用户名: 密码: 验证码:
凹凸棒土的有机改性及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以凹凸棒石粘土(简称“凹凸棒土”)为原料,对其结构进行系统分析,根据其结构特征,研究制备了两种具有重要应用前景的新型材料——用于吸附的十八烷基三甲基氯化铵改性凹凸棒土、用于脂肪酶固载的硅烷偶联剂KH550改性凹凸棒土。采用FTIR、XRD、TG-DTG-DSC、比表面积与孔径分布、AFM等分析方法比较凹凸棒土改性前后的结构变化,研究其改性机理。
     纳米聚合效应和相对较低的离子交换容量使凹凸棒土在十八烷基三甲基氯化铵改性过程中不破坏凹凸棒石的晶体结构,通过表面接枝实现其改性的目的。通过比较发现十八烷基三甲基氯化铵较其它的季铵盐阳离子表面活性剂在凹凸棒土上的接枝率高。借助超声波手段,可大大提高其改性效率,十八烷基三甲基氯化铵的接枝率44.66%。十八烷基三甲基氯化铵改性凹凸棒土的比表面积由酸处理凹凸棒土的152.85m2/g下降为63.96m2/g,孔径则分布未发生明显变化。
     凹凸棒石含有丰富的吸附水、结合水、结构水和结构羟基,有利于硅烷偶联剂KH550发生水解反应,形成大量硅羟基结构,这些硅羟基结构与凹凸棒石的羟基进一步缩合,或KH550的硅羟基自身缩合,覆盖于凹凸棒石表面,改变其表面形态和性质,形成新的网络结构,丰富了凹凸石的孔道,1.3-3.5nm之间的孔径明显增加;改性后凹凸棒土的比表面积由酸处理凹凸棒土的152.85m2/g增加为182.09m2/g。
     与常规酸活化凹凸棒土、凹凸棒土原矿、商业化脱色用凹凸棒土吸附剂相比,十八烷基三甲基氯化铵改性凹凸棒土,对苯酚和活性染料的吸附性能更加理想。该凹凸棒土吸附剂对苯酚的吸附是物理吸附过程,其相互作用力较弱,吸附放热较少,苯酚浓度为100mg/L时,放热约12kJ/mol;吸附速率由表面扩散控制,吸附过程符合拟二级速率方程,吸附速率常数k为1.367g/(mg min),初始吸附速率为0.8534mg/(g min)。十八烷基三甲基氯化铵改性凹凸棒土对活性染料的吸附是化学吸附-物理吸附共同作用的过程,化学吸附占优势;染料浓度越低,吸附热越大,浓度小于150mg/L时,吸附焓变几乎不随浓度变化而变化,吸附热约为40kJ/mol,以化学吸附为主,同时存在表面扩散控制的物理吸附;随着浓度的逐渐增加,吸附热逐渐减少,体系发生物理吸附的比例增加。体系在前15min主要是化学吸附,在30℃、50℃、70℃下的吸附初始速率均很大,达250mg/(g min)以上,化学吸附极易发生;随着吸附的进行,吸附速率急剧下降,20min后,以表面扩散控制的物理吸附主。
     十八烷基三甲基氯化铵改性凹凸棒土对大豆异黄酮-单宁酸混合溶液、葛根素-单宁酸混合稀溶液中的单宁酸具有很好的选择性吸附性能。十八烷基三甲基氯化铵改性凹凸棒土对茶多酚-单宁酸混合稀溶液体系中的吸附试验表明,单宁酸基本被完全除去,吸附剂对茶多酚各组分具有不同的吸附性能,对茶多酚中各组分的吸附能力如下:儿茶素棓酸酯CG(表儿茶素棓酸酯ECG)>棓儿茶素棓酸酯GCG(表棓儿茶素棓酸酯EGCG)>儿茶素C(表儿茶素EC)>棓儿茶素GC(表棓儿茶素EGC)。在疏水作用力、静电作用力和氢键作用力的共同作用下,十八烷基三甲基氯化铵改性凹凸棒土实现对单宁酸的有效吸附。十八烷基三甲基氯化铵改性凹凸棒土对单宁酸的吸附平衡符合Freundlich方程。吸附放热,约为20kJ/mol,是物理吸附。动力学研究表明,吸附剂对单宁酸的吸附速率很快,一定范围内,温度升高有利于提高吸附速率,单宁酸浓度越低,则吸附速率越大;吸附剂对单宁酸有较大的吸附容量。
     KH550改性凹凸棒土,经戊二醛交联进行脂肪酶固定化。确定其固载工艺条件为:40mL浓度为1mg/mL的脂肪酶磷酸缓冲液(pH7.0)溶液,加入0.400g经0.5%的戊二醛处理的KH550改性凹凸棒土,温度控制在25-30℃之间,固定化6h,得到固定化脂肪酶产品。原子力显微镜和扫描电镜分析证实,脂肪酶已经在KH550改性凹凸棒土载体上成功实现固载。所得到产品的酶活为3100-3300U/g,酶活回收率可达50%。经固定化的脂肪酶,其最适pH和最适温度均发生变改变,耐酸碱性能和耐热性能较原酶有明显提高,固定化脂肪酶具有较好的重复使用性能,重复使用八次后,酶活仍可保持85%左右。
Palygorskite was characterized and then organo-modified to prepare two novel materials. Octodecyl trimethyl ammonium chloride (OTMAC) modified palygorskite was used as an adsorbent, and 3-aminopropyltriethoxysilane modified palygorskite was used as a support for lipase immobilization.
     An extensive study was performed on the mineral characteristics and modification mechanism of palygorskite in terms of thermal properties (TG-DTG-DSC), chemical composition (FT-IR spectroscopy), morphology (AFM), specific surface area (BET method), pore size distribution (gas adsorption method), basal spacing (XRD).
