用户名: 密码: 验证码:
VEGF转染MSCs结合PLA/HA多孔支架治疗兔早期股骨头坏死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分激素联合脂多糖诱导早期兔股骨头坏死的实验研究
     目的运用组织学技术、CT扫描和显微CT成像观察激素联合脂多糖诱导早期兔股骨头坏死的实验效果。
     方法健康雄性新西兰大白兔30只,随机分为实验组25只和对照组5只,实验组经耳缘静脉注射10μg/Kg的脂多糖二次,再肌肉注射20 mg/Kg甲泼尼龙三次,对照组注射同等剂量的生理盐水,5周后CT扫描髋关节,随机处死实验组和对照组兔4只,显微CT成像扫描股骨近端,并作组织切片观察。结果CT扫描显示实验组兔股骨头不同程度的骨密度不均匀,显微CT成像显示骨质疏松,软骨下骨囊性化,周围见硬化骨,组织学切片见骨细胞陷窝空疏,脂肪细胞增多,部分血管栓塞。
     结论激素联合脂多糖能够安全便捷地诱导兔早期股骨头坏死模型。
     第二部分VEGF基因转染MSCs结合PLA/HA复合多孔支架的异位成骨研究
     目的观察pcDNA3.1-VEGF165重组质粒转染大鼠骨髓间充质干细胞(MSCs)结合聚乳酸/纳米羟基磷灰石复合多孔支架的异位成骨效果。方法实验分为3组:(1)VEGF转染MSCs复合材料组,(2)空白载体转染MSCs复合材料组,(3)单纯支架组。分离大鼠骨髓间充质干细胞,诱导成骨条件培养,基因转染后RT-PCR和Western blot方法检测VEGF的表达,细胞与材料复合后扫描电镜观察。将复合细胞的支架材料植入大鼠肌袋后第2,4,8周进行X线和组织学检测。结果成功分离出大鼠骨髓基质干细胞,并诱导成骨方向培养,RT-PCR和Western blot显示转染后MSCs的VEGF表达水平明显高于其他2组,聚乳酸/纳米羟基磷灰石复合多孔支架呈三维多孔隙结构,细胞能有效生长,植入大鼠体内后,转染组4周可见异位成骨,8周更加明显,另2组未见明显成骨。
     结论VEGF基因转染大鼠MSCs复合PLA/HA多孔支架能在大鼠体内诱导成骨。
     第三部分VEGF基因转染MSCs结合PLA/HA复合多孔支架治疗兔早期股骨头坏死
     目的探讨利用pcDNA3.1-VEGF165重组质粒转染兔MSCs与PLA/HA多孔支架复合后植入股骨头坏死模型兔的股骨头内,观察其成血管和成骨能力。
     方法分离、培养兔骨髓基质干细胞,pcDNA3.1-VEGF165重组质粒转染兔MSCs后RT-PCR检测VEGF表达情况,将转染后的兔MSCs与PLA/HA多孔支架复合。实验分为四组:(1)pcDNA3.1-VEGF165重组质粒转染MSCs复合支架组,(2)空白载体转染MSCs复合支架组,(3)单纯支架植入组,(4)未处理组。经兔股骨大转子后下方向股骨头钻直径3mm工作隧道,植入支架材料。术后分别于8、12周对股骨头行显微CT及组织病理学切片检查,第12周行X线摄影。
     结果成功分离培养出兔MSCs, pcDNA3.1-VEGF165重组质粒转染后,VEGF表达水平明显高于其他组。pcDNA3.1-VEGF165重组质粒转染MSCs支架植入股骨头后8周可见坏死骨小梁周围部分新骨形成,支架周围成纤维细胞、淋巴细胞浸润,小血管形成,12周见新生骨小梁生成,支架吸收,而其他组未见明显新生骨。显微CT显示重组质粒转染组股骨头形态正常,骨小梁分布均匀,其他组部分股骨头变形,软骨下骨变薄,骨小梁稀疏、断裂。X线显示重组质粒转染组股骨头形态正常、密度均匀,未治疗组股骨头明显变形,骨密度不均匀。
     结论pcDNA3.1-VEGF165重组质粒转染兔MSCs复合PLA/HA多孔支架能够诱导兔股骨头内新生血管和骨的形成,是一种较好的修复股骨头坏死的方法。
The experimental research of early osteonecrosis of rabbit femoral head induced by a comibination of methylprednisolone and lipopolysaccharide
     objective To research the experimental result of early osteonecrosis of rabbit femoral head induced by a comibination of methylprednisolone and lipopolysaccharide by histopathologic technique, CT scanning and micro CT imaging.
