem.1991,95:5166-5170.
    [8]D.P. Colombo, R.M. Bowman. Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J. Phys. Chem.1996,100:18445-18449.
    [9]X. Yang, N. Tamai. How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy Phys. Chem. Chem. Phys.2001,3:3393-3398.
    [10]J. Zhao, X. Yang. Photocatalytic oxidation for indoor air purification:a literature review. Build. Environ.2003,38:645-654.
    [11]A. Fujishima, T.N. Rao, D.A. Tryk. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C.2000,1:1-21.
    [12]M. Sleiman, P. Conchon, C. Ferronato, J.-M. Chovelon. Iodosulfuron degradation by TiO2 photocatalysis:kinetic and reactional pathway investigations. Appl. Catal. B:Environ.2007,71:279-290.
    [13]D. Curco, J. Gimenez, A. Addardak, S. Cervera-March, S. Esplugas. Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants. Catal. Today.2002,76:177-188.
    [14]M. Stylidi, D.I. Kondarides, X.E. Verykios. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Appl. Catal. B:Environ. 2004,47:189-201.
    [15]K. Wilke, H.D. Breuer. The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A.1999,121:49-53.
    [16]L. Yang, Z. Liu. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energy Convers. Manage.2007,48:882-889.
    [17]N. Serpone, G. Sauv, R. Koch, H. Tahiri, P. Pichat, P. Piccinini, E. Pelizzetti, H. Hisao. Standardization protocol of process efficiencies and activation parameters in heterogeneous photocatalysis:relative photonic efficiencies ζr.J.Photochem. Photobiol. A.1996,94:191-203.
    [18]C. Minero, D. Vione. A quantitative evalution of the photocatalytic performance of TiO2 slurries. Appl. Catal. B:Environ.2006,67:257-269.
    [19]M.A. Aguado, M.A. Anderson, C.G. Hill Jr. Influence of light intensity and membrane properties on the photocatalytic degradation of formic acid over TiO2 ceramic membranes. J. Mol. Catal.1994,89:165-178.
    [20]C.G. Silva,W.Wang, J.L. Faria. Photocatalytic and photochemical degradation of mono-, di-and tri-azo dyes in aqueous solution under UV irradiation. J. Photochem. Photobiol. A.2006,181:314-324.
    [21]N. Serpone. Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J. Photochem. Photobiol. A.1997,104:1-12.
    [22]M.A. Tariq, M. Faisal, M. Muneera, D. Bahnemann. Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide. J. Mol. Catal. A.2007,265:231-236.
    [23]D.S. Bhatkhande, S.P. Kamble, S.B. Sawant, V.G. Pangarkar. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light. Chem. Eng. J.2004,102:283-290.
    [24]M. Huqul, E. Ercaq, R. Apak. Kinetic studies on UV-photodegration of some chlorophenols using TiO2 catalyst. J. Environ. Sci. A:Tox. Hazard Subst. Environ. Eng. 2002,37:365-383.
    [25]G. Palmisano, M. Addamo, V. Augugliaro, T. Caronna, A.D. Paola, E.G. Loipez, V. Loddo, G. Marcia, L. Palmisano, M. Schiavello. Selectivity of hydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis. Catal. Today. 2007,122:118-127.
    [26]D.A. Friesen, L. Morello, J.V. Headleya, C.H. Langford. Factors influencing relative efficiency in photo-oxidations of organic molecules by Cs3PW12O40 and TiO2 colloidal photocatalysts J. Photochem. Photobiol. A.2000,133:213-220.
    [27]J. Arana, J.L.M. Nieto, J.A.H. Melian, J.M.D. Rodriguez, O.G. Diaz, J.P. Perna, C.A. Bergasa, J. Mendez. Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories. Chemosphere.2004,55:893-904.
    [28]C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2. J. Photochem. Photobiol. A.2003,158:27-36.
