用户名: 密码: 验证码:
人工湿地减排温室气体估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何共同应对全球气候变化已经成为国际社会的主要议题和挑战之一。自下而上和自上而下的研究均表明,未来几十年,减缓全球温室气体的排放有着相当大的经济潜力,这一潜力能够抵销预估的全球排放的增长或将排放降至当前水平以下。2005年全球污水处理领域直接排放约6.4亿吨二氧化碳当量的温室气体。由于人口基数大,以及快速城市化地区和农村地区的污水处理设施不完善,中国污水处理领域甲烷温室气体排放量居全世界第一,占排放总量的21%。
     在城乡未普及管网的地区,大力发展低能耗、分散式人工湿地处理污水方法,可以避免集中污水治理模式“大管网高耗能”的弊端。人工湿地在消减环境污染物的同时,是否也减少污水处理过程的温室气体排放?本文针对这一主要问题展开研究。
     本文总结当前的研究进展,梳理人工湿地温室气体排放相关的机理研究。基于污水生化处理和湿地生态复合系统特征,构建碳质量平衡模型和碳排放估算公式。根据人工湿地设计、构造和运行模式,进行边界条件和参数的设定,估算甲烷排放占总碳负荷比例(潜在排放系数K)在0到0.36之间。结合湿地内部的氧化还原电位(Eh)区间及其长期水处理效果,可以快速估算人工湿地温室气体排放量。
     采用2006IPCC温室气体清单指南为方法学,结合案例城市常州特征,估算城乡污水处理过程的温室气体排放基准线。采用生命周期分析法(LCA),对比常州市集中污水处理和通江小区垂直流人工湿地全过程排放。比较结果表明,两者在污水收集、处理过程、以及污泥处置等全过程排放都有很大不同。集中污水处理厂处理模式的人均碳足迹为116.1 kg二氧化碳当量,其中污泥处理不当造成排放占37%,A20厌氧段甲烷排放占33%,能耗间接排放占28%,N20排放仅占2%。垂直流人工湿地处理系统的全过程人均温室气体排放为15.1 kg二氧化碳当量,仅分别相当于城市集中污水处理系统的13%,以及乡村现状排放的14.4%。温室气体减排效应明显。研究发现城市污泥填埋处置不当和乡村生活污水处理设施的缺失,不仅带来严重环境污染,而且造成大量温室气体排放。即使提高城市集中污水处理率,如果没有污泥消化处置系统,甲烷气得不到收集利用,污水排放甲烷量仍然得不到减少。
     本文对人工湿地工程建设和运行成本进行统计分析。以常州市为例的三种不同情景分析结果表明,大力建设以垂直流人工湿地为代表的低能耗好氧型污水处理设施,到2030年前,乡村污水处理率达到70%的目标是环境和经济可持续的。实施城市污泥深度处置和乡村生活污水处理这两项措施,2030年我国年减排潜力5560万吨二氧化碳当量,约占当前(2005基准年)全球污水处理领域温室气体总排放的8.7%,将是中国对全球气候变化减缓做出的巨大贡献。
Combating climate change has become one of major issues and challenges for international communities. Both bottom-up and top-down studies indicate that there is high agreement and much evidence of substantial economic potential for the mitigation of global GHG emissions over the coming decades that could offset the projected growth of global emissions or reduce emissions below current levels. Global GHG emission in wastewater sector is approximately 640 million ton CO2 equivalent at year 2005 level. China takes the first place and emits 21 percent of global total emission in this sector.
     In the peri-urban and rural area where no sewers exist, it is a cost effective strategy to develop decentralized systems instead of centralized one which demands expensive sewer network and intensive energy consumption. Constructed wetland is one of the appropriate technologies in such area. The question is:whether Constructed wetlands mitigate not only water pollutions but also GHG emissions?
     The emission mechanism in the constructed wetlands is studied. Based on the integration of wastewater treatment plant and wetland ecosystem, a Carbon Mass Balance Model (CMBM) and a method for emission estimation are thus developed. A potential emission factor (K) is used to illustrate the CH4 emision potential in ratio to the total carbon load from both wastewater and plant photosynthesis sources. The K value is estimated from 0 to 0.36 varied upon treatment efficiency and Redox potential indicated by Eh. An emission curve is thus developed to enable rapid estimation.
     Using methodology of 2006 IPCC GHG inventory guidelines, our study estimates the baseline from wastewater treatment and disposal emissions in Changzhou municipality. A comparison between wastewater treatment plant (WWTP) and a subsurface vertical flow (SSVF) constructed wetland has been made, using LCA technique. The result shows the emissions are different throughout the whole life cycle process, i.e. collection, treatment and disposal. The studied WWTP model emits 116 kg CO2 equvalent a-1 pe-1 in which 37% from anaerobic sludge landfill,33% from anaerobic section in A2O process,28% from indirect emission by energy consumption and 2% from N2O emission, respectively. The studied constructed wetland model emits only 13% and 14.4%, respectively, comparing to WWTP model and rural emission baseline. Thus, SSVF constructed wetland is proved to be an effective measure for GHG emission reduction. Our study also estimates the significance of sludge and rural wastewater emissions. Even all the wastewater are collected and treated in WWTP, the CH4 emission will not be reduced unless the sludge is properly handled and CH4 is sequestrated.
     A cost benefit analysis has been made for construction and operation of the constructed wetlands. The comparison of three scenarios in Changzhou shows it is both economically and environmentally sustainable to reach the target of 70% rural wastewater being treated by 2030. Scaling up to nation wide, by improved sludge handling and rural wastewater treatment, GHG reduction potential by year 2030 is estimated as 55.6 million ton CO2 equavelent which is approximately 8.7% of global baseline level at year 2005. This will be a significant contribution for China to the mitigation of climate change.