     Cation surfactant was mainly grafted on the surface of palygorskite without changing its crystal structure, because of its nano aggregation and low cation exchange capacity. OTMAC was grafted on the surface of palygorskite because it is electronegative. And ultrasonic treating improved the efficiency. The grafting ratio was 44.66%. The OTMAC modified palygorskite had a surface area of 63.96 m2/g, a large reduction from that of acid activated palygorskite (152.85 m2/g). The pore size distributions of the palygorskite had no significant change after OTMAC modification.
     There were lots of water and hydroxy groups in the palygorskite, with which 3-aminopropyltriethoxysilane was hydrolyzed to become silanol group. The 3-amino- propyltriethoxysilane was then grafted or covered on the palygorskite through dehydration condensation of the silanol group and hydroxyl group of palygorskite. The pores were formed and the surface areas were improved during the modification process. The 3-aminopropyltriethoxysilane modified palygorskite had more pores with the size from 1.3 to 3.5 nm than the acid activated palygorskite. The 3-aminopropyltriethoxysilane modified palygorskite had a surface area of 182.09 m2/g, a large increasing from that of acid activated palygorskite (152.85 m2/g).
     The OTMAC modified palygorskite adsorbed phenol and active dyes more effectively than the acid activated palygorskite, natural palygorskite and commercial palygorskite adsorbent. Adsorption of phenol on OTMAC modified palygorskite was a physical adsorption. Heat for the adsorption was low because of the small force between them. Heat was 12 kJ/mol when the concentration of phenol was 100mg/L. The adsorption mechanism of phenol was controlled by the surface diffusion. Second-order adsorption kinetics was observed in the case, the rate constant was 1.367 g/(mg min) and the initial adsorption raet was 0.8534 mg/(g min). Adsorption of active dyes on the OTMAC modified palygorskite was a chemical-physical process, and the chemical adsorption was the main one. The heat was about 40 kJ/mol at lower concentration (<150mg/L). All of the initial adsorption rates were larger than 250 mg/(g min) at three different temperatures (30℃、50℃、70℃). Chemical interaction was the main force for the adsorption at low concentration. And the physical adsorption also happened with the increasing of the concentration.
     Tannin was selectively removed by OTMAC modified palygorskite from model tannin/soybean isoflavones and tannin/puerarin mixtures. Adsorption of tannin/tea polyphenols on OTMAC modified palygorskite was also detected. And the results showed that tannin was removed thoroughly. The adsorption capacity of adsorbent for different components in tea polyphenols was as follows: CG(ECG)>GCG(EGCG)>C(EC)>GC (EGC). The selective adsorption of tannin on OTMAC modified palygorskite was driven by the collaboration of hydrogen bonding, electrostatic force and hydrophobic interactions of tannin molecular with adsorbent.
     Adsorption of tannin on OTMAC modified palygorskite was a physical process. In adsorption isotherm experiments of tannin adsorption on OTMAC modified palygorskite, obtained data fitted well to the Freundlich model. The enthalpy value of adsorption of tannin on OTMAC modified palygorskite was about 20 kJ/mol. Studies found the high velocity and large capacity for the adsorption of tannin on OTMAC modified palygorskite. The velocity of adsorption was increased with the increasing of temperature and the decreasing of concentration of tannin in a certain range. The tannin molecular contacting with the adsorbent was increased with the decreasing of the concentration of tannin.
     Lipase from Candida lipolytica was covalently immobilized on 3-aminopro- pyltriethoxysilane modified palygorskite support through glutaraldehyde. The optimized immobilization protocol was as follows: 0.4 g of glutaraldehyde-activated 3-amino- propyltriethoxysilane modified palygorskite supports were added to 40 mL enzyme solution in phosphate buffer pH 7.0, with a protein content of 1 mg/mL. The covalently bond process was performed over 6 h at 25-30℃. Scanning electron micrographs and atomic force micrographs proved the covalently immobilization of lipase on the palygorskite support through glutaraldehyde. The activity of 3,100-3,300 U/g per gram immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH and temperature of the immobilized lipase was different from those of free lipase. The immobilized enzyme retained high activity after 8 cycles.
引文
[1]王一中,董华,佘鼎声.尼龙6/凹凸棒土纳米级复合材料的合成[J].合成树脂及塑料,1997, 14(2):16-18.
    [2] Bradley W F. The structural scheme of attapulgite [J]. American mineralogist,1940,25(6):405-410.
    [3]周杰,刘宁,李云.凹凸棒石粘土的显微结构特征[J].硅酸盐通报,1999,6:50-54.
    [4] Barr M, Arnista Es. Adsorption studies on clays. I. The adsorption of two alkaloids by activated attapulgite, halloysite, and kaolin [J]. Journal of the American Pharmaceutical Association.1957, 46(8):486-489.
    [5] Barr M. Adsorption studies on clays. II. The adsorption of bacteria by activated attapulgite, halloysite, and kaolin [J]. Journal of the American Pharmaceutical Association,1957,46(8):490- 492.
    [6]茆乐平.鞋及鞋垫夹层用除臭剂[P].中国专利,CN1425469.2003-06-25.
    [7]侯秀武.新的非离子型微粒助留助滤体系及其机理的研究[D]:[硕士学位论文].南京:南京林业大学,2004.
    [8]邹建国,钟秦.用稀土改性凹凸棒图净化柴油机尾气[J].硅酸盐学报,2005,33(8):1028-1031.
    [9] Boki K, Mori H, Kawlasaki N. Bleaching rapeseed and soybean oils with synthetic adsorbents and attapulgites [J]. Journal of the American Oil Chemists Society,1994,71:595-601.
    [10] Boki K, Sakamoto N, Minami K. Inhibitory Effect of 1,3-Diglycerides During Adsorption ofβ-Carotene onto Attapulgite and Sepiolite [J]. Journal of the American Oil Chemists Society,2001, 78:733-736.
    [11] Haydn H M. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview [J]. Applied Clay Science,2000,17:207-221.
    [12] Chen H, Wang A. Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay [J]. Journal of Colloid and Interface Science,2007,307:309-316.
