用户名: 密码: 验证码:
木塑复合材料界面特性及其影响因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木塑复合材料是以木材或各种木质纤维素纤维材料为基本体,通过与塑料以不同复合途径形成的一种新型材料。由于该种材料综合了木材与塑料的性能特点,因而具有非常广泛的用途。
     研究木塑复合材料的界面特性以及木塑复合材料性能的影响因子,是当前木塑复合材料理论及材料性能调控研究的重要方面。本文以我国人工林主要树种杨树、杉木和马尾松木材为主要研究对象,从人工林木材的表面特性研究入手,探索木材与塑料复合界面的形成过程,研究木塑复合材料性能的主要影响因子。目的旨在通过对木塑复合界面、影响因子以及材料性能之间的相关性的研究,为高性能木塑复合材料的研制提供理论依据和技术基础。本研究的内容包括:不同人工林树种木材的表面自由能、表面极性和表面化学官能团等木材表面特征因子的测定、相关性分析及其对木塑复合界面性能的影响,木塑复合界面的形成过程和机理以及各种复合因子对木塑复合材料性能的影响等。
     通过对上述研究内容的分析和讨论,获得以下主要结论:(1)木材表面性质对木塑复合界面及复合材料的物理力学性能有明显影响。这些表面性质包括木材表面自由能、表面极性、表面化学官能团、表面粗糙度和小分子抽出物等成分在木材表面的存在等。
     木材表面自由能是对木塑复合界面性能有重要影响的因子之一。本研究测定了三个人工林树种木材的表面自由能数值,杉木的总表面自由能(γ_s)和非极性表面自由能(γ_s~d)数值最高,分别为42.4 mJ/m~2和41.6mJ/m~2。杨木的总表面自由能和非极性表面自由能次之,分别为38.9 mJ/m~2和35.5mJ/m~2。马尾松的两项表面自由能数值最低,分别为27.3mJ/m~2和16.3mJ/m~2。
    
     摘 要
    这一结果显示了不同树种木材所形成的木塑复合材料的界面性能有着较大
    差异,即杉木与塑料形成的木塑复合材料的界面结合强度最高,杨树木材次
    之,马尾松最低。
     木材的表面极性(Y。’)是对木塑复合界面性能有影响的另一个重要因
    子。本研究结果表明:马尾松木材的表面极性最高门.0 mJ砌z),杨树木材
    次之(3.41 mJ/mz),杉木木材的表面极性值最低(0.74 mJ/mz)。这一结果
    表明不同木材表面对极性的小分子物质(如水分子)有不同的吸附能力,其
    中马尾松木材表面对水分的亲和性较强。因此,马尾松一塑料复合材料的界
    面耐水性能较差,而杉木一塑料复合材料界面的耐水性能较好。由于木材与
    塑料表面分子结构相差较大,木材表面的主要化学官能团为强极性的羟基基
    团,而塑料表面则主要为非极性烃基。因此,具有相对较小极性的木材表面
    有利于提高木塑复合界面的强度。
     木材表面自由能和表面极性变化是木材表面化学官能团变化的热力学
    体现。本研究结果表明,经不同的高温处理后,木材的表面自由能随处理温
    度的升高而下降。这种下降是木材表面各种活性官能团在高温处理后其状态
    和数量变化的结果。其中强极性的木材表面羟基在不同高温处理后,其缔合
    状态的改变和羟基数量的减少导致了木材表面自由能和木材表面极性的变
    化。
     木材的表面粗糙度对木塑复合界面强度的影响主要表现在两个方面:在
    木材与塑料能够形成良好润湿以及有利于形成啮合的表面粗糙形态的前题
    下,表面粗糙度较大意味着可以在界面形成较深的界面扩散和机械互锁。而
    对于塑料不能在木材表面形成良好润湿,木材表面粗糙形态不能形成良好啮
    合的倩况下,木材表面粗糙度的增加则意味着界面形成空洞的增加,复合材
    料总体强度的下降。
     如果木材的抽出物含量过高(如马尾松木材细胞中的松脂),在木塑复
    合时,易于因木材小分子抽出物在木材表面的存在,使木塑复合界面形成弱
    边界层,进而使木塑复合材料的整体性能下降。
     2
    