引文
1《联合国气候变化框架公约》涉及的GHG包括二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O)、氢氟碳化物(HFC)、全氟化碳(PFC)和六氟化疏(SF6)等六种气体。
    2 美国2006年排放水平为70.54亿吨二氧化碳当量(US EPA,2008)
    3以发电 1kWh相当于0.9kgCO2当量排放计(国家发改委气候办,2007)
    2 Study on Estimate of Greenhouse Gas Emission Reduction by Constructed Wetlands
    4CH4密度662 g/m3 (US EPA,2008) Study on Estimate of Greenhouse Gas Emission Reduction by Constructed Wetlands
    1. Altor A.E., Mitsch W.J. (2006) Methane flux from created riparian marshes: Relationship to intermittent versus continous inundation and emergent macrophytes. Ecological Engineering 28:224-234
    2. Auffhammer M., Carson R. T. (2007). Forecasting the Path of China's CO2 Emissions Using Province Level Information. Department of Agricultural & Resource Economics, UCB. CUDARE Working Paper 971. http://repositories.cdlib.org/are_ucb/971 Access on April,14th,2009
    3. Arias C.A., Brix H., Johansen N.H. (2003a) Phosphorus removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system equipped with a calcite filter. Water Sci Technol 48:51-58
    4. Arias C.A., Cabello A., Brix H., Johansen N.H. (2003b) Removal of indicator bacteria frommunicipal wastewater in an experimental two-stage vertical flow constructed wetland system.Water Sci Technol 48:35-41
    5. Bartlett K.B., Harris R.C. (1992) Review and assessment of methane emissions from wetlands.Chemosphere 26:261-320
    6. Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., (2008):Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva
    7. Beavis P., Lundie S. (2003).Integrated environmental assessment of tertiary and residuals treatment-LCA in the wastewater industry. Water Science & Technology 47 (7-8):109-116
    8. Bender M., Conrad R. (1993). Kinetics of methane oxidation in oxic soils.Chemosphere 26:687~696
    9. Bender M., Conrad R. (1994) Methane oxidation activity in various soils and freshwater sediments:occurrence, characteristics, vertical profiles and distribution on grain size fraction. Journal of Geophysical Research 99:16531~16540
    10. Benefield L.D., Randall C.W. (1980) Biological Process Design for Wastewater Treatment. Prentice-Hall, Inc.
    11. Blazejewski R., Murat S. (1997). Soil clogging phenomena in constructed wetlands with subsurface flow. Wat Sci Tech,35(5):183-188.
    12. Blumberg M. (2008) Introduction to Ecological Engineerings. Blumberg Engineers: Goettingen.
    13. Blumberg M. (2009) Constructed wetlands for domestic wastewater treatment in Shengyang, China. Unpublished paper.
    14. Boutin C. (1987) Domestic wastewater treatment in tanks planted with rooted macrophytes:case study, description of the system, design criteria, and efficiency. Water SciTechnol 19:29-40
    15. Brix H. (1987a) The applicability of the wastewater treatment plant in Othfresen as scientific documentation of the root-zone method.Water Sci Technol 19:19-24
    16. Brix H. (1987b) Treatment of wastewater in the rhizosphere of wetland plants-the rootzonemethod.Water Sci Technol 19:107-118
    17. Brix H, Schierup H.H. (1989) The use of macrophytes in water pollution control. Ambio 18:100-107
    18. Brix H, Schierup H.H. (1990) Soil oxygenation in constructed reed beds:the role of macrophyte and soil-atmosphere interface oxygen transport. In:Cooper P.F., Findlater B.C. (eds) Constructed wetlands in water pollution control. Pergamon: Oxford, pp 53-66
    19. Brix H. (1999) How Green Are Aquaculture, Constructed Wetlands and Conventional Wastewater Treatment Systems? Water Science and Technology.40(3):45-50.
    20. Brix H., Sorrell B.K., Lorenzen B. (2001) Are Phragmites-dominated wetlands a net source or net sink of greenhouse gasses? Aquat Bot 69:313-324
    21. Brix H (2003) Danish experiences with wastewater treatment in constructed wetlands. In:Dias V,Vymazal J (eds) The use of aquatic macrophytes for wastewater treatment in constructed wetlands. ICN/INAG:Lisbon, pp 327-361
    22. Brix H., Arias C., Johansen N.H. (2003) Experiments in a two-stage constructed wetland system:nitrification capacity and effects of recycling on nitrogen removal. In: Vymazal J (ed.) Wetlands:nutrients, metals and mass cycling. Backhuys:Leiden, pp 237-258
    23. BSI (2008) Guide to PAS 2050:How to assess the carbon footprint of goods and services. Crown/Carbon Trust:London
    24. Burka U., Lawrence P. (1990) A new community approach to waste treatment with higher water plants. In:Cooper P.F., Findlater B.C. (eds) Constructed wetlands in water pollution control. Pergamon:Oxford, pp 359-371
    25. Burkett V., Kusler J. (2000) Climate changes:potential impacts and interactions in wetlands of the united states.J. Am.Water Resour.Assoc.36(2):313-320
    26. Bogner, J., M. Abdelrafie Ahmed, C. Diaz, A. Faaij, Q. Gao, S. Hashimoto, K. Mareckova, R. Pipatti, T. Zhang (2007) Waste Management. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    27. Campbell C.S., Ogden M.H.1999. Constructed Wetlands in the Sustainable Landscape. John Wiley & Sons:New York.
    28. Chandler J.A., Jewell W.J., Gossett J.M. (1980). Predicting methane fermentation biodegradability. Biotechnology and Bioengineering Symposium No.10. JohnWiley & Sons:New York.