    [13]álvarez-Ayuso E, García-Sánchez A. Removal of cadmium from aqueous solutions by palygorskite [J]. Journal of Hazardous Materials,2007,147(1-2):594-600.
    [14] lvarez-Ayuso E.á, García-Sánchez A.. Palygorskite as a feasible amendment to stabilize heavy metal polluted soils [J]. Environmental Pollution,2003,125:337-344.
    [15] Harjinder S. Sorption of lead and arsenic on soil components and effectiveness of phosphates for remediating lead and arsenic contaminated soils [D]:[博士学位论文]. Morgantown: West Virginia University,2001.
    [16] Ye H, Chen F, Sheng Y. Adsorption of phosphate from aqueous solution onto modified palygorskites [J]. Separation and Purification Technology,2006,50:283-290.
    [17] Vico L I, Acebal S G. Some aspects about the adsorption of quinoline on fibrous silicates andPatagonian saponite [J]. Applied Clay Science,2006,33:142-148.
    [18] Akyuz S, Akyuz T. Study on the interaction of nicotinamide with sepiolite, loughlinite and palygorskite by IR spectroscopy [J]. Journal of Molecular Structure,2005,744-747:47-52.
    [19] Sanchez-Martin M J, Rodriguez-Cruz M S, Andrades M S. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity [J]. Applied Clay Science,2006,31:216-228.
    [20] Josefina R M, Fernando G, Carmen P. Study of sorbents prepared from clays and CaO or Ca(OH)2 for SO2 removal at low temperature [J]. Industrial and Engineering Chemistry Research,2006,45: 3752-3757.
    [21] Zhang J, Chen H, Wang A. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo-attapulgite composites [J]. European Polymer Journal,2006,42:101-108.
    [22] Zhang J, Chen H, Wang A. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite [J]. European Polymer Journal,2005,41:2434-2442.
    [23] Li A, Zhang J, Wang A. Utilization of starch and clay for the preparation of superabsorbent composite [J]. Bioresource Technology,2007,98:327-332.
    [24] Zhang J, Chen H, Wang Q. Synthesis and characterization of chitosan-g-poly(acrylic acid)/ attapulgite superabsorbent composites [J]. Carbohydrate Polymers,2007,68:367-374.
    [25] Li A, Zhang J, Wang A. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/ sodium humate superabsorbent composite [J]. Journal of Applied Polymer Science,2007,103:37- 45.
    [26] Lei Z, Zhang Q, Luo J. Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite [J]. Tetrahedron Letters,2005,46:3505-3508.
    [27] Lei Z, Zhang Q, Wang R. Clean and selective Baeyer-Villiger oxidation of ketones with hy- drogen peroxide catalyzed by Sn-palygorskite [J]. Journal of Organometallic Chemistry,2006,691:5767 -5773.
    [28] Zhao D, Zhou J, Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts [J]. Materials Science and Engineering A,2006,431: 256-262.
    [29] Zhao D, Zhou J, Liu N. Surface characteristics and photoactivity of silver-modified palygorskite clays coated with nanosized titanium dioxide particles [J]. Materials Characterization,2007,58: 249-255.
    [30]彭书传,谢晶晶,庆承松.负载TiO2凹凸棒石光催化氧化法处理酸性品红染料废水[J].硅酸盐学报,2006,34(10):1208-1212.
    [31] Araújo Melo D M, Ruiz J A C, Melo M A F. Preparation and characterization of lanthanumpalygorskite clays as acid catalysts [J]. Journal of Alloys and Compounds,2002,344:352-355.
    [32] Miao S, Liu Z, Zhang Z. Ionic Liquid-Assisted Immobilization of Rh on Attapulgite and Its Application in Cyclohexene Hydrogenation [J]. Journal of Physical Chemistry C,2007,111(5): 2185-2190.
    [33] Safari Sinegani A A, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals [J]. Journal of Colloid and Interface Science,2005,290:39-44.
    [34] Fuentes I E d, Viseras C A, Ubiali D. Different phyllosilicates as supports for lipase immobilisation [J]. Journal of Molecular Catalysis B: Enzymatic,2001,11:657-663.
    [35] Neaman A, Singer A. Possible use of the Sacalum (Yucatan) palygorskite as drilling muds [J]. Applied Clay Science,2004,25:121-124.
    [36]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料触变性的影响[J].上海交通大学学报, 2001,35(3):447-450.
    [37]吴国华,丁文江,罗吉荣.凹凸棒粘土对消失模涂料流变性的影响[J].硅酸盐学报, 2002,30(1):81-85.
    [38]张修华,张伯涛.凹凸棒石粘土印染浆料调制法[P].中国专利,CN88102788.1988-12-07.
    [39] Cornejo J, Hermosin M C, White J L. Oxidative degradation of hydrocortisone in presence of attapulgite [J]. Journal of pharmaceutical science,1980,69(8):945-948.
    [40] Joy B, Ghosh S, Padmaja P. A facile 1, 2 proton migration of chalcone epoxide using acid activated palygorskites [J]. Catalysis Communications,2005,6:573-577.
    [41] Cheng J, Zhang X, Liu F. Synthesis of carbon nanotubes filled with Fe3C nanowires by CVD with titanate modified palygorskite as catalyst [J]. Carbon,2003,41:1965-1970.
    [42] Tian M, Qu C, Feng Y. Structure and properties of fibrillar silicate/SBR composites by direct blend process [J]. Journal of materials science,2003,38:4917-4924.
    [43] Shen L, Lin Y, Du Q. Studies on structure–property relationship of polyamide-6/attapulgite nanocomposites [J]. Composites Science and Technology,2006,66:2242-2248.
    [44] Wang L, Sheng J. Preparation and properties of polypropylene/org-attapulgite nanocomposites [J]. Polymer,2005,46:6243-6249.
    [45] Drucker M M, Goldhar J, Ogra P L. The effect of attapulgite and charcoal on enterotoxicity of vibrio cholerae and Escherichia coli enterotoxins in rabbits [J]. Infection,1977,5(4):211-213.