    [29]H. Dinga, H. Suna, Y. Shan. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst. J. Photochem. Photobiol. A.2005,169:101-107.
    [30]Y. Gao, H. Liu. Preparation and catalytic property study of a novel kind of suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber film. Mater. Chem. Phys.2005,92:604-608.
    [31]M.R. Mohammadi, M.C. Cordero-Cabrera, D.J. Fray, M. Ghorbani. Preparation of high surface area titania (TiO2) films and powders using particulate sol-gel route aided by polymeric fugitive agents. Sens. Actuat. B.2006,120:86-95.
    [32]U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep.2003,48:53-229.
    [33]A.J. Maira, K.L. Yeung, J. Soria, J.M. Coronado, C. Belver, C.Y. Lee, V. Augugliaro. Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts. Appl. Catal. B:Environ.2001,29:327-336.
    [34]J. Krysa, M. Keppert, J. Jirkovsky, V. Stengl, J. Subrt. The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater. Chem. Phys.2004,86: 333-339.
    [35]M. Saquib, M. Muneer. TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions. Dyes Pigments. 2003,56:37-49.
    [36]H. Chun, W. Yizhong, T. Hongxiao. Destruction of phenol aqueous solution by photocatalysis or direct photolysis. Chemosphere.2000,41:1205-1209.
    [37]M.M. Haque, M. Muneer. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. J. Hazard. Mater.2007,145:51-57.
    [38]M. Kosmulski. pH-dependent surface charging and points of zero charge:III. Update. J. Coll. Inter. Sci.2006,298:730-741.
    [39]J. Sun, X.Wang, J. Sun, R. Sun, S. Sun, L. Qiao. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J. Mol. Catal. A.2006,260:241-246.
    [40]S. Tunesi, M.A. Anderson. Photocatalysis of 3,4-DCB in TiO2 aqueous suspensions; effects of temperature and light intensity; CIR-FTIR interfacial analysis. Chemosphere.1987,16:1447-1456.
    [41]E. Evgenidou, K. Fytianos, I. Poulios. Semiconductor-sensitized photodegradation of dichlorvos in water using TiO2 and ZnO as catalysts. Appl. Catal. B:Environ.2005,59: 81-89.
    [42]N.Z. Muradov, a. T-Raissi, D. Muzzey, C.R. Painter, M.R. Kemme. Selective photocatalytic destruction of airborne VOCs. Solar Energy.1996,56:445-453.
    [43]X. Fu, L.A. Clark, W.A. Zeltner, M.A. Anderson. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. J. Photochem. Photobiol. A:Chem.1996,97:181-186.
    [44]M.A. Fox, M.T. Dulay. Heterogeneous photocatalysis. Chem. Rev.1993,93:341-357.
    [45]B. O'Regan, J. Moser, M. Anderson, M. Gratzel. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation. J. Phys. Chem.1990,94:8720-8726.
    [46]M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrey-Baker, E. Muller, P. Liska, N. Vachopoulos, M. Gratzel. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc.1993,115:6382-6390.
    [47]J.C. Zhao, C.C. Chen, W.H. Ma. Photocatalytic degradation of organic pollutants under visible light irradiation. Top. Catal.2005,35:269-278.
    [48]M. Anpo. Utilization of TiO2 photocatalysts in green chemistry. Pure Appl. Chem.2000, 72:1265-1270.
    [49]M. Anpo, M. Takeuchi, K. Ikeue, S. Dohshi. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.:The applications of metal ion-implantation techniques to semiconducting TiO2_ and Ti/zeolite catalysts. Curr. Opin. Solid State Mater. Sci.2002,6:381-388.
    [50]M. Anpo, M. Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal.2003,216:505-516.
    [51]J.M. Herrmann, J. Disdier, P. Pichat. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem. Phys. Lett.1984,108:618-622.
    [52]S.K. Kim, S.J. Hwang, W. Choi. Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B.2005,109:24260-24267.