    29. Cooper P.F. (ed) (1990) European design and operations guidelines for reed bed treatment systems. WRc:Swindon
    30. Cooper P.F., Findlater B.C. (eds) (1990) Constructed wetlands in water pollution control. Pergamon:Oxford
    31. Cooper P.F. (1999) A review of the design and performance of vertical flow and hybrid reed bed treatment systems.Water Sci Technol 40 (3):1-10
    32. Cooper P.F. (2001) Nitrification and denitrification in hybrid constructed wetlands systems. In:Vymazal J. (ed) Transformations on nutrients in natural and constructed wetlands. Backhuys:Leiden, pp 257-270
    33. Cooper P.F., Job G.D., Green M.B., Shutes R.B.E. (1996) Reed beds and constructed wetlands for wastewater treatment.WRc:Marlow
    34. Crites R.W., Tchobanoglous G. (1998) Small and decentralized wastewater management systems.McGraw Hill:New York
    35. Czepiel P, Patrick C,1993. Methane emissions from municipal wastewater treatment. Environ Sci Technol,27:2472—2476.
    36. Czepiel P, Patrick C,1995. Nitrous oxide emissions from municipal wastewater treatment. Environ Sci Technol,29:2352—2356.
    37. Doorn, M.R.J., Strait, R., Barnard, W. and Eklund, B. (1997). Estimate of Global Greenhouse Gas Emissions from Industrial and Domestic Wastewater Treatment, Final Report, EPA-600/R-97-091
    38. Doom, M.R.J., Liles, D. (1999). Global Methane, Quantification of Methane Emissions and Discussion of Nitrous Oxide, and Ammonia Emissions from Septic Tanks, Latrines, and Stagnant Open Sewers in the World. EPA-600/R-99-089.
    39. De Jong J (1976) The purification of wastewater with the aid of rush or reed ponds. In:
    40. Tourbier J, Pierson RW (eds) Biological control of water pollution. Pennsylvania University Press, Philadelphia, pp 133-139
    41. Dixon, A., Simon, M., Burkitt T. (2003) Assessing the Environmental Impact of Two Options for Small-Scale Wastewater Treatment:Comparing a Reedbed and an Aerated Biological Filter Using a Life-Cycle Approach. Ecological Engineering 20(4): 297-308
    42. Dusek J., Picek T., Cizkova H. (2008) Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment:Diel, seasonal and spatial fluctuations.Ecological Engineering 34(3):223-232
    43. Earth Trends (2006) Surging Chinese Carbon Dioxide Emissions. http://earthtrends.wri.org/updates/node/110. Access on April 14th,2009
    44. Eisenhardt P., Waltrip G.D. (1999) Improving wastewater treatment plant operations efficiency and effectiveness. Water Environment Research Foundation 30(2):628-634.
    45. Emmerson R.H.C., Morse K.G., Lester J.N., Edge D.R. (1995) The Life-Cycle Analysis Of Small-Scale Sewage-Treatment Processes. Water and Environment Journal 9(3):317-325
    46. EIA (2006) U.S. Department of Energy—Energy Information Administration (EIA). Annual Energy Outlook 2006 with Projections to 2030. DOE/EIA-0383. http://www.eia.doe.gov/oiaf/aeo/gas.html.Accessed:October 2008.
    47. EU (1991) Council Directive of 21 May 1991 concerning urban wastewater treatment (91/271/EEC)
    48. Euliss N.H., Gleason R.A., Olness A., et al. (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361:179-188.
    49. Fey A., Benckiser G., Ottow J.C.G. (1999) Emissions of nitrous oxide from a constructed wetland using a groundfilter and macrophytes in waste-water purification of a dairy farm. Biol Fertil Soils 29:354-359
    50. Freeman, C., Lock M.A., Hughes S., Reynolds B., Hudson J.A..(1997). Nitrous oxide emissions and the use of wetlands for water quality amelioration. Environ. Sci. Technol.31:2438-2440.
    51. FU G.B., LI K. R. (2001)Studies on global warming and wetland ecosystem.Joural of Geographica Science 20(1):121-128.
    52. Gale P. M., Reddy K.R., Graetz D.A. (1993) Nitrogen removal from reclaimed water applied to constructed and natural wetland microcosms. Water Environ Res 65 (2):162-168
    53. Geller G., Hoener G.2003. Anwenderhandbuch Pflanzenklaeranlagen. Verlag Springer. Berlin
    54. Greenway M., Woolley A. (1999) Constructed wetlands in Queensland:performance efficiency and nutrient bioaccumulation. Ecol Eng 12:39-55
    55. Greenway M., Woolley A. (2001) Changes in plant biomass and nutrient removal in a constructed wetland, Cairns, Australia. Water Sci Technol 44(11-12):303-310
    56. Grunfeld, S., Brix, H. (1999) Methanogenesis and methane emissions:effects of water table, substrate type and presence of Phragmites australis. Aquat. Bot.64: 63-75
    57. Gui, P., Xu K., Mizuochi M., Inamori R., TaiP., Sun T., Inamori Y. (2001) The emission of greenhouse gases from constructed wetland for wastewater treatment. In IWA Conferences 2000, the 7th International Conference on Wetland Systems for Water Pollution Control, Lake Buena Vista, Florida. IWA Publishing, London. pp.277-285.
    58. Halleux H., Lassaux S., Germain A. (2006) Comparison of life cycle assessment methods, application to a wastewater treatment plant. Proceeding of 13th CIRP International Conference on Life Cycle Engineering. pp 93-96.
    59. Hammer D.A. (ed) (1989) Constructed wetlands for wastewater treatment. Lewis: Chelsea, Michigan.
    60. Hanson G.C., Groffman P.M., Gold A.J. (1994) Denitrification in riparian wetlands receiving high and low groundwater nitrate inputs. J Environ Qual 23:917-922
    61. Hilbert D.W., Roulet N., Moore T. (2000) Modeling and analysis of peatlands as dynamical systems. J. Ecology 88:230-242.