    [46] Viseras C, Lopez-Galindo A. Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): some preformulation studies [J]. Applied Clay Science,1999,14:69-82.
    [47] López-Galindo, Viseras C, Cerezo P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products [J]. Applied Clay Science,2007,36:51-63.
    [48] Zhao D, Zhou J, Liu N. Preparation and characterization of Mingguang palygorskite supported with silver and copper for antibacterial behavior [J]. Applied Clay Science,2006,33:161-170.
    [49]汤庆国,沈上越,梁金生.磁性凹凸棒石靶向药物载体材料的制备及性能[J].硅酸盐学报,2006,34(1):93-97.
    [50] J?nchen J, Ackermann D, Weiler E. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat [J]. Thermochimica Acta, 2005,4340: 37-41.
    [51] Podgorskii V S, Kovalev N N, Sumnevich V G. Optimization of the process of culturing yeast in the presence of the dispersed mineral palygorskite [J]. Mikrobiolohichny? zhurnal (俄),2001,63(1): 10-14.
    [52] Suárez Barrios M, Flores González L V, Vicente Rodríguez M A. Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties [J]. Applied Clay Science,1995,10:247-258.
    [53] Cai Y, Xuea J, Polya D A. A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites [J]. Spectrochimica Acta Part A,2007,66:282-288.
    [54] Wang W, Chen H, Wang A. Adsorption characteristics of Cd(II) from aqueous solution onto activated palygorskite [J]. Separation and Purification Technology,2007,55(2):157-164.
    [55] Barrer R M, Millington A D. Sorption and intracrystalline porosity in organo-clays [J]. Journal of Colloid and Interface Science,1967,25(3):359-372.
    [56] Alvarez B A, Blanca C, Frippiat J J. Process for manufacturing organophilic fibrous clays [P]. Europe:EP0221225.1987-05-13.
    [57] Cheng F O, Mong T H, Jia R L.The Nucleating Effect of Montmorillonite on Crystallization of PET/Montmorillonite Nanocomposite [J]. Journal of Polymer Research,2003,10:127-132.
    [58] Xie S, Zhang S, Wang F. Preparation, structure and thermomechanical properties of nylon-6 nano- composites with lamella-type and fiber-type sepiolite [J]. Composites Science and Technology, 2007,67(11-12):2334-2341.
    [59] Pegoretti A, Kolarik J, Peroni C. Recycled poly(ethylene terephthalate)/layered silicate nano- composites: morphology and tensile mechanical properties [J]. Polymer,2004,45:2751-2759.
    [60] Hu Y, Song L, Xu J. Synthesis of polyurethane/clay intercalated nanocomposites [J]. Colloid Polymer Science,2001,279:819-822.
    [61] Park S J, Seo D, Lee J R. Surface Modification of Montmorillonite on Surface Acid-Base Characteristics of Clay and Thermal Stability of Epoxy/Clay Nanocomposites [J]. Journal of Colloid and Interface Science,2002,251:160-165.
    [62] Liu X, Wu Q. PP/clay nanocomposites prepared by grafting-melt intercalation [J]. Polymer,2001, 42:10013-10019.
    [63] Zhao H. Sorption of hazardous organic compounds by modified mineral surfaces [D]:[博士学位论文]. Laramie:University of Wyoming,1998.
    [64] Khatib K, Pons C H. Study of the structure of dimethyldioctadecyl ammonium montmorillonite by small angle X-ray scattering [J]. Journal of Colloid and Interface Science,1995,172:317-323.
    [65] Jcon H G, Jung H T, Lee S W. Morphyology of polymer/silicate nanocomposites [J]. Polymer Bulletin,1998,41:107-113.
    [66] Xie S B, Zhang S M, Liu H J. Effects of processing history and annealing on polymorphic structure of nylon-6/montmorillonite nanocomposites [J]. Polymer,2005,46(14):5417-5427.
    [67] ?zcan A, ?mero?lu ?, Erdo?an Y. Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19 [J]. Journal of Hazardous Materials,2007,140: 173-179.
    [68] Bouberka Z, Khenifi A, Sekrane F. Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide [J]. Chemical Engineering Journal,2008,136:295-305.
    [69] Richards S, Bouazza A. Phenol adsorption in organo-modified basaltic clay and bentonite [J]. Applied Clay Science,2007,37:133-142.
    [70] Anirudhan T S, Ramachandran M. Surfactant-modified bentonite as adsorbent for the removal of humic acid from wastewaters [J]. Applied Clay Science,2007,35:276-281.
    [71] Gilberto Santana-Rios BS MS. Modified clays for the selective adsorption of swainsonine [D]:[博士学位论文]. Las Cruces: New Mexico State University,1999.
    [72] ?zcan A, ?zcan A S. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite [J]. Journal of Hazardous Materials B,2005,125:252-259.
    [73] ?zcan A, ?ncüE M, ?zcan A S. Adsorption of Acid Blue 193 from aqueous solutions onto DEDMA-sepiolite [J]. Journal of Hazardous Materials B,2006,129:244-252.
    [74] ?zcan A, ?ahin M, ?zcan A S. Adsorption of Nitrate Ions onto Sepiolite and Surfactant-modified Sepiolite [J]. Adsorption Science & Technology,2005,23(4):323-333.
    [75] Karahan S, Yurdako? M, Seki Y. Removal of boron from aqueous solution by clays and modified clays [J]. Journal of Colloid and Interface Science,2006,293:36-42.
    [76] Seki Y, Yurdako? K. Paraquat adsorption onto clays and organoclays from aqueous solution [J]. Journal of Colloid and Interface Science,2005,287:1-5.
    [77] Lemi? J, Toma?evi?-?anovi? M, Mirjana Djuri?i?, et al. Surface modification of sepiolite with quaternary amines [J]. Journal of Colloid and Interface Science,2005,292:11-19.
    [78] Ak?ay G, Ak?ay M, Yurdako? K. Removal of 2, 4-dichlorophenoxyacetic acid from aqueous solutions by partially characterized organophilic sepiolite: thermodynamic and kinetic calculations [J]. Journal of Colloid and Interface Science,2005,281:27-32.