     摘 要
     u)木塑复合界网的形成及强度是一个受到多种因素影响的复杂过程,
     木材和塑料的表面特性、木材所含或吸附的化学成份、塑料的理化性能指标、
     木塑复合途径以及不同的复合工艺因子等都对本塑复合界面的强度性能产
     生影响。本研究瞧表明,一个性能良好的木塑复合界面的形成需具有以下
     条件或措施:
     A.木材的总表面自由能和它的非极性表面自由能需高于塑料的表面自由
     能,以保证塑料在木材表面完全润湿和渗透。
     B.在木材总表面自由能数值高于塑料表面自由能数值的前提下,适当增加
     木材表面粗糙度有利于加强界面相互渗透深度和界面机械互锁。
     C.果用不同的技术措施减少或消除木材表面的小分子物质,如各种木材抽
     提物或在木材表面吸附的水分及各种小分子污染物等,以减少木塑复合
     界面弱边界层的形成。
     D.在不使木材热降解的前提下,适当提高木塑复合温度,提高塑料的流动
     状态,以加强塑料在木材表面的扩散、渗透。
     E 对木材或塑料表面进行改性,以加强
Wood-plastics composites are a kind of new material, which are formed by wood, wood fiber or other lignocellulose fibers with various plastics in different combining paths. With the integrating performance characteristic of wood and plastics, the new material will be utilized in very extensive field.
    That the interfacial properties, the forming mechanism and the important influence factors in the wood-plastics composites forming are studied is a very important research area in the wood-plastics composite theory and performance controlling of the composites. In this paper, three main tree species wood planted in our country, poplar, Chinese Fir and masson pine are chosen as the research materials. Their wood surface identities, the forming process of the wood-plastics interface, and the relativity of the influence factors to the wood-plastics composite properties are studied. The aim of the research is offering theory and technique bases for the manufacture of high capability wood/plastics composites with the study of the relationship among the wood/plastics interface, the influence factors and the performances of the composites.
    The research contents include the determination of the surface characteristic of three kinds of the planted wood, such as the surface free energy, the surface polarity and the surface chemical function groups, and the analyses of the
    
    
    relationship between the factors and the performances. The interfacial forming process and the relationship of the process factors to the performance of the wood/plastics composite material have also been discussed.
    The main conclusions obtained from above research analyses and discussion are as follows:
    1. The wood surface characteristics among the tree species have significant influence to the interface properties of the wood/plastics composites and their physical-mechanical capability. They include wood surface energy, surface polarity, surface chemical function groups, surface roughness and surface extraction with small molecule.
    The wood surface free energy is one of the important influence factors. The numerical values of the surface free energies of the three species wood have been determined in the paper. Chinese Fir has the highest total surface free energy Y s and non-polarity free energy Y sd compare with other two species. The Y s and Y sd of Chinese Fir are 42.4 mj/ra2 and 41.6 mj/m2 respectively. The Y s and Y sd of the poplar wood are 38.9 mj/ra2 and 35.5 mj/ra2, and the values of rnasson pine are 27.3 mj/m2 and 16.3 mj/m2 respectively. These results indicated the differences among the interfacial properties of wood/plastics composites formed by different species wood. They approved the Chinese Fir wood/plastics composites has the highest interface strength, the second one is the poplar wood and the masson wood has the lowest interface strength.
    The wood surface polarity is another important factor influencing the interfacial adhesion across the wood/plastics interface. The value can be explained by the wood surface polar free energy (Y s1)- The research results have shown that the masson pine has the highest polar free energy value (11.0 mj/ra2). The second one is poplar wood (3.41 mj/m2), and the Chinese Fir wood has the lowest polar free energy (0.74 mj/m2). The result of the surface polar free energy
    