     Methods 30 male new-Zealand rabbits were divided into experimental group (25 rabbits) and control group (5 rabbits) randomly. Two injections of 10μg/Kg body weight of lipopolysaccharide and three injections of 20 mg/Kg body weight of methylprednisolone were performed in experimental group. Physiologic saline was injected in control group. We scanned the hip joint of every rabbit by CT, and executed 4 rabbits in both groups randomly for micro CT sacnning and histopathology.
     Results The CT scanning showed non-uniform of bone density of femoral head in experimental group. Osteoporosis, cystis and sclerotization were observed in subchondral bone from micro CT imaging. Bone cell lacunae, increased fat cells and thrombokinesis were observed in histopathologic check.
     Conclusion A comibination of methylprednisolone and lipopolysaccharide could induce the early osteonecrosis of rabbit femoral head safely.
     objective To evaluate the ectopic osteogenesis potential of polylactic acid/hydroxyapatite ceramic (PLA/HA) porous scaffold delivery of rat bone marrow-derived mesenchymal stem cells transfected by pcDNA3.1-VEGF165 plasmid.
     Methods Rat MSCs were separated and cultured with osteoinduction medium. Cells were transfected with pcDNA3.1-VEGF165 plasmid or blank plasmid. RT-PCR and Western blot were used to determine the phenotype of MSCs. There were three groups:plasmid transfection with scaffold group, blank plasmid transfection with scaffold group and only scaffold group. Scanning electron microscope was used to analyzed the biocompatibility of scaffold. Cells-scaffold complexes were implanted into the muscles of rat. Radiographic and histological evaluations were performed to observed the bone formation 2,4 and 8 weeks after operation.
     Results Rat MSCs were sucessed to be separated and cultured with osteoinduction medium. By RT-PCR test and Western blot analysis, only the pcDNA3.1-VEGF165 transfected MSCs producted VEGF165. Scanning electron microscope showed the 3D-structure with more pores of PLA/HA porous scaffold.4 weeks after operation, ectopic bones were observed in plasmid transfection with scaffold group. little ectopic bones were observed in other groups.
     Conclusions PLA/HA porous scaffold delivery of rat MSCs transfected by pcDNA3.1-VEGF165 plasmid can induce ectopic osteogenesis of rat in vivo.
     Objective To observe the blood vessels and osteogenic capacity after implantation the combination of plasmid pcDNA3.1-VEGF165 transfection of rabbit bMSCs with the PLA/HA porous scaffold into the femoral head of rabbit femoral head necrosis model.
     Methods Rabbit MSCs were isolated and cultured. After transfected with pcDNA3.1-VEGF165 plasmid, we detected VEGF expression by RT-PCR, then we combinated rabbit MSCs with the PLA/HA porous scaffold. There were 4 groups:(1) pcDNA3.1-VEGF165 plasmid transfection with scaffold group, (2)blank vector transfection with scaffold group, (3)simple scaffold group,(4)untreated group. We drilled 3mm diameter tunnel under the greater trochanter to femoral head, and implanted porous scaffolds. Micro-CT and histological evaluations were performed to observe the rabbit femoral head 8 and 12 weeks after operation. X-ray photography was performed after 12 weeks.