    [79]刘开平,陆盘芳.改性海泡石填充不饱和聚酯复合材料的热性能研究[J].泰山学院学报, 2004,26(3):63-65.
    [80]罗北平,任碧野.海泡石表面改性及其对橡胶性能补强的研究[J].长沙大学学报,1999,13(2): 27-32.
    [81] Alkan M, Tekin G, Namli H. FTIR and zeta potential measurements of sepiolite treated with some organosilanes [J]. Microporous and Mesoporous Materials,2005,84:75-83.
    [82] Zou H, Pan G, Chen H, Yuan X. Removal of cyanobacterial blooms in Taihu Lake using local soils. II. Effective removal of Microcystis aeruginosa using local soils and sediments modified by chitosan [J]. Environmental Pollution,2006,141:201-205.
    [83]何凌云,文九巴,张玉清.有机改性粘土的制备与X-射线衍射和热失重分析[J].洛阳工学院学报,2002,23(3):102-104.
    [84]康文韬,武龙,沈宁祥.环氧树脂/凹凸棒土复合材料的分散和力学性能研究[J].中国塑料, 2002,26(10):29-32.
    [85] Frost R L, Mendelovici E. Modification of fibrous silicates surfaces with organic derivatives: An infrared spectroscopic study [J]. Journal of Colloid and Interface Science,2006,294:47-52.
    [86] Mendelovici E, Carroz Portillo D. Organic derivatives of attapulgite - infrared spectroscopy and X-ray diffraction studies [J]. Clays and Clay Minerals,1976,24(4):177-182.
    [87]杨利营,宋仁峰,盛京.在位分散聚合制备聚苯乙烯/凹凸棒土复合材料[J].中国塑料,2002, 16(7):47-52.
    [88]杨利营,盛京,王雪梅.等离子体引发原位聚合制备凹凸棒土/聚苯乙烯纳米复合物[J].功能高分子学报,2002,15(3):245-250.
    [89]宋仁峰,杨利营,盛京.纳米凹凸棒土的表面修饰及表征[J].硅酸盐通报,2003,3:36-40.
    [90] Wang L, Sheng J, Wu S. Isothermal crystallization kinetics of polypropylene/attapulgite nano- composites [J]. Journal of Macromolecular Science– Physics, B,2004,43(5):935-946.
    [91] Wang L, Sheng J. Nonisothermal crystallization kinetics of polypropylene/attapulgite nano- composites [J]. Journal of Macromolecular Science-Physics, B,2005,44(1):31-42.
    [92] Tian M, Lu Y, Liang W. Structure and properties of novel fibril silicate/rubber nanocomposites [J]. Polymer Journal,2006,38(11):1105-1113.
    [93] Tian M, Liang W, Rao G. Surface modification of fibrillar silicate and its reinforcing mechanism on FS/rubber composites [J]. Composites Science and Technology,2005,65:1129-1138.
    [94]王平华,徐国永.原位聚合制备LDPE/凹凸棒土纳米复合材料[J].高分子材料科学与工程, 2005,21(3):266-269.
    [95] Ni P, Li J, Suo J. Study on mechanical properties of polyurethane-attapulgite nanocomposites [J]. Journal of materials science,2004,39:4671-4673.
    [96] Shen L, Lin Y, Du Q. Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure [J]. Polymer,2005,46(15):5758-5766.
    [97] Qiu, J H, Feng H X. Preparation and properties of PAn/ATTP/PE conductive composites [J]. Transactions of Nonferrous Metals Society of China (English Edition),2006,16:s444-s448.
    [98]金叶玲,陈静,钱运华.硬脂酸改性凹土增强聚氨酯革的分析表征[J].武汉理工大学学报, 2005,27(12):5-9.
    [99]王瑛,谢刚,赵霞.有机改性凹凸棒土吸附微污染水中苯酚的试验研究[J].兰州理工大学学报,2006,32(4):74-77.
    [100] Liu P, Guo J. Polyacrylamide grafted attapulgite (PAM-ATP) via surface-initiated atom transfer radical polymerization (SI-ATRP) for removal of Hg(II) ion and dyes. Colloids and Surfaces A: Physicochem [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2006, 282-283:498-503.
    [101] Lei Z Q, Wen S X. Preparation and decoloration property of polystyrene-grafted palygorskite nanoparticles [J]. Materials Letters,2007,61:4076-4078.
    [102] Liu P. Hyperbranched aliphatic polyester grafted attapulgite via a melt polycondensation process [J]. Applied Clay Science,2007,35:11-16.
    [103] Krikorian N, Martin D F. Extraction of selected heavy metals using modified clays [J]. Journal of Environmental Science and Health. Part A, Toxic Hazardous Substance & Environmental Engineering,2005,40(3):601-608.
    [104]赵娣芳,周杰,刘宁.铜改性凹凸棒石/纳米二氧化钛复合粉体的微观结构[J].硅酸盐学报, 2006,34(7):792-795.
    [1]宋海明,张宝述,彭同江.提高新疆蛭石粉体阳离子交换容量的方法研究[J].中国非金属矿工业导报,2007,59:40-43.
    [2] Li Y, Wei W, Wang Z. Determination of Chlordiazepoxide by Sodium Tetraphenylboron Method [J]. Journal of Chinese Pharmaceutical Sciences,2002,11(4):153-156.
    [3]兰州大学化学系,中国科学院上海药物研究所.有机微量定量分析[M].北京:科学出版社, 1978.386-388.
    [4]韩秀山.膨润土(蒙脱石)阳离子的交换容量-CEC [J].矿物保护与利用,2007,2:16.
    [5] Frost R L, Locos O B, Ruan H. Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites [J]. Vibrational Spectroscopy,2001,27:1-13.
    [6] Madejova J. FTIR techniques in clay mineral studies [J]. Vibrational Spectroscopy,2003,31:1-10.