    [53]X. You, F. Chen, J. Zhang, M. Anpo. A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett.2005,102:247-250.
    [54]L. Xiao, J.L. Zhang, Y. Cong, B.Z. Tian, F. Chen, CO oxidation over Au/TiO2 prepared from metal-organic gold complexes.Catal. Lett.2006,111:3-18.
    [55]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science.2001,293:269-271
    [56]P. Simon, B. Pignon, B.J. Miao, S.C. Leconte, Y. Leconte, S. Marguet, P. Jegou, B.B. Fabre, C.E. Reynaud, N. H. Boime. N-doped titanium monoxide nanoparticles with TiO2 rock-salt structure, low energy band gap, and visible light activity. Chem. Mater.2010, 22,3704-3711.
    [57]S. Sakthivel, H. Kisch. Tageslicht-photokatalyse durch kohlenstoff-modifiziertes titandioxid. Angew. Chem.2003,115,5057-5060.
    [58]S.U.M. Khan, M. Al-Shahry, W.B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science.2002,297:2243-2245.
    [59]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett.2002,81:454-456.
    [60]J.C. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater.2002,14: 3808-3816.
    [61]D. Li, H. Haneda, S. Hishita, N. Ohashi. Visible-light-driven N-F-codoped TiO2 photocatalysts.2. Optical characterization, photocatalysis, and potential application to air purification. Chem. Mater.2005,17:2596-2602.
    [62]H. Luo, T. Takata, Y. Lee, J. Zhao, K. Domen, Y. Yan. Photocatalytic activity enhancing for titanium dioxide by co-doping with bromine and chlorine. Chem. Mater.2004,16: 846-849.
    [63]Y. Bessekhouad, D. Robert, J.V. Weber. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A:Chem.2004,163:569-580.
    [64]C. Chen, W. M. Cai, M. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, Y.J. Feng. Synthesis of visible-light responsive grapheme oxide/TiO2 composites with p/n heterojunction. ACS Nano.2010,4:6425-6432.
    [65]F. Shen, W.X. Que, Y.L. Liao, X.T. Yin. Photocatalytic activity of TiO2 nanoparticles sensitized by CuInS2 quantum dots. Ind. Eng. Chem. Res.2011,50:9131-9137.
    [66]W.J. Li, D.Z. Li, S. Meng, W. Chen, X.Z. Fu, Y. Shao. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCdl-xS/TiO2 nanocomposites. Environ. Sci. Technol.2011,45:2987-2993.
    [67]L. Tian, H.Y. Tan. Morphology-controlled synthesis of Bi2S3 nanomaterials via single-and multiple-source approaches. Cryst. Growth Des.2008,8:734-738.
    [68]Y. Wang, J. Chen, P. Wang, L. Chen, Y.B. Chen, L.M. Wu. Syntheses, Growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C. 2009,113:16009-16014.
    [69]G. Xie, Z.P. Qiao, M.H. Zeng, X.M. Chen, S.L. Gao. A single-Source approach to Bi2S3 and Sb2S3 nanorods. Cryst. Growth Des.2004,4:513-516.
    [70]H.F. Bao, C.M. Li, X.Q. Cui, Y. Gan, Q.L. Song, L. Guo. Synthesis of a highly ordered single-crystalline Bi2S3 nanowire array and its metal/semiconductor/ metal back-to-Back schottky diode. Small.2008,4:1125-1129.
    [71]G.Q. Zhu, P. Liu. Low-temperature urea-assisted hydrothermal synthesis of Bi2S3 nanostructures with different morphologies. Cryst. Res. Technol.2009,44:713-720.
    [72]Y. Yu, W.T. Sun. Uniform Bi2S3 nanowires:Structure, growth, and field-effect transistors. Mater. Lett.2009,63:1917-1920.
    [73]C.J. Tang, Y.X. Zhang, X.C. Dou, G.H. Li. Seed-assistant hydrothermal synthesis of 3D Bi2S3 matlike architecture. J. Cryst. Growth.2010,312:692-697.