     Result Rabbit MSCs were separated and cultured with osteoinduction medium successfully. After transfected with recombinant plasmid pcDNA3.1-VEGF165, VEGF expressipn level was significantly higher than other groups.8 weeks after operation, we can observe the new bone formation around the necrotic trabecular, ibroblast cells and lymphocyte infiltration, small blood vessel formation in recombinant plasmid transfected MSC group. After 12 weeks, we saw the new trabecular bone generation and scaffold absorption, while the other group had no obvious new bone. Micro-CT showed normal femoral head shape, uniform distribution of trabecular bone in plasmid transfection group, but femoral head deformation, thin subchondral bone and trabecular bone fracture in other groups. X-ray showed morphologically normal femoral heads and uniform bone mineral density in plasmid transfection group, but femoral head deformation obviously and non-uniform bone mineral density in untreated group.
     Conclusion Plasmid pcDNA3.1-VEGF165 transfection of rabbit MSCs with the PLA/HA porous scaffold could induce the formation of blood vessels and bone in rabbit femoral head, which is a better method for repair of femoral head necrosis.
引文
1. Yamamoto T, Hirano K, Tsutsui H, et al. Corticosteroid enhances the experimental induction of osteonecrosis in rabbits with Shwartzman reaction. Clin Orthop Relat Res 1995; 316:235-243.
    2. Irisa T, Yamamoto T, Miyanishi K, et al. Osteonecrosis induced by a single administration of low-dose lipopolysaccharide in rabbits.Bone 2001;286:641-649.
    3. Yamamoto T, Irisa T, Sugioka Y, et al. Effects of pulse methylprednisolone on bone and marrow tissues:corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum 1997;
    40:2055-2064.
    4. Lieberman JR, Berry DJ, Mont MA, et al. Osteonecrosis of the hip:management in the 21st century. Instr Course Lect 2002;52:337-355.
    5. Wang GJ, Cui Q, Balian G. The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis. Clin Orthop Relat Res 2000;370:295-310.
    6. Matsui M, Saito s, Oh zoao K, et al. Experimental steroid induced osteo-necrosis in adult rabbit with hypersensitive vasculitis. clin Orthop,1992; 277:61.
    7.李洪涛,王心生.鸡激素性股骨头缺血性坏死动物模型的建立.实黢动物科学与管理,1999,16(1);22-24.
    8. Mihara K, Hirano T. Standing is a causative factor in osteonecrosis of the femoral head in growing rats. J Pediatr Orthop.1998; 18(5):665-669.
    9. Suehiro M, Hirano T, Mihara K, Shindo H. Etiologic factors in femoral head osteonecrosis in growing rats. J Orthop Sci.2000; 5(1):52-56.
    10. Suehiro M, Hirano T, Shindo H. Osteonecrosis induced by standing in growing Wistar Kyoto rats. J Orthop Sci.2005; 10(5)::501-507.
    11. Arlet J.Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin Orthop Relat Res 1999;277:12-21.
    12. Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). New Eng J Med 1992;326: 1473-1479.
    13. Motomura G, Yamamoto T, Miyanishi K,et al. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis-a histomorphometric study of autopsy cases. Pathol Res Pract 2005;200:807-811.
    14. Glueck CJ, Freiberg RA, Wang P. Role of thrombosis in osteonecrosis. Curr Hematol Rep,2003,2:417-422.
    15. Glueck CJ, Freiberg RA, Glueck HI, et al. Hypofibrinolysis:a common, major cause of osteonecrosis. Am J Hematol,1994,45:156-166.
    16. Jones LC,Mont MA, Le TB,Petri M,Hungerford DS,Wang P,Glueck CJ. Procoagulants and osteonecrosis. J Rheumatol 2003;30:783-791.
    17. Kabata T, Kubo T, Matsumoto T, et al. Apoptotic cell death in steroid induced osteonecrosis:an experimental study in rabbits. J Rheumatol,2000,27:2166-2171.
    18. Bekler H, Uygur AM, Gokce A, et al. The effect of steroid use on the pathogenesis of avascular necrosis of the femoral head:an animal model. Acta Orthop Traumatol Turc, 2007,41:58-63.
    19. Okazaki S, Nishitani Y, Nagoya S, et al. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via the toll-like receptor 4 signalling pathway. Rheumatology,2009,48:227-232.