    62. IPCC (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. National Greenhouse Gas Inventories Programme. Intergovernmental Panel on Climate Change. Montreal. May 2000. IPCC-XVI/Doc.10 (1.IV.2000).
    63. IPCC (2001) Atmospheric chemistry and greenhouse gases, Chapter 4. In:Houghton J.T., et al. (eds) Climate change:the scientific basis. Cambridge University Press: Cambridge, pp 239-287
    64. IPCC (2006) Guidelines for National Greenhouse Gas Inventories. The National Greenhouse Gas Inventories Programme, The Intergovernmental Panel on Climate Change, H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe (eds.). Hayama, Kanagawa, Japan.
    65. IPCC (2007) Climate Change 2007:Synthesis Report. Geneva.
    66. IPCC (2007) Summary for Policymakers. In:Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    67. Jackson L.M, Myers E.J. (2002) Evaluation of Subsurface Flow Wetlands Vs. Free-Water Surface Wetlands Treating NPR-3 Produced Water-Year NO.2. United States Department of Energy/ Rocky Mountain Oilfield Testing Center (DOERMOTC-020144)
    68. Johansson, A.E., Gustavsson, A.-M., Oquist M.G., Svensson, B.H.2004. Methane emissions from a constructed wetland treating wastewater—seasonal and spatial distribution and dependence on edaphic factors.Water Research 38 (18):3960-3970
    69. Juutinen S., Larmola T.,Remus R., Mirus E. Merbach W., Silvola J., Augustin J.(2003) The contribution of Phragmites australis litter to methane (CH4) emission in planted and non-planted fenmicrocosms. Biology Fertility of Soils (38):10-14
    70. Kadlec R.H. (1999a) Chemical, physical and biological cycles in treatment wetlands.Water Sci Technol 40(3):37-44
    71. Kadlec R.H., Knight R.L. (1996) Treatment wetlands. CRC:Boca Raton, Florida
    72. Kadlec R.H., Wallace S.D. (2009) Treatment wetlands.2nd edition. CRC:Boca Raton, FLorida
    73. Karjalainen, S.M., J.T. Huttunen, A. Liikanen, T.S. Vaisanen, B. Kl(?)ve, A. Ylitolonen, K. Heikkinen, and P.J. Martikainen.2005. Nitrous oxide emissions from constructed boreal wetlands used to polish municipal wastewater. Verh. Int. Verein. Limnol. 29:612-617.
    74. Keller J., Hartley K. (2003) Greenhouse gas production in wastewater treatment: process selection is the major factor. Water Science and Technology 47(12):43-48
    75. Kickuth R. (1977) Degradation and incorporation of nutrients from rural wastewaters by plant hydrosphere under limnic conditions. In:Utilization of Manure of Land Spreading, London, pp.335-343.
    76. Kim S.-Y., Kang H., Freemans C. (2004) Effects of Elevated Atomospheric CO2 on Wetland Soils. In:Hong S.K. et al. (eds.), Ecological Issues in a Changing World-Status, Response and Strategy:47-54. Kluwer Academic Publishers:Netherland.
    77. King G.M. (1992) Ecological aspect s of methane consumption, a key determinant of global methane dynamics. Advances in Microbial Ecology 12:432-468.
    78. Kirk, B., Etnier C., Karrman E., Johnstone S. (2005) Methods for Comparison of Wastewater Treatment Options. Project No. WU-HT-03-33. Prepared for the National Decentralized Water Resources Capacity Development Project. Washington University, St. Louis, MO, by Ocean Arks International, Burlington, VT
    79. Knight R.L., Clarke R.A., Bastian R.K. (2001) Surface flow (SF) treatment wetlands as a habitat for wildlife and humans. Water Sci Technol 44(11-12):27-38
    80. Knowles R. (1982) Denitrification. Microbiol Reviews 46:43-70
    81. Komilis D.P., Ham R.K. (2003) The effect of lignin and sugars to the aerobic decomposition of solid waste. Waste Management23:419-423.
    82. Koskinen W.C. and Keeney D.R. (1982) Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil Sci Soc Am J 46:1165-1167
    83. Lassaux S., Renzoni R., Germain A. (2007) Life Cycle Assessment of Water from the Pumping Station to the Wastewater Treatment Plant. The International Journal of Life Cycle Assessment 12(2):118-126.
    84. Liikanen, A., Huttunen J.T., Karjalainen S.M., Heikkinen K., Vaisanen T.S., Nykanen H., Martikainen P.J. (2006) Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff water. Ecol. Eng. 26:241-251
    85. Li Jianbo, Wen Yue, Zhou Qi (2008) Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands. Bioresource Technology,99:4990-4996.
    86. Lombardi J.E., Epp M.A., Chanton J.P. (1997) Investigation of the methylfluoride technique for determining rhizospheric methane oxidation. Biogeochemistry 36: 153-172.
    87. Lundie S., Peters G.M., Beavis P.C. (2004) Life cycle assessment for sustainable metropolitan water systems planning. Environmental Science & Technology 38:3465-3473.
    88. Lundin M., Morrisson G.M.. (2002) A life cycle assessment based procedure for development of environmental sustainability indicators for urban water systems. Urban Water (4):145-152.
    89. Macdonald J.A, Fowler D., Hargreaves K. J. (1998) Methane emission rates from a northern wetland:response to temperature, water table and transport-Effect of a persistantwater table lowering on flux. Atmospheric Environment 32:3219~3227
    90. Machado A.P., Urbano L., Brito A., Janknecht P., Jose J.,Nogueira G. (2006) Life Cycle Assessment of Wastwater Treatment Options for Small and Decentralized communities:Energy-saving systems versus activited sludge. Proceeding of 10th International Conference on Wetland Systems for Water Pollution Control. IWA. Portugal.