    [74]D.B. Wang, M.W. Shao, D.B. Yu, W.C. Yu, Y.T. Qian. Growth of Bi2S3 skeleton crystals with three-dimensional network morphologies. J. Cryst. Growth.2003,254:487-491.
    [75]Z.W. Quan, J. Yang, P.P. Yang, Z.L. Wang, C.X. Li, J. Lin. Facile synthesis and characterization of single crystalline Bi2S3 with various morphologies. Crys. Growth Des. 2008,8:200-207.
    [76]T. Wu, X.G. Zhou, H. Zhang, X.H. Zhong. Bi2S3 nanostructures:A new photocatalyst. Nano Res.2010,3:379-386.
    [77]M. Ibanez, P. Guardia, A. Shavel, D. Cadavid, J. Arbiol, J.R. Morante, A. Cabot. Growth kinetics of asymmetric Bi2S3 nanocrystals:size distribution focusing in nanorods. J. Phys. Chem. C.2011,115:7947-7955.
    [78]D.S. Wang, C.H. Hao, W. Zheng, X.L. Ma, D.R. Chu, Q. Peng, Y.D. Li. Bi2S3 nanotubes: facile synthesis and growth mechanism. Nano Res.2009,2:130-134.
    [79]D.B. Fan, P.J. Thomas, P. O'Brien. Synthesis and assembly of Bi2S3 nanoparticles at the water-toluene interface. Chem. Phys. Lett.2008,465:110-114.
    [80]C.F. Guo, S.H. Cao, J.M. Zhang, H.Y. Tang, S.M. Guo, Y. Tian, Q. Liu. Topotactic transformations of superstructures:from thin films to two-dimensional networks to nested two-dimensional networks. J. Am. Chem. Soc.2011, 133:8211-8215.
    [81]L.M. Peter, K.G.U. Wijayantha, D.J. Riley, J.P. Waggett. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B.2003,107:8378-8381.
    [82]R. Brahimi, Y. Bessekhouad, A. Bouguelia, M. Trari. Visible light induced hydrogen evolution over the heterosystem Bi2S3/Ti02. Catalysis Today.2007,122:62-65.
    [83]Y. Bessekhouad, D. Robert, J.V. Weber. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A.2004,163:569-580.
    [84]Y. Huang, G. Xie, S.P. Chen, S. Gao. Preparation and photocatalytic activity of Sb2S3/Bi2S3 doped TiO2 from complex precursor via gel-hydrothermal treatment. Solid State Chem.2011,184:502-508.
    [85]R. Albuquerque, M.C. Neves, M.H. Mendonc, T. Trindade, O.C. Monteiro. Adsorption and catalytic properties of SiO2/Bi2S3 nanocomposites on the methylene blue photodecolorization process. Colloids and Surfaces A.2008,328:107-113.
    [86]P. Chen, L. Gub, X.B. Cao. From single ZnO multipods to heterostructured ZnO/ZnS, ZnO/ZnSe,ZnO/Bi2S3 and ZnO/Cu2S multipods:controlled synthesis and tunable optical and photoelectrochemical properties. CrystEngComm,2010,12:3950-3958
    [87]Z. Fang, Y.F. Liu, Y.T. Fan, Y.H. Ni, X.M. Wei, K.B. Tang, J.M. Shen, Y. Chen. Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure. J. Phys. Chem. C.2011,115:13968-13976.
    [88]F. Zhang, M. Wen, M. Cheng, Q. S. Wu, X.G. Meng. Inducing nanolayers-assembly of FePtDy 1D superstructure and its induced visible light photocatalysis effect for TiO2. J. Mater. Chem.2010,20:7661-7668.
    [89]X. Liu, G.C. Guo, A.Q. Wu, L.Z. Cai, J.S. Huang. Two halogeno(cyano)cuprates with long-lived and strong luminescence. Inorg. Chem.2005,44:4282-4286.