    20. Miyanishi K, Yamamoto T, Irisa T, et al. Effects of different corticosteroids on the development of osteonecrosis in rabbits. Rheumatology (Oxford),2005; 44(3): 332-336.
    21.Xinghuo Wu, Shuhua Yang, Deyu Duan, et al. Experimental osteonecrosis induced by a combination of low-dose lipopolysaccharide and high-dose methylprednisolone in rabbits. Joint Bone Spine,2008,75:573-578.
    22. Takao M, Sugano N, Nishii T, et al. Different magnetic resonance imaging features in two types of nontraumatic rabbit osteonecrosis models. Magn Reson Imaging.2009; 27(2):233-239.
    23. Sakai T, Sugano N, Tsuji T, et al. Contrast-enhanced magnetic resonance imaging in a nontraumatic rabbit osteonecrosis model. J Orthop Res.1999; 17(5):784-792.
    24. Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of threedimensional bone architecture in vitro by computed tomography. J Bone Miner Res,1989,4:3-11.
    25. Ge Zhang, Ling Qin, Hui Sheng, et al. A novel semisynthesized small molecule icaritin reduces incidence of steroid-associated osteonecrosis with inhibition of both thrombosis and lipid-deposition in a dose-dependent manner. Bone,2009,44:345-356.
    26. Hattzeur JP, Perlmuller N, AppelbOonl T, et al. Medullary impartment at early stage of non-traumatic osteonecrosis of the femoral head. Rheumalol Int,1991,11:215-217.
    1. Koike N, Fukumura D, Gralla O, et al. Tissue engineering:creation of long-lasting blood vessels. Nature 2004; 428:138-139.
    2. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells:characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8:301-316.
    3. Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004; 103:1662-1668.
    4. Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells:characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004; 8: 301-316.
    5. Schliephake H, Schmelzeisen R, Husstedt H, et al. Comparison of the late results of mandibular reconstruction using nonvascularized or vascularized grafts and dental implants. J Oral Maxillofac Surg.1999; 57(8):944-950.
    6. Wang Z, Goh J, Das De S, et al. Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue eng,2006; 12(7):1753-1761.
    7. Zohar R, Sodek J, Mcculloch CA. Characterization of stromal progenitor cells enriched by flow cytomerty. Blood,1997; 90(9):3471-3480.
    8. Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma. Lab Invest,1999; 79(4):449-445.
    9.潘海涛,郑启新,郭晓东等.兔骨髓基质干细胞的分离培养和鉴定及转化生长因子β 1的基因瞬时转染研究.医学研究生学报,2006;19(6):508-512.
    10. Valtieri M, Sorrentino A. The mesenchymal stromal cell contribution to homeostasis. J Cell Physiol,2008; 217(2):296-300.
    11. Derubeis AR, Cancedda R. Bone marrow stromal cells in bone engineering:limitations and recent advances. Ann Biomed Eng,2004; 32(1):160-165.
    12. Geiger F, Bertram H, Berger I, et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res,2005; 20(11):2028-2035.
    13. Steinbrech DS, Mehrara BJ, Saadeh PB, et al. Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg,1999; 104(3): 738-747.
    14. Yalvac ME, Ramazanoglu M, Gumru OZ, et al. omparison and optimisation of transfection of human dental follicle cells, a novel source of stem cells, with different chemical methods and electro-poration. Neurochem Res,2009; 34(7):1272-1277.
    15. Liu J, Jones KL, Sumer H, et al. Stable transgene expression in human embryonic stem cells after simple chemical transfection. Mol Reprod Dev,2009; 76(6):580-586.
    16. Porter AE, Patelm N, Skepper JN, et al. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substitued hydroxyapatite bioceramics. Biomaterials, 2003; 24(25):4609-4620.
    17. Stolzing A, Scutt A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med,2006; 41(2):326-338.
    18.方园 戴红莲 李世普.液相吸附法制备羟基磷灰石/聚乳酸复合生物材料.生物骨科材料与临床研究,2006;3(4):38-41.
