用户名: 密码: 验证码:
聚芳醚酮基杂化吸波材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,随着无线通信和高频电路器件的发展,电磁干扰成为一种新型的环境污染形式出现在人们的生活中,对通信设备、国防军事设施和人类的健康造成了极大的威胁和损害。因此,开发轻质、高效的电磁屏蔽材料是必要且迫在眉睫的。微波吸收材料作为一种重要的屏蔽材料,能够有效地解决不断扩大的电磁干扰。但是现有的、单一的材料难以实现高效的吸收以及满足运行环境的苛刻要求,人们迫切希望开发高效、轻质、稳定的吸波材料来解决这一重要问题。本论文中,我们以聚芳醚酮树脂为基体,先后探索了以“二氧化硅/磁性纳米粒子”、“聚苯胺/磁性粒子”以及“空心微球”等复合粒子作为吸波剂用于合成高性能的杂化微波吸收材料,成功地制备出综合性能优良的聚芳醚树脂基杂化微波吸收材料,并对其微波吸收性能和机理进行了研究,最终实现制备高性能的新型微波吸收材料这一目标。
     第一,我们合成了“二氧化硅/磁性纳米粒子”以及具有活性反应基团的氨基聚芳醚酮,用于合成Co0.2Fe2.8O4@SiO2-聚芳醚酮磁性杂化材料,以3-异氰酸丙基三乙氧基硅烷为偶联剂,通过O-酰化反应与溶胶-凝胶过程,有效调控填料的尺寸、形貌以及分布。该杂化材料两相间具有良好的相容性,表现出了优异的透明性以及很好的微波吸收性能。
     第二,我们合成了“聚苯胺/磁性粒子”以及氨基聚芳醚酮,以耐高温的醛基封端聚甲亚胺齐聚物为偶联剂,通过溶胶-凝胶法制备Fe3O4@聚苯胺/聚甲亚胺/聚芳醚酮三元杂化材料。该材料具有快的交联速度以及均匀的尺寸分布,并展示出较宽的微波吸收频带和较高的反射损耗。
     第三,合成具有空心结构的复合微球,并结合以上工作基础,进一步将这些微球与聚芳醚酮基体复合,通过溶胶-凝胶法制备空心微球/聚芳醚酮多孔杂化材料。研究了微球结构吸波剂以及多孔结构杂化材料对吸波性能的影响,制备出了高效、轻质、耐高温以及环境耐受性强的微波吸收材料,并得到了很好的吸波性能。
Due to the fast development of electronic devices such as wireless communications andhigh-frequency circuit devices in the recent decades, electromagnetic interferenceemerges as a novel kind of pollution to the environment, which disturbs the stableworking conditions of electronic appliances and may harm the human body.Microwave-absorbing materials are of great interests as an important and crucialtechnology in solving the expanding electromagnetic interference. Materials such asferrites, conductive polymers, carbon, metals and their oxides have been intensivelyinvestigated, due to their significant contribution to radar stealth and electromagneticinterference shielding. However, with the increasing demands of usage in diverse andcomplex environment, it is urgently to develop high-performance microwave-absorbingmaterials with multifunction, such lightweight, efficient, broadband, temperaturestability, corrosion resistance, radiation resistance, and environmentally friendly, etc.The conventional single kind of material is difficult to meet the increasing requirements.Therefore, exploiting polymer-based hybrid materials with superior performanceabsorbers and substrate polymers has aroused considerable concerns for theirlightweight, high efficient, extensive absorption, cellent stability, flexibility and easyprocessing advantages.