    has shown the hydrophilic adsorption of the wood surface. It is that the masson pine has the highest hydrophilic properties and the Chinese Fir wood/plastics composites have the best water-resistant properties. The chemical function groups in the wood surface are mainly the hydroxide groups with strong polarity and the groups in the plastics are the alkyl groups with non-polarity. As the big difference of the molecule structure between the wood surface and the plastic surface, the wood surface with less polarity will be in favor of the increasing the strength of the wood/plastics composites.
    The diversification of wood surface free energy and the wood surface polarity is the embodiment of the chemical function group changi
引文
1.程传煊 1995,《表面物理化学》,科学技术文献出版社
    2,顾惕人 朱埗瑶 李外朗等1999 《表面化学》科学出版社
    3.郭文静 王正,1995,木塑复合材料制造技术的研究 《中国青年绿色论坛第3届青年学术研讨会论文集》中国林业出版社
    4.王建军 郭文静 王正,1995,木纤维-聚乙烯复合材料中聚乙烯改性的研究 《木材工业》第9卷 第2期
    5. Adams D. F., D. R. Doner and R. L. Thomas 1967 Mechanical Behavior of Fibe Reinforced Composite Materials; Air Force Materials Laboratory Report AFML-TR-67-96.
    6. Allcock R. H. and F. W. Lampe 1981 Contemporary Polymer Chemistry Printice-Hall Inc.
    7. Armstrong J. P., G. H. Kyanka, and J. L. Thorpe 1977 S2 fibril angle-elastic modulus relationship of TMP scotch pine fibers. Wood Science 10 (2): 72-80.
    8. Augie M., Charlie M. 1997 Processing wood-polymer composites with twin-screw extruders. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 43~49.
    9. Banks W. B. Roman H. D. 1992 Formation of a chemically bonded wood/methacrylate composite through chemical activation of wood fiber. Chemical Modification of Lignocellulosics, Rotorua, New Zealand, 7~8.
    10. Berlin A. D. and V. N. Kislenko 1992 Kinetics and mechanism of redical graft polymerization of monomers onto polysaccharides; Prog. Polym. Dci. 17: 765-825.
    11. Bernard R., Joel D. 1997 Wood-polypropylene composites: a multi-laminated
    
    panel and a fiber-reinforced particleboard panel. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.286-291.
    12. Boeglin N., Masson D. 1996 Interfacial mechanical bonding by SEM of wood and plastic composites. Holz als Roh and Werkstoff, 54:(1) p.48.
    13. Brown W. 1967 Solution properties of lignin; J. of Appl. Polm. Sci. 11(11) :2381-2396.
    14. Burrell H. 1975 In "Polmer Handbook" 2nd edn. Edited by J. Bandmp snd E.H. Immergut (Wiley-Interscience New York) p. Ⅳ 337.
    15. Chamis C.C. 1976 Mechanics of load transfer at the interface; In "Interfaces in Polymer Matrix Composites" ed. By Edwin P. Plueddemann; Composite Materials Volume 6 ed. L.J. Broutman and R.H. Krock.
    16. Chen M. J., John J. M. 1995 Surface alteration of wood by grafting, in Woodfiber-plastic composites In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p.118-131.
    17. Christiansen A.W. 1990 How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: A critical review of the literature. Part Ⅰ Physical responses. Wood & Fiber Sci. 22:441-459.
    18. Christiansen A.W. 1990 How overdrying wood reduces its bonding to phenol-formaldehyde adhesives: a critical review of the literature, Part Ⅰ Physical responses; Wood Fiber & Sci. 22(4) : 441-456.
    19. Collier J. R., Lu M. F. 1995 Reactive composite systems. In the Proceedings of Third International Conference on the Wood fiber-Plastic Composites; by the Forest Product Society, U.S.A. p.67-73.
    20. Cox H.L. 1952 The elasticity and strength of paper and other fibrous materials; J. Appl. Phys. 3:72-79.
    21. D. Robson and J. Hague 1995 A comparison of wood and plant fiber properties; In the Proceedings of Third International Conference on the
    
    Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p.41-46.
    22. Daniel F. C., Daniel T. Q. 1995 Influence of fiber surface characteristics on interactions with a polymer matrix. In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p. 117
    23. Debruyne N.A. 1957 Adhesive properties of epoxy resins; Nature 180(10) : 262.
    24. Dimitrov D. 1981 Investigating the physical and mechanical indices of wood-polystyrene boards. Drvoobrabot vashcha I Mebelna Promishlenost, 24(10) : 301-303.
    25. Douglas J. G. 1995 Analytical techniques for characterizing the surface chemistry of lignocellulosic fiber. In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p.65-66.
    26. Drzal L.T. 1985 The interphase in epoxy composites; Adv. In Polymer Sci. Vol. 75, Springer-Verlag. 1-32.
    27. Drzal L.T., M. J. Rich, M. F. Koenig and P. F. Lloyd.1983 Adhesion of graphite fibers to epoxy matrices: Ⅱ The effect of fiber finish; J. Adhes. 16:133-152.
    28. Dudzinski J., Lawniczak M. 1987 Trials on improving properties of silver railway sleepers. Spravozdaria Komisja Technologii Drevna Poland, No.1, 3-6.
    29. Felix J. M. and P. Gatenholm 1994 Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites; J. of Mater. Sci. 29:3043-3049.
    30. Felix J. M. And P. Gatenholm. 1994. Effect of transcrystalline morphology on interfacial adhesion in cellulose/polypropylene composites. J. Of Mater. Sci. 29:3043-3049
    
    
    31. Fiber/Polymer Composites: Fundamental Concepts, Processes and Material Options" Eds. By Michael P. Wolcott. Forest Products Society. Madison, WI 53705.
    32. Fowkes F.M. 1965 In "Chemistry and Physics of Interfaces" D.E. Gushee ed. ACS. Washington D.C. p1.
    33. Fowkes F.M., D.W. Dwight, J.A. Manson and T.B. Lloyd 1988 Enhancing mechanical properties of polymer composites by modification of surface acidity or basicity of fillers; Mat. Res. Soc. Symp. Proc. Vol. 119 pp223-234.
    34. Fraser W. A., F. H. Ancker, A. T. Dibenedetto, and B. Elbirli. 1983. Evaluation of surface treatments for fibers in conposite materials. Polymer Composites 4(4) :238-248.
    35. Gardner D.J., N.C. Generally D.W. Gunnells and M.P. Wolcott 1991 Dynamic wettability of wood; Langmuir 7:2498-2502.
    36. Gatenholm P., J.Felix, C. Klason and J. Kubat 1993 Methods for improvement of properties of cellulose-polymer composites. In " wood
    37. Gaur U. and B. Miller 1989 Microbond method for determination of the shear strength of a fiber/resin interface: evaluation of experimental parameters; Composite Sci. & Technol. 34: 35-51.
    38. Gopal P., L.R. Dharani, N. Subramaniam, and F.D.Blum. 1994. 'Bundle-debond' technique for characterizing fiber/matrix interfacial adhesion. J. Of Mater. SCI. 29: 1185-1190
    39. Greene R. E. 1965 Flame or electrical discharge priming of paper substances in high-speed extrusion coating; Tappi 48(80A).
    40. Greszczuk L.B. 1969 In "Interfaces in Composites" ASTM STP 452; American Society for Testing and Materials Philadelphia PA. p.42.
    41. Griffiths D. L. 1965 Irradiated wood/plastic compositions, 1965, report, United Kingdom scientific Mission(North America) No65/66.
    42. Guthrie J.T. 1978 The use of polystyrene in the modification of the properties and application of cellulosic fibers, membranes and timber composites; Prog.
    