    19. Rodrigues CV, Serricella P, Linhares AB, et al. Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials, 2003; 24(27):4987-4997.
    20.郭晓东,郑启新,杜靖远等.可吸收羟基磷灰石/聚DL-乳酸骨折内固定材料机械强度和生物降解性研究.中国生物医学工程学报,2001;20(1):23-28.
    21. Maes C, Carmeliet P, Moermans K, et al. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF 188. Mech Dev,2002; 111(1-2):61-73.
    22. Mayer H, Bertram H, Lindenmaier W, et al. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells:autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem,2005; 95(4):827-839.
    23. Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology,2002,143(4):1545-1553.
    1. Babis GC, Soucacos PN. Efectiveness of total hip arthroplasty in the management of hip osteonecrosis. Orthop Clin North Am,2004,35(3):359-364.
    2. Steinberg ME, Larcom PG, Strafford B, et al. Core decompression with bone grafting for osteonecrosis of the femoral head. Clin Orthop Relat Res,2001; (386):71-78.
    3. Hernigou P, Beaujean F, Lambotte JC. Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg Br, 1999; 81(2):349-355.
    4. Suh KT, Kim SW, Roh HL, et al. Decreased osteogenic differentiation of mesenchymal stem cells in alcohol-induced osteonecrosis. Clin Orthop Relat Res,2005; (431): 220-225.
    5. Lee JS, Lee JS, Roh HL, et al. Alterations in the differentiation ability of mesenchymal stem cells in patients with nontraumatic osteonecrosis of the femoral head:comparative analysis according to the risk factor. J Orthop Res,2006; 24(4):604-609.
    6. Lee HS, Huang GT, Chiang H, et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells,2003; 21(2):190-199.
    7. Deten A, Volz HC, Clamors S, et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc Res,2005; 65(1):52-63.
    8. Priller J. Robert Feulgen Prize Lecture. Grenzganger:adult bone marrow cells populate the brain. Histochem Cell Biol,2003; 120(2):85-91.
    9. Wang Z, Goh J, Das De S, et al. Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue eng,2006; 12(7):1753-1761.
    10. Gangji V, Hauzeur JP, Schoutens A, et al. Abnormalities in the replicative capacity of Osteoblastic cells in the proximal femur of patients with osteonecrosis of the femoral head. J Rheumatol,2003; 30(2):348-351.
    11. Hernigou P, Beaujean F, Lambotte JC. Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. Bone Joint Surg Br,1999; 81(2):349-355.
    12. Tang TT, Lu B, Yue B, et al. Treatment of osteonecrosis of the femoral head with hBMP-2-gene-modified tissue-engineered bone in goats. J Bone Joint Surg Br,2007; 89(1):127-129.
    13. Geiger F, Bertram H, Berger I, et al. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res.2005; 20(11):2028-2035.
    14.Mayer H, Bertram H, Lindenmaier W, et al. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells:autocrine and paracrine role on osteoblastic and endothelial differentiation. J Cell Biochem,2005; 95(4):827-839.
    15.Hofbaner LC, Heufclder AE. Updating the mctalopmtease nomenclature:bone morphogenetic protein 1 identified as procollagen C proteinase. Eur J Endocrinol, 1996; 135(1):35-36.
    16.曹凯,黄伟,安洪等.VEGF基因转染结合脱蛋白骨修复股骨头坏死的实验研究.重庆医科大学学报,2005;30(4):505-509.
    17. Hiltunen MO, Ruuskanen M, Huuskonen J, et al.Adenovirus-mediated VEGF-A gene transfer induces bone formation in vivo. FASEB J,2003; 17(9):1147-1149.
    18. Shuler MS, Rooks MD, Roberson JR. Porous tantalum implant in early osteonecrosis of the hip:preliminary report on operative, survival, and outcomes results. J Arthroplasty,2007; 22(1):26-31.
    19. Stolzing A, Scutt A. Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radic Biol Med,2006; 41(2):326-338.
    20. Gangji V, Toungouz M, Hauzeur JP. Stem cell therapy for osteonecrosis of the femoral head. Expert Opin Biol Ther, 2005;5(4):437-442.