    91. Mander u, Jenssen P (eds) (2003) Constructed wetlands for wastewater treatment on cold climates.WIT Press:Southampton
    92. Mander U, Kuusemets V, Lohmus K, Mauring T, Teiter S, Augustin J.(2003) Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland. Water Sci Technol 48:135-142.
    93. Mander U, Lohmus K., Teiter S., Mauring T., Nurk K., Augustin J. (2008) Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Science of the Total Environment 404:343-353
    94. Marcos von Sperling.2007. Wastewater Characteristics Treatment and Disposal. IWA publishing:London.
    95. Martikainen P.J., Nykanen H., Crill P., Silvola J. (1993) Effect of a lowered water table on nitrous oxide fluxes from northern peatlands.Nature 366:51-53
    96. Matthews E., Fung I.Y. (1987) Methane emissions from natural wetlands:global distribution,area,and environmental characteristics of sources.Global Biogeochemical Cycle(1):61-86.
    97. McNaughton S.J. (1966) Ecotype function in typha community-type, Ecol. Monogr.36: 297
    98. Metcalf and Eddy, Inc. (2003) Wastewater Engineering:Treatment, Disposal and Reuse,4th ed. McGraw Hill Publishing:New York
    99. M(?)hlum T, Jenssen P (1998) Norway. In:Vymazal J,Brix H,Cooper PF,Green MB, Haberl R. (eds) Constructed wetlands for wastewater treatment in Europe. Backhuys:Leiden, pp 207-216
    100.Mitra S., Wassmann R., Vlek P.L.G. (2005) An appraisal of global wetland area and its organic carbon stock. Current Science 88:25-35.
    101.Mitsch W.J., Gosselink J.G. (2007) Wetlands.Forth Edition, John Wiley & Sons:New York.
    102.Moore T.R., Knowles R. (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Canadian J. of Soil Sci.69:33-38
    103.Moore T.R., Dalva M. (1993) The influence of temperature and watertable position on carbon-dioxide and methane emissions from laboratory columns of peatland soils. J. Soil Sci.44:644-651
    104.Mosier A.R. (1998) Soil processes and global changes. Biol Fertil Soils 27:221-229
    105.Nguyen L. M. (2000) Organic matter composition,microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters.Ecological Engineering15(2):199-221.
    106.O'Hogain S. (2003) The design, operation and performance of a municipal hybrid reed bed treatment system.Water Sci Technol 48(5):119-126
    107.Picek T., Dusek J., Zemanova K. (2005). Nitrogen Transformations and Microbial Activities in Gravel Bed Horizontal Subsurface Flow Constructed Wetlands-Aerobic and anaerobic inculbation experients. In Vymazal J. (Eds):Natural and constructed wetlands:Nutrients, metals and management. pp 199-208. Backhuys:Leiden.
    108.Picek T., Cizkova H., Dusek J. (2007) Greenhouse gas emissions from a constructed wetland—Plants as important sources of carbon. Ecological engineering (31): 98-106.
    109.Reddy, K. R., D'Angelo E. M. (1994) Soil processes regulating water quality in wetlands. p.309-324. In W. J. Mitsch (ed.) Global Wetlands:Old World and New. Elsevier Science. New York, USA.
    110.Renou S., Thomas J.S., Aoustin E., Pons M.N. (2008) Influence of impact assessment methods in wastewater treatment LCA。Journal of Cleaner Production 16: 1098-1105.
    111.Richardson C.J., Qian S.S., Craft B.C., Qualls R.G. (1997) Predictive models for phosphorus retention in wetlands.Wetlands Ecol Manage 4:159-175
    112.Schierup, H.-H., (1978) Biomass and primary production in a Phragmites communis Trin. Swamp in North Jutland Denmark. Verh. Int. Verein. Limnol.20,94-99.
    113.Scholz M. (2007) Wetland systems to control urban runoff. Elesevier:Amsterdam,The Netherlands
    114.Seidel K. (1955) Die Flechtbinse Scirpus lacustris. In:Oekologie, Morphologie und Entwicklung, ihre Stellung bei den Volkern und ihre wirtschaftliche Bedeutung. Schweizerbartsche Verlagsbuchnadlung, Stuttgart, pp.37-52
    115.Seidel K (1965a) Phenol-Abbau in Wasser durch Scirpus lacustris L. wehrend einer versuchsdauer von 31 Monaten.Naturwissenschaften 52:398-406
    116.Seidel K (1965b) Neue Wege zur Grundwasseranreicherung in Krefeld.Vol II: Hydrobotanische Reinigungsmehode. GWF Wasser/Abwasser 30:831-833
    117.Seidel K. (1976) Macrophytes and water purification. In:Tourbier J, Pierson RW (eds) Biological control of water pollution. Pennsylvania University Press:Philadelphia, pp 109-122
    118.Simek M., Cooper J.E. (2002). The influence of soil pH on denitrification:progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science,53 (3),345-354.
    119.Scheehle, E.A., Doorn, M.R. (2003) Improvements to the U.S. Wastewater Methane and Nitrous Oxide Emissions Estimate. US EPA.
    120.Schipper L.A., Reddy K R. (1996) Determination of methane oxidation in the rhizosphere of Sagittaria lancifolia using methylfluoride. Soil Science Society of America Journal,60:611-616.