     Polyaryetherkotone (PAEK) superior engineering thermoplastic is one of the mostideal matrix polymers to improve the comprehensive properties ofmicrowave-absorbing materials with excellent stability to adapt the harsh environment.Attributed to the distinctive aromatic structure of the polymer, the material performs excellent mechanical properties, thermal stability, ammability, radiation resistance,flame and solvent resistance. Moreover, the flexible ether bonds in the moleculestructure also provide a good processing performance as thermoplastic engineeringplastics. What is more, this kind of non-toxic and electrical insulating polymer isregarded as an electromagnetic windows material. However, there is little research onPAEK as the matrix for microwave-absorbing coatings. Mainly because the insolublePAEK increases the difficulties to disperse the absorbers in matrix. In this paper, wedesign and synthesize a new20%amino-functionalized PEEK copolymer containingtrifluoromethyl units on polymer main chains (AFPEEK) from the molecular point ofview. Furthermore, a series of PAEK-based hybird microwave-absorbing materials areprepared by the complex with absorbers with different electromagnetic properties viasol-gel method. And the structures and properties of these hybrid materials are detailedstudied.
     First of all, we synthesize Co0.2Fe2.8O4nanoparticles, which are modified withsilica-protected layers to provide reliable chemical stabilization. The Co0.2Fe2.8O4@SiO2nanoparticles are used as the absorbers to prepare Co0.2Fe2.8O4@SiO2-PEEK hybridmicrowave-absorbing materials for their dielectric and magnetic permeability. Inchapter3, a simple and effective in-situ sol-gel technique is used to improvecompatibility and dispersibility between phases.3-isocyanatopropyltriethoxysilane(IPTS) is introduced as a bridge between the hydrophilic nanoparticles absorbers andthe hydrophobic AFPEEK matrix for its high reactivity with SiO2and amino groups onthe side chain of the polymer. SEM and TEM images demonstrate that the stronginteraction between inorganic-organic phases results in great improvement of dispersionand compatibility at even40wt%nanoparticles contents. The functional integration oforganic polymer and inorganic nanoparticles leads to excellent comprehensiveperformances such as high transparency, solvent resistance, thermal stability andmechanical properties of the hybrid material, as well as the high adhesion with substrate,which benefits its application as coating materials. As the amendment of the shape, sizeand distribution of the fillers in the matrix may strongly change the frequencydependence of permeability. This hybrid membrane exhibits good superparamagnetic behaviors and microwave electromagnetic properties (reflecting loss~-13dB at14.3GHz, d=2mm). It is expected as a promising microwave-absorbing material for thefacile synthesis process and good comprehensive properties.
     However, due to low complex permittivity and complex permeability, the loss ofelectromagnetic waves for Co0.2Fe2.8O4@SiO2-PEEK hybrid material is limited, whichis difficult to achieve effective absorption of electromagnetic waves in the range of2-18GHz, even adjust the thickness. The emerging conductive polymer and magneticnanoparticle composite materials are under currently concerned as an ideal absorbers fortheir unique physical and chemical properties. Therefore, in chapter4, we improve andregulate the electromagnetic parameters to achieve better matching by the complexabsorbers of polyaniline conductive polymer composition and magnetic iron oxidenanoparticles(Fe3O4@PANI). Furthermore, through a simple and effectiveamine-aldehyde condensation reaction between the aldehyde-terminated PAM oligomercoupling agent and amino groups (on Fe3O4@PANI nanocomposites and AFPEEK), theternary Fe3O4@PANI/PAM/PEEK hybrid materials are prepared via a sol-gel process.The high stability crosslinked hybrid materials performe excellent thermal stability(Tg>160°C, Td-5%>300°C) and solvent resistance, and exhibit significantmicrowave-absorbing property (RL~-18dB at14GHz, d=2mm) with40wt%nanocomposites contents. The primary mechanism of the microwave absorption isdielectric and magnetic loss, while the magnetic Fe3O4is regarded as a promoter toincrease the complex permeability of PANI. The combination of conductive andmagnetic properties enhances the microwave absorption. Therefore, the intensity andbandwidth of the absorption for hybrid materials increase significantly, the hybridmaterials can achieve effective absorption (>90%) within the range of2-18GHz byregulating the thicknes.