    1. Malizos KN, Quarles LD, Seaber AV, et al. An experimental canine model of osteonecrosis:characterization of the repair process. J Orthop Res,1993; 11(3): 350-357.
    2. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later.J Bone Joint Surg Am.2006; 88(5):1117-1132.
    3. Yamamoto T, Irisa T, Sugioka Y, et al. Effects of pulse methylprednisolone on bone and marrow tissues:corticosteroid-induced osteonecrosis in rabbits. Arthritis Rheum,1997; 40:2055-2064.
    4. Kabata T, Kubo T, Matsumoto T, et al. Apoptotic cell death in steroid induced osteonecrosis:an experimental study in rabbits. J Rheumatol,2000; 27:2166-2171.
    5. Kabata T, Kubo T, Matsumoto T, et al. Onset of steroid-induced osteonecrosis in rabbits and its relationship to hyperlipaemia and increased free fatty acids.·Rheumatology (Oxford),2005; 44(10):1233-1237.
    6. Bekler H, Uygur AM, Gokce A, et al. The effect of steroid use on the pathogenesis of avascular necrosis of the femoral head:an animal model. Acta Orthop Traumatol Turc, 2007; 41(1):58-63.
    7. Miyanishi K, Yamamoto T, Irisa T, et al. Effects of different corticosteroids on the development of osteonecrosis in rabbits. Rheumatology (Oxford),2005; 44(3): 332-336.
    8. Rowe SM, Chung JY, Moon ES, et al. The effects of subluxation of the femoral head with avascular necrosis in growing rabbits. J Pediatr Orthop,2004; 24(6):645-650.
    9. Omokawa S, Tamai S, Ohneda Y, et al. A histopathological study on the femoral head necrosis in spontaneously hypertensive rats (SHR). Nippon Seikeigeka Gakkai Zasshi, 1992; 66(1):69-82.
    10. Hirano T, Majima R, Yoshida G, et al. Characteristics of blood vessels feeding the femoral head liable to osteonecrosis in spontaneously hypertensive rats. Calcif Tissue Int,1996; 58(3):201-205.
    11. Hsieh AS, Winet H, Bao JY, et al. Model for intravital microscopic evaluation of the effects of arterial occlusion-caused ischemia in bone. Ann Biomed Eng,1999; 27(4): 508-516.
    12. Newton B, Crawford CJ, Powers DL, et al. The immature goat as an animal model for Legg-Calve-Perthes disease. J Invest Surg,1994; 7(5):417-430.
    13. Manggold J, Sergi C, Becker K, et al. A new animal model of femoral head necrosis induced by intraosseous injection of ethanol. Lab Anim,2002; 36(2):173-180.
    14.陆斌,汤亭亭,岳冰等.BMP-2基因给药修复实验性羊股骨头坏死.中华骨科杂志,2005;10(25):603-607.
    15. Lehner CE, Adams WM, Dubielzig RR, et al. Dysbaric osteonecrosis in divers and caisson workers. An animal model. Clin Orthop Relat Res,1997; (344):320-332.
    16. Liu SL, Ho TC. The role of venous hypertension in the pathogenesis of Legg-Perthes disease. A clinical and experimental study. J Bone Joint Surg Am,1991; 73(2):194-200.
    17. Brenig B, Leeb T, Jansen S, et al. Analysis of blood clotting factor activities in canine Legg-Calve-Perthes' disease. J Vet Intern Med,1999; 13(6):570-573.
    18. Salter RB, Thompson GH. Legg-Calve-Perthes disease. The prognostic significance of the subchondral fracture and a two-group classification of the femoral head involvement. J Bone Joint Surg Am,1984; 66(4):479-489.
    19. Wang GJ, Cui Q, Balian G. The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis. Clin Orthop Relat Res,2000; (370):295-310.
    20.李洪涛,王心生.鸡激素性股骨头缺血性坏死动物模型的建立.实黢动物科学与管理,1999;16(1):22-24.