    121.Soreell B., Brix H., Schierup H. (1997) Die-back of Phragmites australis:influence on the distribution and rate of sediment methanogenesis[J] Biogeochemistry (36):173-188
    122.Spieles D.J., Mitsch W.J. (2000) The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low- and high-nutrient riverine systems. Ecol Eng 14:77-91
    123.S(?)vik A. K., Augustin J., Heikkinen, K., Huttunen, J. T., Necki, J. M. Karjalainen, S. M., Kl(?)ve B., Liikanend, A., Mander, U., Puustinen, M.,Teiter S., Wachniewe. P. (2006) Emission of the Greenhouse Gases Nitrous Oxide and Methane from Constructed Wetlands in Europe. J Environ Qual 35:2360-2373
    124.Sovik A.K., Kl(?)ve B. (2007) Emission of N2O and CH4 from a constructed wetland in southeastern Norway. Science of the Total Environment,380:28-37.
    125.Stadmark J., Leonardson L. (2005) Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecol. Eng.25:542-551.
    126.Strom, L., Lamppa, A, Christensen T. (2007) Greenhouse gas emissions from a constructed wetland in southern Sweden.Wetlands Ecology and Management 15 (1):43-50
    127.Tanner, C.C., Sukias, J. P. (1995) Accumulation of organic solids in gravel-bed constructed wetlands. Water-sci-technol 32(3):229-239.
    128.Tanner C.C., Adams D.D., Downes M.T. (1997) Methane emissions from constructed wetlands treating agricultural wastewaters. J Environ Qual 26:1056-1062
    129.Tanner C.C., Kadlec R.H., Gibbs M.M., Sukias J.P., Nguyen M.L. (2002) Nitrogen processing gradients in subsurface-flow wetlands-influence of wastewater characteristics. Ecol Eng 18 (4):499-520
    130.Tai P.D., Li P.J. (2002) Greenhouse gas emissions from a constructed wetland for municipal sewage treatment. Journal of Environmental Sciences (English version)14 (1):27-33
    131.Teiter S., Mander U (2005) Emission of N2O, N2, CH4, and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecological Engineering 25(5):528-541
    132.Tillman A.-M. (2000) Significance of decision-making for LCA methodology。 Environmental Impact Assessment Review 20(1):113-123
    133.UNFCCC (2005) Sixth compilation and synthesis of initial national communications from Parties not included in Annex Ⅰ to the Convention:Inventories of anthropogenic emissions by sources and removals by sinks of greenhouse gases:Montreal,28 November to 6 December 2005
    134.UNFCCC (2009) http://unfccc.int/ghg_data/ghg_data_unfccc/items/4146.php. Access on April 10th 2009.
    135.US EPA (1996) Evaluation of Alternative Wastewater Treatment Technologies, EPA/832/B-96/02, U.S EPA Office of Wastewater Enforcement and Compliance, Municipal Technology Branch:Washington, D. C.
    136.U.S. EPA (2000) Guiding Principles for Constructed Treatment Wetlands:Providing for Water Quality and Wildlife Habitat. EPA 843-B-00-003:Washington, DC,
    137. US EPA (2006) Global anthropogenic non-CO2 greenhouse gas emissions: 1990-2020. Office of Atmospheric Programs, Climate Change Division:Washington, D. C.
    138.US EPA (2008) Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990-2006:Washington, D. C.
    139. US HUD (1984) Residential Water Conservation Project Summary Report.
    140.Van der Peijl M.J., Verhoeven J.T.A. (1999) A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecological Modeling 118:95-130
    141. Von Sperling M. (2007) Wastewater Characteristics, Treatment and Disposal. Biological Wastewater Treatment Series (Volume 1). IWA publishing:London
    142.Vymazal J., Brix H., Cooper P.F., Green M., Haberl R. (eds) (1998) Constructed wetlands for wastewater treatment in Europe. Backhuys:Leiden
    143.Vymazal J. (1999) Nitrogen removal in constructed wetlands with horizontal sub-surface Flow:can we determine the key process? In:Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys:Leiden, pp 1-17
    144.Vymazal J. (2001) Types of constructed wetlands for wastewater treatment:their potential for nutrient removal. In:Vymazal J (ed) Transformations on nutrients in natural and constructed wetlands. Backhuys:Leiden, pp 1-93
    145.Vymazal J., Greenway M., Tonderski T., Brix H, Mander U (2006) Constructed wetlands for wastewater treatment. In Ecological Studies, (Vol.190). J.T.A.Verhoeven, B.Beltman, R.Bobbink, D.F.Whigham (Eds.):Wetlands and Natural Resource Management. Springer-Verlag:Berlin, Heidelberg.
    146.Wang Z.P., Delaune R. D., Masschleyn P. H. (1993) Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal 57: 382-385
    147.Werker A.G., Dougherty J.M., McHenry J.L. Van Loon W.A. (2002) Treatment variability for wetland wastewatertreatment design in cold climates. Ecological Engineering 19:1-11.
    148.Westlake, D.F. (1982) The primary productivity of water plants. In:Symoens, J.J., Hooper, S.S., Compere, P. (Eds.) Studies on Aquatic Vascular Plants. Royal Botanical Society of Belgium, Brussels:165-180.
    149.Wetzel R.G. (2001) Fundamental processes within natural and constructed wetland ecosystems:short-term versus long-term objectives.Water Sci Technol 44:1-8
    150.Wiedmann T.,Minx J., Barrett J., et al. (2006) Allocating ecological footprints to final consumption categories with input output analysis. Ecol. Econ.56:28-48
    151.Wiedmann T., Wood R., Lenzen M., Minx J., Guan D. and Barrett J. (2008) Development of an Embedded Carbon Emissions Indicator-Producing a Time Series of Input-Output Tables and Embedded Carbon Dioxide Emissions for the UK by Using a MRIO Data Optimisation System, Report to the UK Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Centre for Integrated Sustainability Analysis at the Universityof Sydney. Defra, London, UK
    152.Whiting G J, Chanton J P. (1992) Plant-dependent CH4 emission in a subarctic Canadian fen. GlobalBiogeochemical Cycles6:225-231
    153.Whiting, G.J., Chanton J.P. (1993) Primary production control of methane emission from wetlands. Nature 364:794-795.