     Although Fe3O4@PANI/PAM/PEEK hybrid materials exhibit excellent absorbingproperties, there is still a problem about the high filler contents, which makes thedisadvantages such as lightweight and high efficient. Therefore, in chapter5,considering the balanced of the attenuation characteristics and impedance matching, weoptimize the composition and structure of the absorbing materials. PANI/C/Fe3O4 hollow microspheres with high electromagnetic loss are prepared and introduced as themicrowave absorbers to fabricate a series of porous PAEK-based hybrid materials withvarious absorbers contents, according to the method mentioned in previous chapter. It isexcepted to improve the electromagnetic parameters, as well as adjust the impedancematching, in order to achieve lightweight and high absorption of the materials. Thehybrid material exhibits excellent microwave-absorbing behaviors with30wt%fillercontents, attribute to the unique structure and composition. Firstly, the permeabilitycomponents (matrix and porosity) of the material can make as many waves incident onthe surface and transmission in its interior, which reduces reflection losses. Meanwhile,the absorbing components (absorbers) with high electromagnetic parameters providequick and efficient absroption on the waves. Furthermore, the porous structure results inmultiple reflections in and between the microspheres, which greatly increase theelectromagnetic wave transmission path in the material and the friction with theprobability of absorbers. Therefore, the absorption intensity and the bandwidth of thematerials are improved significantly (RL~-32dB,15GHz, d=2mm). And a strongerabsorption can be achieved (>90%) within the range of4.5-18GHz by adjusting thethickness (2mm,3mm,4mm,5mm). In addition, the material also exhibits highthermal stability (Td-5%>510°C, Tg>180°C). This hybrid technique provides a novelroute for preparation of high performance microwave-absorbing materials.
引文
[1]邢丽英,蒋诗才,李斌太,等.隐身材料[M].北京:化学工业出版社,2004.
    [2]许占显.基于电磁理论的隐身与探测技术研究[D].博士学位论文.电子科技大学,2007.
    [3]徐鹏根.电磁兼容性原理及应用[D].北京:国防工业出版社,1996.
    [4]蔡任钢.电磁兼容原理设计和预测技术[M].北京:北京航空航天大学出版社,1997.
    [5]张月芳,郝万军,等.电磁辐射污染及其防护技术[M].北京:冶金工业出版社,2010.
    [6] MONIRUZZAMAN M, WINEY K I. Polymer nanocomposites containing carbonnanotubes[J]. Macromolecules,2006,39:5194-5205.
    [7]杨士元.电磁屏蔽理论与实践[M].北京:国防工业出版社,2006.
    [8]刘顺华,刘军民,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [9] DAELLENBACH W, KLEINSTEUBER W. Reflexion und asorption vondezimeterwellen an ebenen, dielektrischen schichten[J]. Hochfrequenztech UndElektroakust,1938,51:152-156.
    [10] JIN A K. Electromagnetic wave theory[M]. Beijing: Publishing House ofElectronics Industry,2003.
    [11] MUSAL H M, HAHN J H T. Thin-layer electromagnetic absorber design[J].Magnetics, IEEE Transactions on,1989,25:3851-3853.
    [12] DENG Z P, LIU Z H, ZHOU G Z, et al. Study on bandwidth theory of the interfacereflection model for single layer plate absorber[J]. Journal of LogisticalEngineering University,2013,29:55-59.
    [13] CHEN X G, YE Y, CHENG J P. Recent progress in electromagnetic waveabsorbers[J]. Journal of Inorganic Materials,2011,26:450-456.
    [14]康青.新型微波吸收材料[M].北京:科学出版社,2006.
    [15]李斌鹏.碳基复合吸波材料的制备和表征[D].硕士学位论文.山东大学,2013.
    [16]王祖鹏,于名讯,潘士兵,等.纤维复合吸波材料的研究进展[J].化工新型材料,2010,38:13-15.
    [17]吴红焕,王晓艳,张玲,等.碳纤维吸波材枓的研究进展[J].材枓导报,2007,21:115-117.