    [7]郝青丽,杨绪杰,王瑛.机械研磨影响高岭石结构的光谱研究[J].光谱学与光谱分析, 2000, 20(3):302-304.
    [8] Melo Araújo D M, Ruiz J A C, Melo M A F. Preparation and characterization of lanthanumpalygorskite clays as acid catalysts [J]. Journal of Alloys and Compounds,2002,344:352-355.
    [9] Melo Araújo D M, Ruiz J A C, Melo M A F. Preparation and characterization of terbium palygorskite clay as acid catalyst [J]. Microporous and Mesoporous Material,2000,38:345- 349.
    [10] Sing K S W, Everett D H, Haul R A W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure and Applied Chemistry,1985,57:603-619.
    [11] Frost R L, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepio- lites and palygorskites [J]. Thermochimica Acta,2003,397:119-128.
    [12]董庆洁,邵仕香,李乃瑄.凹凸棒土复合吸附剂对磷酸根吸附行为的研究[J].硅酸盐通报, 2006,2:19-23.
    [13]王萍,李国昌.凹凸棒石黏土吸附脱色性能对比实验研究[J].非金属矿,2005,28(3):54- 56.
    [14] Frost R L, Cash G A, Kloprogge T J.‘Rocky Mountain leather’, sepiolite and attapulgite-an infrared emission spectroscopic study [J]. Vibrational Spectroscopy,1998,16:173-184.
    [15]牛光良,王同,翁诗甫.复合树脂中硅烷偶联剂γ-MPS水解与缩合机制的研究[J].口腔颌面修复学杂志,2002,3(4):208-211.
    [16] Suárez Barrios M, Flores González L V, Vicente Rodríguez M A. Acid activation of a palygorskite with HCl: Development of physico-chemical, chemical, textural and surface properties [J]. Applied Clay Science,1995,10:247-258.
    [17]康文韬,武龙,沈宁祥.环氧树脂/凹凸棒土复合材料的分散和力学性能研究[J].中国塑料, 2002,26(10):29-32.
    [18] Zhang J, Chen H, Wang A. Study on superabsorbent composite. IV. Effects of organification degree of attapulgite on swelling behaviors of polyacrylamide/organo- attapulgite composites [J].European Polymer Journal,2006,42:101-108.
    [19]伏芬琪,石宗利.聚合物/凹凸棒土纳米复合材料的研究进展[J].表面技术,2006,35(5):48-50.
    [20]杨育珍,何胜刚.有机硅烷偶联剂及其应用[J].化学工程师,1994,43:40-42,51.
    [21] Ramos M A, Gil M H, Schacht E. Physical and chemical characterisation of some silicas and silica derivatives [J]. Powder Technology,1998,99:79-85.
    [22] Ferreira L, Ramos M A, Dordick J S. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg) [J]. Journal of Molecular Catalysis B: Enzymatic 2003,21:189-199.
    [23] Shaw S Y, Chen Y J, Ou J J. Preparation and characterization of Pseudomonas putida esterase immo -bilized on magnetic nanoparticles [J]. Enzyme and Microbial Technology,2006,39:1089-1095.
    [24] Jasper N A, Cheng M M C, Geho D H. Physicochemically modified silicon as a substrate for protein microarrays [J]. Biomaterials,2007,28:550-558.
    [1]陈英旭.环境学[M].北京:中国环境科学出版社,2001,64-66.
    [2]孙明超,徐日炜,胡向蔚.对叔丁基酚改性环氧酚醛涂料的合成与表征[J].涂料工业,2006,36:52-55.
    [3]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J].中国环境监测,1990,6(4): 1-3.
    [4] Lanouette K H. Treatment of phenolic wastes [J]. Chemical Engineering,1977,84:99-106.
    [5] Dutta N N, Patil G S, Brothakur S. Phase transfer catalyzed extraction of phenolic substances from aqueous alkaline stream [J]. Separation Science and Technology,1992,27:1435-1441.
    [6]聂颖,崔小明.国内外苯酚的供需现状及发展前景[J].化工技术经济,2006,24:18-24.
    [7]田利明.染料工业敲定“十一五”发展重点[J].中国石油化工,2007,9:40-43.
    [8] Hao O J, Jim H, Chiang P C. Decolorization of wastewater [J]. Critical Review in Environ- mental Science and Technology,2000,30(4):449-505.
    [9]姜应和,林国峰.印染废水的脱色处理方法[J].环境科学与技术,1998,82(3):36-38.
    [10] Chung K T. Degradation of azo dye by environmental microorganisms and helminthes [J]. Environmental Toxicology and Chemistry,1993,13(11):2121-2132.
    [11]刘厚田,杜晓明.藻菌系统降解偶氮染料的机理研究[J].环境科学学报,1993,13(3):332 -338.
    [12] Uygur A. An overview of oxidative and photooxidative decolorisation treatments of textile waste waters [J]. Journal of the Society of Dyers and Colourists,1997,113(7/8):211-217.
    [13] Shu H Y, Huang C R. Degradation of commercial azo dye in water using ozonation and UV enhanceo zonation process [J]. Chemosphere,1995,31(8):3813-3825.
    [14] Sarasa J, Roche M P, Ormad M P. Treatment of a wastewater resulting from dyes manu- facturing with ozone and chemical coagulation [J]. Water Research,1998,32(9):2721-2727.
    [15] Roza-Flores E, Luijten M, Donlon B. Biodegradation of selected azo dyes under methano- genic conditions [J]. Water Science and Technology,1997,36:65-72.
    [16] Liakou S, Pavlou S, Lyberatos G. Ozonation of azo dyes [J]. Water Science and Technology, 1997,35(4):279-286.
    [17] Gupta V K, Ali I, Mohan S D. Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents [J]. Journal of Colloid Interface Science, 2003,265:257-264.
    [18] Jain A K, Gupta V K, Bhatnagar A. A comparative assessment of adsorbents prepared from industrial wastes for the removal of cationic dye [J]. Jornal of the Indian Chemcial Society, 2003,80:267-270.