    [90]B. Deng, S.L. Zhong, D.H. Wang, S.S. Wang, T.K. Zhang, W.G. Qu, A.W. Xu. High yield synthesis of matchstick-like PbS nanocrystals using mesoporous organosilica as template. Nanoscale.2011,3:1014-1021.
    [91]D.H. Webber, R.L. Brutchey. Photochemical synthesis of bismuth selenide nanocrystals in an aqueous micellar solution. Inorg. Chem.2011,50:723-725.
    [92]M.J. Allen, V.C. Tung, R.B. Kaner. Honeycomb carbon:a review of graphene. Chem. Rev.2010,110:132-145.
    [93]L.M. Peter,; K.G.U. Wijayantha, D.J. Riley, J.P. Waggett. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2. J. Phys. Chem. B.2003,107,8378-8381.
    [94]T. Ohno, K. Sarukawa, M. Matsumura. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem.2002,26,1167-1170.
    [95]N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno. Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J. Phys. Chem. C.2009,113,3062-3069.
    [96]Y. Wang, J. Chen, P. Wang, L. Chen, Y.B. Chen, L.M. Wu. Syntheses, growth mechanism, and optical properties of [001] growing Bi2S3 nanorods. J. Phys. Chem. C.2009,113, 16009-16014.
    [97]J. Pan, S.M. Huhne, H. Shen, L.S. Xiao, P. Born, W. Mader, S. Mathur. SnO2-TiO2 core-shell nanowire structures:investigations on solid state reactivity and photocatalytic behavior. J. Phys. Chem. C,2011,115:17265-17269.
    [98]T.A. Westrich, K.A. Dahlberg, M. Kaviany, J. W. Schwank. High-temperature photocatalytic ethylene oxidation over TiO2. J. Phys. Chem. C.2011,115:16537-16543.
    [99]W.Y. Teoh,; Madler, L.; Beydoun, D.; Pratsinis, S. E.; Amal, R. Direct (one-step) synthesis of TiO2 and Pt-TiO2 nanoparticles for photocatalytic mineralisation of sucrose. Chem. Eng. Sci.2005,60:5852-5861.
    [100]T. Shibata, G. Takanashi, T. Nakamura, K. Fukuda, Y. Ebina, T. Sasaki. Titanoniobate and niobate nanosheet photocatalysts:superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ. Sci.2011, 4:535-542.
    [101]Z. Wang, K. Lv, G. Wang, K. Deng, D. Tang. Study on the shape control and photocatalytic activity of high-energy anatase titania. Appl. Catal. B.2010,100: 378-385.
    [102]J. Yu, J. Fan, K. Lv. Anatase TiO2 nanosheets with exposed (001) facets:improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010,2: 2144-2149.
    [103]L. Zhou, M. Yu, J. Yang, Y. Wang, C.Z. Yu. Nanosheet-based Bi2MoxW1-xO6 solid solutions with adjustable band gaps and enhanced visible-light-driven photocatalytic activities. J. Phys. Chem. C.2010,114:18812-18818.
    [104]R. Vogel, P. Hoyer, H. Weller. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J. Phys. Chem.1994,98:3183-3188.
    [105]O. Rabin, J.M. Perez, J. Grimm, G. Wojtkiewicz, R. Weissleder. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Mater.2006,5:118-112.
    [106]L. Li, N. Sun, Y Huang, Y Qin, N. Zhao, J. Gao, M. Li, H. Zhou, L. Qi. Topotactic transformation of single-crystalline precursor discs into disc-like Bi2S3 nanorod networks. Adv. Funct. Mater.2008,18:1194-1201.
    [107]H. Bao, C.M. Li, X. Cui, Q. Song, H. Yang, J. Guo. Single-crystalline Bi2S3 nanowire network film and its optical switches. Nanotechnology.2008,19:335302.