    154.Whiting G.J., Chanton J.P. (2001) Greenhouse carbon balance of wetlands:methane emission versus carbon sequestration. Tellus B53:521-525
    155.Wiessner A., Kappelmeyer U., Kuschk P., Kaestner M. (2005) Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Research 39:248-256.
    156.World Energy Outlook 2006. OECD/IEA:Paris
    157.World Energy Outlook 2007. OECD/IEA:Paris
    158.Wynn T.M., Liehr S.K. (2001) Development of a constructed subsurface-flow wetland simulation model.Ecological Engineering 16(4):519-536.
    159.郝庆菊,王跃思,江长胜,等(2005)湿地甲烷排放研究若干问题的探讨.生态学杂志,24(2):170-175
    160.杨世关,李继红,孟卓,郑正(2006)木质纤维素原料厌氧生物降解研究进展.农业工程学报,22(增1):120-124.
    161.王凯军(2007)污水处理节能降耗的途径和对策中国.水网http://www.hwcc.com.cn,链接2008年12月1日
    162.郑元景,沈光范,邬扬善(1983)生物膜法处理污水.中国建筑工业出版社:北京.343页.
    163.徐亚同,黄民生(2004)废水生物处理的运行管理和异常对策.化学工业出版社:北京.394页.
    164.陶俊杰等(2005)城市污水处理技术及工程实例.化学工业出版社:北京
    165.杜中典等(2002)污水人工湿地系统中的有机物积累规律与堵塞机制的研究进展.农业环境保护21(5):474-476
    166.何江涛,张达政,陈鸿汉等(2003)污水渗滤土地处理系统中的复氧方式及效果1:103-109.
    167.张甲耀,夏盛林,熊凯.(1998)潜流型人工湿地污水处理系统的研究.环境科学19(4):36~39.
    168.张文菊等(2003)湿地碳循环过程与计算机模拟研究.西北植物学报23 (6):1049-1055
    169.陈泮勤,黄耀,于贵瑞(2004)地球系统碳循环.科学出版社:北京.
    170.黄国宏(2001)芦苇湿地温室气体甲烷(CH4)排放研究.生态学报21(9):1494-1497.
    171.黄国宏等(2001)环境因素对芦苇湿地CH4排放的影响.环境科学22(1):1-5
    172.汪宏宇,周广胜(2006)盘锦湿地芦苇生态系统长期通量观测研究.气象与环境学报22(4):18-24.
    173.刘子刚(2001)湿地生态系统碳储存和温室气体排放研究.地理科学24(5):634-639.
    174.吴兑(2003)温室气体与温室效应.气象出版社:北京
    175.王琳和王宝贞(2003)分散式污水处理与回用.化学工业出版社:北京
    176.佟玉衡(1998)实用废水处理技术.化学工业出版社:北京
    177.邓南圣,王小兵(2003)生命周期评价.化学工业出版社:北京
    178.陆柱,蔡兰坤,丛梅(2004)给水与用水处理技术.化学工业出版社:北京
    179.尹军,崔玉波(2006)人工湿地污水处理技术.化学工业出版社:北京
    180.王世和(2007)人工湿地污水处理理论与技术.科学出版社:北京
    181.刘春常等(2005)人工湿地处理生活污水研究——以深圳石岩河人工湿地为例.生态环境14(4):536-539
    182.杨健,吴云涛,吴敏(2004)关于我国城市污水厂延伸污泥处理与处置责任的探讨.四用环境23(2):31-33.
    183.李怀正等(2008)垂直潜流人工湿地技术在上海农村污水处理中的应用和发展.环境污染和防治30(8):84-89.
    184.刘娥平(2008)城市污水处理项目投融资机制研究.现代管理科学.2008年第1期:16-18
    185.卓明等(2005)污水处理中的经济性分析.给水排水31(12):34-41
    186.岳宜宝(2008)新农村建设中污水处理的方法和规划研究.上海城市规划80(2008年第3期):38-43
    187.胡国光,曹向东,穆瑞林(2003)深圳市沙田人工湿地污水厂简介.给水排水29(8):30-31
    188.王玉华,方颖,焦隽(2008)江苏农村“三格式”化粪池污水处理效果评价.生态与农村环境学报24(2):80-83
    189.邵立明,何品晶,张晓星,李国建(2005)添加污泥对渗滤液循环垃圾填埋层甲烷产生的影响.上海交通大学学报39(5):840-844
    190.陈槐等(2006)湿地甲烷的产生、氧化及排放通量研究进展.应用与环境生物学报12(5):726-733
    191.李杰,钟成华,邓春光.(2007)一块小型人工湿地的环境经济价值评估环境科学与管理32(12):69-72
    192.何起利等(2007)人工湿地氧化还原特征及其与微生物活性相关性.华中农业大学学报.26(6):844-849.