    Polym. Sci. Vol. 6, pp31-61.
    43. Hills P. R. 1969 The use of wood/plastic composites by the flooring industry 1969, Chemistry Division, UK, Atomic Energy Authority Research Group Antage, pp6.
    44. Hodgson K.T. and J.C. Berg 1988 Dynamic wettability properties of single wood pulp fibers and their relationship to absorbency; Wood Fiber & Sci. 20(1) : 1-17.
    45. Hwang GS. 1997 Manufacturing of plastic/wood composite boards with waste polyethylene and wood particles. Taiwan Journal of Forest Science, 12(4) : 433-450.
    46. Iannazzi F. D. 1964, Technical and economic consideration for an irradiated wood-plastic material, final Report No. TID-21434 Division of Technical Information, United States Atomic Energy Commission pp93.
    47. J. A. Youngquist, R.M. Rowell 1989 Opportunities for combining wood with non-wood materials Proceedings of the 23d international particleboard/composite materials symposium Washington State University p. 144-157.
    48. Jochen G., Andrzej K. B. 1997 Dynamic-mechanical properties of natural fiber reinforced plastics: the effect of coupling agents. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 76-80
    49. John S. 1995 The mechanical properties of woodfiber-plastic composites: theoretical vs. Experimental; In the Proceedings of Third International Conference on the Wood fiber-Plastic Composites; by the Forest Product Society, U.S.A. p. 47-55.
    50. John S., Rodney J. 1997 Wood fiber reinforcement of styrene-maleic anhydride copolymers. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.215-220.
    
    
    51. John Simonsen, Bix Xu, W.E.(Skip) Rochfort 1999 Creep reduction using blended matrices in wood-filled polymer composites; In the Fifth International Conference on Woodfiber-Plastic Composites; Forest Products Society ,USA.
    52. Kawakami H., Yamashina H. 1981 Production of wood-plastic composites by the use of functional resins 6, the durability of WPC in outdoor exposure. Journal of the Hokkaido Forest Products Research Institute, No.353, p.12-18.
    53. Kent J. A. 1965 Preparation of wood/plastic combinations using gamma radiation to induce polymerization; Interim Report No ORO-628, division of technical Information, United states Atomic Energy Commission Oak Ridge Tenn.
    54. Kokta B.V., C.Daneault and A.D. Beshay 1986 Use of grafted aspen fibers in thermoplastic composites: IV Effect of extreme conditions on mechanical properties of polyethylene composites; Polymer Comp. 7(5) : 337-348.
    55. Kristtina O., Craig C. 1997 Effects of elastomers and coupling agent on impact performance of wood flour-filled polypropylene. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 144-155
    56. Ksiazek K., Lawniczak M. 1981 Possible use of wood from peder cores in the production of wood-polymer composite. Prace Komisji Technologii Drewna Poland, 10: 39-48.
    57. Lavnichak M., Lawniczak M. 1987 Modification of Wood: outlook for the
    21st century. Zvolen Zbornik Referatov Sikcia 4, 39-54
    58. Lawniczak M. 1982 A polish method for renovating timber sleepers. Holz-zentralblett, 108(94) : 1335.
    59. Lee P. W., Park H. 1988 Effect of combining Wood Particles and plastic (polypropylene)screens on the physical and mechanical properties of boards. Mogiae Gonghak Journal of the Korean Wood Science and Technology, 16(1) : 21-24.
    
    
    60. Leopold B. and D.C. Mclntosh 1961 Chemical composition and physical properties of wood fibers Ⅲ Tensile strengthe of individual fibers from alkali extracted loblolly pine holocellulose Tappi 44(3) :235-240.
    61. Leslie H. G., Stephen M. S. and L.Mott 1995 The mechanical properties of individual lignocellulosic fiber; In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p.33-40.
    62. Lisbeth G. T. 1997 Plant fiber surface characterization by wetting analysis. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.69-75.
    63. Liu F.P. 1994 Characterizing interfacial adhesion between wood fibers and a thermoplastic matrix, PhD shesis, West Virginia University.
    64. Maldas D., B.v. Kokta, R.G. Raj, and C. Daneault; 1988 Improvement of mechanical properties of sawdust wood fiber-polystyrene composites by chemical treatment; Polymer 29(7) : 1255-1265
    65. Maldas D., Kokta B. V. 1991 Performance of treated hybrid fiber-reinforced thermoplastic composites under extreme conditions. Holzforschung 45(2) : 131-135.
    66. Mansour O.Y. and A. Nagaty 1985 Grafting synthetic polymers to natural polymers by chemical process; Prog. Polym. Sci. 11:91-165.
    67. Mark J. B., Nicole M. S. 1997 Investigations of species effects in an infection-molding-grade, wood filled polypropylene; In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 19-25.
    68. Mark. R.E. eds. 1967 Cell wall mechanics of Tracheids. Yale University Press, p. 119.
    69. Matsuda H. 1987 Preparation and utilization of esterified wood bearing carboxyl groups. Wood Science and Technology, 21(1) :75-88.
    70. Maugis D. 1985 Review: Subcritical crack growth, surface energy, fracture
    