    [19] Gupta V K. Equilibrium uptake, sorption dynamics, process optimization, and column opera- tions for the removal and recovery of malachite green from wastewater using activated carbon and activated slag [J]. Industrial and Engineering Chemistry Research,1997,36: 2207-2218.
    [20] Al-Ghouti M, Khraisheh M A M, Ahmad M N M, Allen S. Thermodynamic behaviour and the effectof temperature on the removal of dyes from aqueous solution using modified diato- mite: A kinetic study [J]. Journal of Colloid Interface Science,2005,287:6–13.
    [21] Mittal A. Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater [J]. Journal of Hazardous Materials,2006,128:233-239.
    [22]张振中.化工环境监测实用手册[M].北京:中国科技出版社,1992,48-56.
    [23] Kim D S. Adsorption characteristics of Fe(III) and Fe(III)–NTA complex on granular activated carbon [J]. Journal of Hazardous Materials,2004,106B:67-84.
    [24] Oepen V B, K?rdel W, Klein W. Sorption of nonpolar and polar compounds to soils: process- es, measurement and experience with the applicability of the modified OECD-guideline[J]. Chemosphere,1991,22:285-304.
    [25] Li H, Jiao Y, Xu M, Shi Z. Thermodynamics aspect of tannin sorption on polymeric adsor- bents [J]. Polymer,2004,45:181-188.
    [26]陈洪钫,刘家祺.化工分离过程[M].北京:化学工业出版社.
    [27] Boyd G E, Adamson A W, Myers L S J. The Exchange Adsorption of Ions from Aqueous So- lutions by Organic ZeolitesП. Kineticsl [J]. Journal of the American Chemical Society, 1947, 69(11):2836-2848.
    [28] Reichenberg D. Properties of ion exchange resins in. relation to their structures.Ⅲ. kinetics of exchange [J]. Journal of the American Chemical Society, 1953,75:589-597.
    [1] Fukuda T, Ito H, Yoshida T. Antioxidative polyphenols from walnut(Juglans regia L.) [J]. Phyto- chemistry,2003,63:795-801.
    [2] Fernandez O, Capdevila J Z, Dalla G. Efficacy of rhizophora mangle aqueous bark extract in the healing of open surgical wounds [J]. Fitoterapia,2002,73:564-568.
    [3] Chung K T, Wei C W, Johnson M G. Are tannins a double-edged sword in biology and health? [J]. Trends in Food Science & Technology,1998, 9(4):168-175.
    [4] Higuchi H, Mori K, Kato A. Antiviral activities of anthroquinones and their inhibitory effects on reverse transcriptase [J]. Antiviral Research,1991,15:205-216.
    [5] Chen S C, Hsieh Y S, Lin J Y. Inhibitory effect of flavonoids on moloney murine leukemia virus reverse transcriptase activity [J]. Journal of Natural Products,1992,55:179-183.
    [6] Liu S W, Jiang S B, Wu Z H, et al. Identification of inhibitors of the HIV-1 gp41 six-helix bundle formation from extracts of Chinese medicinal herbs Prunella vulgaris and Rhizoma cibotte [J]. Life Science,2002,71:1779-1791.
    [7] Saleem A, Husheem M, H?rk?nen P. Inhibition of cancer cell growth by crude extract and phenolics of Terminalia chebula retz [J]. Fruit Journal of Ethnopharmacology,2002,81:327- 336.
    [8] McKay K L, Blmberg J B. The role of tea in human health: An update [J]. Journal of American college of nutrition,2002,21(1):1-13.
    [9] Szaefer H, Liebert J, Cichocki M. Effect of naturally occurring plant phenolics on the introduction of drug metabolizing enzymes by O-toluidine [J].Toxicology,2003,186:67-71.
    [10] Mitjavila S, Lacombe C, Carrera G. Tannic acid and oxidized tannic acid on the functional state of rat intestinal epithelium [J]. Journal of Nutrition,1977,107:2113-2121.
    [11] Deshpande S S, Sathe S K, Salunkhe D K. Chemistry and safety of plant polyphenols. In: Friedman, M. (Ed.), Nutritional and Toxicological Aspects of Food Safety [M]. New York: Plenum Press,1984, 457-495.
    [12] Salunkhe D K, Chavan J K, Kadam S S. Dietary Tannins: Consequences and Remedies [M]., Boca Raton FL:CRC Press,1990,98-102.
    [13] Makkar H P S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds [J]. Small Ruminant Research,2003, 49(3):241-256.
    [14]狄莹,石碧.植物单宁化学研究进展[J].化学通报,1999,3:1-5.
    [15] Gilberto Santana-Rios, B.S., M.S.. Modified clays for the selective adsorption of swainsonine [D]: [博士学位论文]. Las Cruces: New Mexico State University,1999.
    [16] Filho N L D, Carmo D R. Study of an organically modified clay: Selective adsorption of heavy metal ions and voltammetric determination of mercury(II) [J]. Talanta,2006,68:919- 927.
    [17] Shi B, He X Q, Haslam E. Polyphenol-Gelatin interaction [J]. Journal of American Leather Chemists Association,1994,89(4):98-104.
    [18] Anirudhan T S, Ramachandran M. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay [J]. Journal of Colloid and Interface Science,2006, 299:116-124.
    [19] Liao X P, Shi B. Adsorption of fluoride on zirconium(Ⅳ)-impregnated collagen fiber [J]. Environ- mental Science Technology,2005,39:4628-4632.
    [1] De Zoete M C, Van Rantwijk F, Sheldon R A. Lipase-Catalyzed Transformation with unnaturalAcyl Acceptors [J]. CatalsisToday, 1994,22:563-590.
    [2] Plou F J, Barandiarán M, Calvo M V. High-yield production of mono- and di-oleylglycerol by lipase-catalyzed hydrolysis of triolein [J]. Enzyme and Microbial Technology,1996,18:66-71.
    [3] ?abeder S, Habulin M, Knez ?. Lipase-catalyzed synthesis of fatty acid fructose esters [J]. Journal of Food Engineering,2006,77:880-886.