    21. Conzemius MG, Brown TD, Zhang Y, et al. A new animal model of femoral head osteonecrosis:one that progresses to human-like mechanical failure. J Orthop Res, 2002; 20(2):303-309.
    22. Brody AS, Strong M, Babikian G, et al. John Caffey Award paper. Avascular necrosis: early MR imaging and histologic findings in a canine model. AJR Am J Roentgenol, 1991; 157(2):341-345.
    23. Nishino M, Matsumoto T, Nakamura T, et al. Pathological and hemodynamic study in a new model of femoral head necrosis following traumatic dislocation. Arch Orthop Trauma Surg,1997; 116(5):259-262.
    24. Norman D, Reis D, Zinman C, et al. Vascular deprivation-induced necrosis of the femoral head of the rat. An experimental model of avascular osteonecrosis in the skeletally immature individual or Legg-Perthes disease. Int J Exp Pathol,1998; 79(3): 173-181.
    25. Levin D, Norman D, Zinman C, et al. Treatment of experimental avascular necrosis of the femoral head with hyperbaric oxygen in rats:histological evaluation of the femoral heads during the early phase of the reparative process. Exp Mol Pathol,1999; 67(2): 99-108.
    26.高根德,许林薇.特发性股骨头缺血性坏死的发病机理研究.中国骨伤.1991,4(5):6-7.
    27. Wingstrand H, Egund N, Carlin NO, et al. Intracapsular pressure in transient synovitis of the hip. Acta Orthop Scand,1985; 56(3):204-210.
    28. Nishimura Y. The role of mechanical stress on the femoral head in the occurrence of femoral head lesions in spontaneously hypertensive rats. Nippon Seikeigeka Gakkai Zasshi,1991; 65(9):767-774.
    29. Kim HK, Su PH, Qiu YS. Histopathologic changes in growth-plate cartilage following ischemic necrosis of the capital femoral epiphysis. J Bone Joint Surg Am,2001; 83-A(5):688-697.
    30.卢强,许瑞江,卢世伟,等.股骨头骨骺缺血再灌注模型的建立.军医进修学院学报,2004;25(2):89-90.
    31.许瑞江,马承宣.机械性压力与股骨头骨骺坏死关系的动物实验研究.中华小儿外科杂志,1989;10(5):288-290.
    32. Takaoka K, Yoshioka T, Hosoya T, et al. The repair process in experimentally induced avascular necrosis of the femoral head in dogs. Arch Orthop Trauma Surg,1981; 99(2): 109-115.
    33.王江泳,王保芝,崔慧先,等.改良液氮冷冻法制备家兔股骨头坏死模型的形态学研究.河北医科大学学报,2008;29(1):5-7.
    34. Malizos KN, Quarles LD, Seaber AV, et al. An experimental canine model of osteonecrosis:characterization of the repair process. J Orthop Res,1993; 11(3): 350-357.
    35.杨述华,杨操,许伟华,等.液氮冷冻建立兔股骨头缺血性坏死模型.中国矫形外科杂志,2001;8(1):48-49.
    36.王义生,毛克亚,李月白.酒精性股骨头缺血坏死发病机理的实验研究.中华骨科杂志,1998;18(4):231-233.
    37.Xinghuo Wu, Shuhua Yang, Deyu Duan, et al. Experimental osteonecrosis induced by a combination of low-dose lipopolysaccharide and high-dose methylprednisolone in rabbits. Joint Bone Spine,2008; 75:573-578.
    38. Matsui M, Saiti S, Ohzono K, et al. Experimental steroid-induced osteonecrosis in adult rabbits with hypersensitivity vasculitis. clin Orthop,1992; 277(1):61-72.
    39. Nakata K, Masuhara K, Nakamura N, et al. Inducible osteonecrosis in a rabbit serum sickness model:deposition of immune complexes in bone marrow. Bone,1996; 18(6): 609-615.
    40. Irisa T, Yamamoto T, Miyanishi K, et al. Osteonecrosis induced by a single administration of low-dose lipopolysaccharide in rabbits. Bone,2001; 28(6):641-649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700