    toughness, stick-slip and embrittlement; J. of Mater. Sci. 20: 3041-3073.
    71. Menda K. 1997 Adhesion mechanisms in woodfiber-polypropylene composites. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.81-93.
    72. Mercado J. 1992 "Using digital image analysis to determine the reinforcement of wood fiber polyurethane composites" M.S.Thesis Michigan Tech. Univ.
    73. Miller B., P. Muri and L. Rebenfeld 1987 A microbond method for determination of shear strength of a fiber/resin interface; Compos. Sci. Technol. 28 (1987) 17-32.
    74. Miwa M., T. Ohsawa, and K. Tahara 1980 Effects of fiber length on the tensile strength of epoxy/glass and polyester/glass fiber composites; J. of Appl. Polym. Sci. 25:795-807.
    75. Nguyen T. and W. E. Johns 1978 Polar and dispersion force contributions to the total surface free energy of wood, Wood Sci. Technol. 12: p64-74
    76. Nguyen T. and W.E. Johns 1979 The effects of aging and extraction on the surface free energy of Douglas-Chinese Fir and redwood; Wood Sci. Technol. 13(1) :29-40.
    77. Nicole M. S., Mark J. B. 1997 Effect of particle size on properties of wood-flour reinforced polypropylene composites. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.134-143.
    78. Nilson P., Miguel L. S. 1997 Effect of processing on the properties of polypropylene reinforced with short sisal fiber. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p.206-214.
    79. Outwater J.D. and M.C. Murphy 1969 In "Proceedings of the 21st Annual Technical Conference of the Reinforced Plastics/composites Division" P. 11 The Society of the Plastics Industry Washington DC.
    
    
    80. P.H.索罗曼著,王绪明译,1984,《红外光谱分析100例》科学出版社
    81. Paul G., Peter H. 1995 Stress transfer in cellulose-polyolefine composites studied with single fiber fragmentation test, In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p.91.
    82. Pecina H., Stephan P. 1999 Production of wood particle materials with secondary polypropylene as binder. Wissenschaftlich Zeitschift der Technischen Universitat Dresden 48(2) : 35-36.
    83. Pekcan O. 1994 Interdiffusion at the polymer-polymer interface during latex film formation; Trends in Polymer Science 2(7) : 150-162.
    84. Peng W. T., Huang Y. S. 1995 Research and development of wood/plastic composite materials(Ⅱ) Dynamic viscoelasticities of three types of wood fiber/PP composites, spruce wood, and particleboard. Bulletin of the Taiwan Forestry Research Institute, 10(1) : 93-103.
    85. Perm L.S. and B. Jutis 1989 The effect of pendent groups at the fiber surfaces on interfacial adhesion; J. Adhesion 30: 67-81.
    86. Pernn L.S. and S.M. Lee 1989 Interpretation of experimental results in the single pull-out filament test; J. of Comp. Technol. & Res. 11(1) ;23-30.
    87. Peter F. L., Timothy G. R. 1995 Interaction between wood fiber and amorphous polymers. In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p. 74-81.
    88. Pratt J. L. 1985 A plastics particle board. Plasticulture, No.66,11-18.
    89. Raczkowski J. 1982 Modification of wood with polystyrene improves its resistance against accelerated weathering in contact with rusting iron Structural; Uses of Wood in Aderse Environments, 150-155, 2pl New York USA, Van Nostrand Reinhold Company.
    90. Raj R. G., Kokta B. V. 1989 Studies on mechanical properties of polyvinyl chloride-wood fiber composites. Wood Processing and Utilization
    