    [4] Shah S, Gupta M N. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system [J]. Process Biochemistry,2007,42:409-414.
    [5] Quan J, Wang N, Cai X Q. Controllable selective enzymatic synthesis of N-acyl and O-acylpro- pranolol vinyl esters and preparation of polymeric prodrug of propranolol [J]. Journal of Molecular Catalysis B: Enzym,2006,44:1-7.
    [6] Pchelka B K, Loupy A, Petit A. Preparation of various enantiomerically pure (benzotriazol-1-yl)-and (benzotriazol-2-yl)-alkan-2-ols [J]. Tetrahedron: Asymmetry, 2006,17:2516-2530.
    [7] Bjorkling F, Godtfredsen S E, Kirk O. The Future Impact of Industrial Lipases [J]. Trends Biotechnology,1991,9:360-363.
    [8] Grubhofer, Schleith. Protein coupling with diazotized polyaminostyrene [J]. Hoppe-Seyler's Zeitschrift für physiologische Chemie(德语),1954,297(2):108-112.
    [9] Deng H T, Xu Z K, Liu Z M. Adsorption immobilization of Candida rugosa lipases on polypropylene hollow fiber microfiltration membranes modified by hydrophobic poly- peptides [J]. Enzyme and Microbial Technology,2004,35:437-443.
    [10] Ye P, Xu Z K, Wu J. Covalent Immobilization of Lipase on Poly(acrylonitrile-co-maleic acid) Ultrafiltration Hollow Fiber Membrane [J]. Chemical Research in Chinese Universities,2005, 21(6):723-727.
    [11] Song H, Wu G X, Liu K. Photochemical surface modification of poly(arylsulfone) ultra- filtration membrane and covalent immobilization of enzyme [J]. Journal of Environmental Sciences, 2004, 16(3):392-396.
    [12] Wang Y J, Xu J, Luo G S. Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface [J]. Bioresource Technology,2008,99:2299-2303.
    [13] González-Sáiz J M, Pizarro C. Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters [J]. European Polymer Journal,2001,37(3):435-444.
    [14]刘红霞.层状材料——水滑石固定化酶的研究[D]:[硕士学位论文].北京:北京化工大学,2002.
    [15] Shaw S Y, Chen Y J, Ou J J. Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles [J]. Enzyme Microbial Technology,2006,39: 1089-1095.
    [16] Ferreira L, Ramos M A, Dordick J S. Influence of different silica derivatives in the immobilization and stabilization of a Bacillus licheniformis protease (Subtilisin Carlsberg) [J]. Journal of MolecularCatalysis B: Enzymatic 2003:189-199.
    [17] Castro H F, Oliviera P C, Pereira E B. Evaluation of different approaches for lipase catalysed synthesis of citronellyl acetate [J]. Biotechnology Letteer,1997,19:229-232.
    [18] Sinegani A A S, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals [J]. Journal of Colloid Interface Science,2005,290:39-44.
    [19] Tietjen T, Wetzel R G. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation [J]. Aquatic Ecology, 2003,37:331-339.
    [20] Ye?ilo?lu Y. Utilization of bentonite as a support material for immobilization of Candida rugosa lipase [J]. Process Biochemistry,2005,40:2155-2159.
    [21] Lozzi I, Calamai L, Fusi P. Interaction of horseradish peroxidase with montmorillonite homoionic to Na+ and Ca2+: effects on enzymatic activity and microbial degradation [J]. Soil Biology & Biochemistry,2001,33:1021-1028.
    [22] Fuentes I E, Viseras C A, Ubiali D. Different phyllosilicates as supports for lipase immobilization [J]. Journal of Molecular Catalysis B: Enzymatic,2001,11:657-663.
    [23] Rahman M B A, Tajudin S M, Hussein M Z. Application of natural kaolin as support for the immobilization of lipase from Candida rugosa as biocatalsyt for effective esterification [J]. Applied Clay Science,2005,29:111-116.
    [24] Changa M Y, Juang R S. Activities, stabilities, and reaction kinetics of three free and chitosan-clay composite immobilized enzymes [J]. Enzyme Microbial Technology,2005, 36:75-82.
    [25] Müller R, Hiller K A, Schmalz G. Chemiluminescence-based detection and comparison of protein amounts adsorbed on diVerently modiWed silica surfaces [J]. Anal. Biochem,2006, 359:194-202.
    [26] Hernando J, Pourrostami T, Garrido J A. Immobilization of horseradish peroxidase via an amino silane on oxidized ultrananocrystalline diamond [J]. Diamond Relat. Mater. 2007,16:138-143.
    [27] Nijdama A J, Cheng M M, Geho D H, et al. Physicochemically modified silicon as a substrate for protein microarrays [J]. Biomaterials, 2007,28:550-558.
    [28]中华人民共和国轻工业部食品工业司. QB/T1803-1993工业酶制剂通用试验方法[S].北京:北京轻工业出版社,1993.
    [29]高贵,韩四平,王智,等.脂肪酶活力检测方法的比较[J].药物生物技术,2002,9(5):281-284.
    [30]化学标准化技术委员会化学试剂分会. GB/T601-2002化学试剂标准滴定溶液的制备[S].北京:中国标准出版社,2002.
    [31] Bradford M M A. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. analytical biochemistry,1976,72:248-254.
    [32] Palomo J M, Ortiz C, Fernández-Lorente G, et al. Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties [J]. Enzyme and Microbial Technology, 2005,36: 447-454.
    [33]王郁文,钟凡,许亚萍,等.牛磺酸与噻吩甲醛缩合形成Schiff碱反应机理的研究[J].化学学报,2006,64(8):811-816.
    [34] Spagnaa G, Barbagalloa R N, Casarinib D, Pifferic P G. A novel chitosan derivative to immobilize a-L-rhamnopyranosidase from Aspergillus niger for application in beverage technologies [J]. Enzyme and Microbial Technology,28(2001):427-438

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700