    [108]V. Stavila, K.H. Whitmire, I. Rusakova. Synthesis of Bi2S3 nanostructures from bismuth(III) thiourea and thiosemicarbazide complexes. Chem. Mater.2009,21: 5456-5465.
    [109]D.S. Wang, C. Hao, W. Zheng, X. Ma, D. Chu, Q. Peng, Y.D. Li. Bi2S3 nanotubes:facile synthesis and growth mechanism. Nano Res.2009,2:130-134.
    [110]D. Fan, P.J. Thomas, P. O'Brien. Synthesis and assembly of Bi2S3 nanoparticles at the water-toluene interface. Chem. Phys. Lett.2008,465,110-114.
    [111]D.S. Wang, W. Zheng, C.H. Hao, Q. Peng, Y.D. Yi. A synthetic method for transition-metal chalcogenide nanocrystals. Chem. Eur. J.2009,15:1870-1875.
    [112]L. Cademartiri, R. Malakooti, P.G. O'Brien, A. Migliori, S. Petrov, N.P. Kherani, G.A. Ozin. Large-scale synthesis of ultrathin Bi2S3 necklace nanowires. Angew. Chem. Int. Ed. 2008,47:3814-3817.
    [113]J. Jiang, G. Gao, R. Yu, G. Qiu, X. Liu. Chrysanthemum-like bismuth sulfide microcrystals:Synthesis, characterization, and properties. Solid State Sci.2011,13: 356-360.
    [114]C.X. Song, D.B. Wang, T. Yang, Z.S. Hu. Morphology-controlled synthesis of Bi2S3 microstructures. CrystEngComm.2011,13:3087-3092.
    [115]C.J. Tang, YX. Zhang, X.C. Dou, G.H. Li. Seed-assistant hydrothermal synthesisof 3D Bi2S3 matlike architecture. J. Cryst. Growth.2010,312:692-697.
    [116]H. Zhang, L. Wang. Synthesis and characterization of Bi2S3 nanorods by solvothermal method in polyol media. Mater. Lett.2007,61:1667-1670.
    [117]G.Q. Zhu, P. Liu. Low-temperature urea-assisted hydrothermal synthesis of Bi2S3 nanostructures with different morphologies. Cryst. Res. Technol.2009,44:713-720.
    [118]Y. Tominaga, T. Kubo, K. Hosoya. Surface modification of TiO2 for selective photodegradation of toxic compounds. Catal. Commun.2011,12:785-789.
    [119]H. Zhang, P. Wu, Y Li, L.F. Liao, Z. Fang, X.H. Zhong. Preparation of bismuth oxide quantum dots and their photocatalytic activity in a homogeneous system. ChemCatChem.2010,2:1115.
    [120]X.P. Shen, G. Yin, W.L. Zhang, Z. Xu. Synthesis and characterization of Bi2S3 faceted nanotube bundles. Solid State Commun.2006,140:116-119.
    [121]C. O'Sullivan, R. D. Gunning, A. Sanyal, C.A. Barrett, H. Geaney, F.R. Laffir, S. Ahmed, K.M. Ryan. Spontaneous room temperature elongation of CdS and Ag2S nanorods via oriented attachment. J. Am. Chem. Soc.2009,131:12250-12257.
    [122]X. He, L. Gao, S. Yang, J. Sun. Growth-regime-controlled synthesis of CdS-Bi2S3 and Bi2S3nanocrystals during the dissolution-recrystallization processes. CrystEngComm. 2010,12:3413-3418.
    [123]J. Zhang, F. Huang, Z. Lin. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale.2010,2:18-34.
    [124]S. Ithurria, G. Bousquet, B. Dubertret. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 2011,133:3070-3077.
    [125]C. Schliehe, B.H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, H. Weller. Ultrathin PbS sheets by two-dimensional oriented attachment. Science.2010,329:550-553.