    257-261.
    91. Raj R. G., Kokta B. V. 1995 Surface-modified Bagasse fiber, high-density polyethylene composites. In the Proceedings of Third International Conference on the Wood fiber-Plastic Composites; by the Forest Product Society, U.S.A. p.220-226.
    92. Roger M. R., Rodney J. 1995 Use of natural fiber in resin transfer molding; In the Proceedings of Third International Conference on the Wood fiber-Plastic Composites; by the Forest Product Society, U.S.A. p. 137-140.
    93. Rowell R. M., Youngquist J. A. 1991 Composite from recycled materials. Proceeding of the Twenty-fifth Washington State University International Particleboard/composite Materials symposium, 301-314, Pulman, Washington USA.
    94. Rowell R.M. A. Tillman and R. Simonson 1986 A simplified procedure for the acetylation of hardwood and softwood flakes for flakeboard production;. of wood Chem. Technol. 6 (3) : 427-448.
    95. Rudin A. 1982 In "The elements of Plymer Science and Engineering" Academic Press NY p 433.
    96. Schaudy R., wendrinsky J. 1982 Wood plastic composites with high toughness and dimensional stability. Holzforchung, 36(4) : 197-206.
    97. Sjostrom E. 1981 Wood Chemistry: Fundamentals and Applications Academic Press, p. 189.
    98. Skeist I. Eds. 1990 Handbook of Adhesives; Van Nostrand Reinhold Inc. New York.
    99. Stephen M. S.and Leslie G. 1995 Microscopic analysis of wood fibers using ESEM and confocal microscopy In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites , by the Forest Product Society, U.S.A. p. 25-32.
    100. Stevens M.P. 1990 Polymer Chemistry: An Introduction 2nd ed. Oxford Univ. Press Inc.
    
    
    101. Tamada Y. and Ikada Y. 1993 Cell adhesion to plasma-treated polymer surfaces; Polymer 34:2208-2211.
    102. Tashiro, K. and Koboyashi 1991 Theoretical evaluation of three dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8) : 1516-1526.
    103. Thomas G. S. 1997 Compounding and palletizing wood fiber and polymers with Buss Kneaders. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 50-56.
    104. Vogler E.A., Martin D.A., Montgomery D.B., Graper J. and H.W. Sugg 1993 A graphical method for predicting surfactant protein adsorption properties. Langumir 9:497-507.
    105. Wagner, H.D., H. E. Gallis, and E. Wiesel. 1993. Study of the interface in Kevlar 49-epoxy composites by means of microbond and fragmentation tests: effects of materials and testing variables. J. of Mater. Sci. 28: 2238-2244.
    106. Wang S. Y, Huang M. C. 1982 Studies on the manufacturing conditions and physical and mechanical properties of compreg bamboo. Technical Bulletin Experimental Forest, National Taiwan University, No. 137,43pp.
    107. Ward K. 1973 Chemical modification of papermaking fibers; Fiber sci. Seri. Vol.4 eds by L. Rebenfeld, Marcel Dekker Inc., New York.
    108. Wu S. 1971 Calculation of interfacial tension in polymer systems; J. Polym. Sci. Part C 34:19-30.
    109. Wu, H.F. and C M. Claypool. 1991. An analytical approach of the microbond test method used in characterizing the fiber-matrix interface. J. of Mater. Sci. Lett. 10:269-282.
    110. Yasuda T., Okuno T., and K. Yoshida; 1988, A study of surface dynamics of polymers Ⅱ Investigation by plasma surface implantation of fluorine-containing moieties; J. of polym. Sci., Part B: Polym. Physi. 26:1781-1794.
    
    
    111. Young R. A., Denes F. 1995 Improvement of biobased fiber-plastic composite properties through cold plasma treatments In the Proceedings of Third International Conference on the Woodfiber-Plastic Composites; by the Forest Product Society, U.S.A. p. 227-234.
    112. Zhang C. J., Mark T. K., John J. B. 1997 The effect of microstructure on the fracture toughness of woodfiber-reinforced polypropylene. In the proceedings of Fourth International Conference on Woodfiber-Plastic composites, by the Forest Product Society, USA, p. 156.
    113. Zisman W.A. 1964 In" Advanced in Chemistry Series 43" R.F. Gould ed. Part C, Washington D.C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700