    193.向连城(2005)中国分散型污水处理系统的现状及发展.北京建筑工程学院学报.21(4):55-58
    194.戴前进,李艺,方先金(2007)城市污水处理厂不同污泥厌氧消化的产气研究.给水排水33(3):42-45
    195.姚守平, 罗鹏,王艳芬,吴宁(2007)湿地甲烷排放研究进展.世界科技研究与发展29(2):58-63
    196.王君如,杨健(2005)分散性污水处理技术研究进展.油气田环境保护15(4):24-27
    197.吴敏,杨健(2001)普通生物滤池处理工艺的生命周期能耗分析.中国给水排水17(6):69-72
    198.李海防等(2007)土壤温室气体产生与排放影响因素研究进展.生态环境16(6):1781-1788
    199.叶建锋,徐祖信,李怀正.(2008)垂直潜流人工湿地堵塞机制:堵塞成因及堵塞物积累规律.环境科学29(6)
    200.陈郁等(2003)城市污水处理厂生命周期评价方法初探及应用案例.大连理工大学学报43(3)
    201.高长波等(2007)基于LCA框架的城市水系统环境可持续性评价方法.水资源保护23(2):51-53
    202.杨凌波等(2008)我国城市污水处理厂能耗规律的统计分析与定量识别.给水排水34(10):42-45
    203.张政等(2007)水量衡算条件下人工湿地对有机物的去除.长江流域资源与环境16(3):363-367
    204.陶敏等(2008)复合垂直流人工湿地氧化还原特征及不同功能区净化作用研究.长江流域资源与环境17(2)
    205.石云等(2008)氧化还原环境对污水土地处理系统的影响.山西农业科学36(3):61-65
    206.王维奇,曾从盛,仝用(2007)湿地甲烷氧化测定方法及主要控制因子研究综述.亚热带资源与环境学报2(3):55-62
    207.王维奇,曾从盛,仝用(2008)芦苇湿地甲烷排放机理及排放通量研究进展.农业系统科学与综合研究24(1)
    208.张志勇等(2007)间歇流模拟人工湿地去氮除磷效果及N2O排放的小试研究.农业环境科学学报26(6):2129-2138
    209.杨继松等(2006).三江平原生长季沼泽湿地CH4、N2O排放及其影响因素.植物生态学报30(3):432-440
    210.卢少勇,金相灿,余刚.(2006)人工湿地的氮去除机理.生态学报26(8)
    211.马安娜,陆健健(2008)湿地生态系统碳通量研究进展.湿地科学6(2):116-123
    212.丁维新,蔡祖聪(2002)土壤有机质和外源有机物对甲烷产生的影响.生态学报22(10)
    213.马学慧等(1995)湿地甲烷排放研究简述.地理科学15(2):163-169
    214.傅国斌,李克让(2001)全球变暖与湿地生态系统的研究进展.地理研究20(1)
    215.陈章和等(2007)测定潜流人工湿地根系生物量的新方法.生态学报27(2):668-673
    216.成水平,吴振斌,夏宜峥(2003)水生植物的气体交换与输导代谢.水生生物学报27(4):413-417
    217.杨敏,张建强,李亚澜(2005)污水处理工程中节能问题的探讨.工业安全与环保31(2):22-24
    218.杨健(2003)厌氧水解-活性污泥法的生命周期能耗分析.环境保护科学29:20-23
    219. Owen W.F.章北平,车武译(1989)污水处理能耗和能效.能源出版社:北京
    220.于少鹏,王海霞,万忠娟,孙广友(2004)人工湿地污水处理技术及其在我国发展的现状与前景.地理科学进展23(1)
    221.华涛,周启星,贾宏宇(2004)人工湿地污水处理工艺设计关键及生态学问题.应用生态学报15(7):1289-1293
    222.张勇,刘瑛(2004)浅谈中小城镇的污水处理.小城镇建设2004年第5期:83
    223.朱五星,舒锦琼(2005)城市污水处理厂能量优化策略研究.给水排水31(12):31-33
    224.李海英,张贵杰,孙贵石(2007)降低中小型污水处理厂能耗的有效途径.节能.2007年第3期:34-36
    225.李子富,潘涛,许光明,陈秀娟,Rothe F. Traenkler, J.(2007)人工湿地垂直流生态滤床污水处理系统技术手册.德国技术合作公司生态城市项目:常州
    226.潘涛,Traenkler J. (2007)应用垂直潜流生态湿地技术进行分散式污水及污泥处理试点项目研发技术报告.德国技术合作公司生态城市项目:常州
    227.刘汉湖,白向玉,夏宁(2006)城市废水人工湿地处理技术.中国矿业大学出版社:徐州
    228.张丹(2007,2009)个人交流
    229.张丽,朱晓东,陈洁,朱兆丽,潘涛,李杨帆(2008)城市湿地公园的生态补水模式及其净化效果和生态效益。应用生态学报19(12):2699-2705
    230.国家环境部(2009)农村环境综合整治“以奖促治”和自然生态保护工作研讨会。http://www.gov.cn/gzdt/2009-04/03/content_1277248.htm。2009年4月9日链接
    231.国家统计局 (2007) 城乡居民每人每日营养素摄入量http://www.stats.gov.cn/tjsj/qtsj/shtjnj/2007/t20081125_402520297.htm2009年2月2日链接
    232.国家发展和改革委员会(2007)中国区域电网基准线排放因子.国家应对气候变化领导小组办公室:北京.
    233.中国城镇污水处理厂污染物排放标准(GB18918-2002):北京
    234.中国统计年鉴,2007.中国统计出版社:北京
    235.常州市统计年鉴.2002-2007.中国统计出版社:北京
    236.常州市城市污水处理厂台帐2002-2003(内部资料),常州市排水处
    237.《常州市水环境容量研究报告》(2005)常州市环境监测中心站,河海大学环境科学与工程学院
    238.《常州市城市总体规划2002-2020》(2005)常州市规划局
    239.《常州市市政公用设施普查资料》(2005)常州市建设局
    240.《常州市城市排水规划2004-2020》(2005)常州市规划设计院、常州市排水管理处
    241.《常州市水资源保护规划》(2007)常州市水利局
    242.《常州市水环境治理规划》(2007)常州市规划设计院
    243.《太湖流域水环境综合治理总体方案》(2008)国务院
    244.《江苏省太湖流域水环境综合治理实施方案》(2009)江苏省人民政府
    245.《关于加快推进太湖流域乡村生活污水生态净化处理的意见》(2008)江苏省农林厅

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700