    [126]T. Yu, B. Lim, Y.N. Xia. Aqueous-phase synthesis of single-crystal ceria nanosheets. Angew. Chem. Int. Ed.2010,49:4484-4487.
    [127]D. Portehault, S. Cassaignon, E. Baudrin, J.P. Jolivet. Evolution of Nanostructured Manganese (Oxyhydr)oxides in Water through MnO4-Reduction. Crys. Growth Des. 2010,10:2168-2173.
    [128]Y.J. Choi, K.J. Choi, D.W. Kim, J.G. Park. Morphological evolution of CdS nanowires to nanosheets. J. Nanosci. Nanotech.2009,9:4487-4497.
    [129]R. Malakootim, L. Cademartiri, Y. Akcakir, S. Petrov, A. Migliori, G.A. Ozin. Shape-controlled Bi2S3 nanocrystals and their plasma polymerization into flexible films. Adv. Mater.2006,18:2189-2194.
    [130]G. Xie, Z.P. Qiao, M.H. Zeng, X.M. Chen, S.L. Gao. A single-source approach to Bi2S3 and Sb2S3 nanorods via a hydrothermal treatment. Cryst. Growth Des.2004,4: 513-516.
    [131]D.E. Scaife. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy.1980,25:41-54.
    [132]A.J. Nozik, R. Memming. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem.1996,100:13061-13078.
    [133]S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, S.K. Kim, W.L. Lee. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films. Chem. Mater.2003,5:3326-3331.
    [134]S.K. Choi, S. Kim, S.K. Lim, H. Park. Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers:effects of mesoporosity and interparticle charge transfer. J. Phys. Chem. C 2010,114:16475-16480.
    [135]T. Umebayashi, T. Yamaki, H. Itoh, K. Asai. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids.2002, 63:1909-1920.
    [136]P. Simon, B. Pignon, B.J. Miao, S.C. Leconte, Y. Leconte, S. Marguet, P. Jegou, B.B. Fabre, C. Reynaud, N.H. Boim. N-Doped titanium monoxide nanoparticles with TiO2 rock-salt structure, low energy band gap, and visible light activity. Chem. Mater.2010, 22:3704-3711.
    [137]H. Tributsch. Reaction of excited chlorophyll molecules at electrodes and in photosynthesis. Photochem. Photobiol.1972,16:261-269.
    [138]M.K. Nowotny, L.R. Sheppard, T. Bak, J. Nowotny. Defect chemistry of titanium dioxide, application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C.2008,112:5275-5300.
    [139]H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suhd, J.S. Lee. Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun.2009,5889-5891.
    [140]Y.H. Zheng, L.R. Zheng, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei. Ag/ZnO heterostructure nanocrystals:synthesis, characterization, and photocatalysis. Inorg. Chem.2007,46:6980-6986.
    [141]X. Wei, T.F. Xie, D. Xu, Q.D. Zhao, S. Pang, D.J. Wang. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique. Nanotechnology.2008,19:275707.
    [142]X. Wei, T.F. Xie, L.L. Peng, W. Fu, J.S. Chen, Q. Gao, G.Y. Hong, D.J. Wang. Effect of heterojunction on the behavior of photogenerated charges in Fe3O4@Fe2O3 nanoparticle photocatalysts. J. Phys. Chem. C.2011,115:8637-8642.
    [143]X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev.2010,110:6503-6570.
    [144]P.V. Kamat. Meeting the clean energy demand:nanostructure architectures for solar energy conversion. J. Phys. Chem. C.2007,111:2834-2860.
    [145]J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang. ZnO/BiOI heterostructures:photoinduced charge transfer property and enhanced visible light photocatalytic activity. J. Phys. Chem. C,2011,115:20555-20564.
    [146]X.K. Li, N.K. Kikugawa, J.H. Ye. Nitrogen-doped lamellar niobic acid with visible lightresponsive photocatalytic activity. Adv. Mater.2008,20:3816-3819.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700