    [18]罗发,周万城,焦桓,等.高温吸波材料研究现状[J].宇航材料工艺,2002,(1):8-11.
    [19]刘世良.航天隐身技术的现状及发展[J].自然杂志,1995,17:27-30.
    [20]李大光.中国新一代隐形战斗机:歼-20[J].生命与灾害,2011,(2):4-6.
    [21]曾国勋.新型微波吸收材料吸波性能研究[D].博士学位论文.广东工业大学,2009.
    [22] ZHAO L Z, HU S J, LI W S, et al. Absorbing mechanism and progress ofwave-absorbing materials[J]. Modern Defence Technology,2007,35:27-31.
    [23] WU M Z. Present status and developing trend of radar absorbing materials[J].Journal of Magnetc Material Devices,1997,2826-30.
    [24]王磊,朱保华.磁性吸波材料的研究进展及展望[J].电工材料,2011,(2):37-40.
    [25]秦秀兰,黄英,杜朝峰.导电高分子吸波材料制备方法研究进展[J].磁性材料及器件,2007,38:15-24.
    [26]袁军,周小燕.电磁吸波材料研究的现状与发展趋势[J].医疗卫生装备,2011,32:76-77.
    [27]张健,张文彦,奚正平.隐身吸波材料的研究进展[J].稀有金属材料与工程,2008,37:505-508.
    [28]赵九蓬,李垚,吴佩莲.新型吸波材料研究动态[J].材料科学与工艺,2002,10:220-224.
    [29]石敏先,黄志雄.新型吸波材料的研究进展[J].材料导报,2007,21:36-39.
    [30]于仁光,乔小晶,张同来,等.新型雷达吸波材料研究进展[J].兵器材料科学与工程,2004,27:64-66.
    [31]邓秀文,吸波材料研究进展[J].化工时刊,2007,21:58-65.
    [32]赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展[J].现代防御技术,2007,35:28-31.
    [33]杨磊,张长森,罗驹华.无机-有机复合吸波材料研究进展[J].化工新型材料,2011,39:9-31.
    [34]方鲲,毛卫民,冯惠平,等.轻质宽频导电高分子微波吸收材料研究[J].屏蔽技术与屏蔽材料,2005,2:49-51.
    [35]刘海韬,程海峰,王军,等.高温结构吸波材料综述[J].材料导报:综述篇,2009,23:24-27.
    [36] SHI M X, HUANG Z X. Research progress in novel absorbing material[J].Materials Review,2007,21:36-39.
    [37] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism ofmultiwalled carbon nanotubes under tensile load[J]. Science,2000,287:637-40.
    [38] SALVETAT J P, BONARD J M, THOMSON N H, et al. Mechanical properties ofcarbon nanotubes[J]. Applied Physics A,1999,69:255-60.
    [39] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technologyof carbon nanotubes and their composites: a review[J]. Composites Science andTechnology,2001,61:1899-912.
    [40] SU Q, LI J, ZHONG G, et al. In situ synthesis of iron/nickel sulfidenanostructures-filled carbon nanotubes and their electromagnetic andmicrowave-absorbing properties[J]. The Journal of Physical ChemistryC,2011,115,1838-1842.
    [41] ZHU H-L, BAI Y-J, LIU R, et al. In situ synthesis of one-dimensionalMWCNT/SiC porous nanocomposites with excellent microwave absorptionproperties[J]. Journal of Materials Chemistry,2011,21:13581.
    [42] WANG H, WANG G, LI W, et al. A material with high electromagnetic radiationshielding effectiveness fabricated using multi-walled carbon nanotubes wrappedwith poly(ether sulfone) in a poly(ether ether ketone) matrix[J]. Journal ofMaterials Chemistry,2012,22:21232.
    [43] CAO M-S, YANG J, SONG W-L, et al. Ferroferric oxide/multiwalled carbonnanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotubemultiheterostructures for highly effective microwave absorption.[J]. ACS AppliedMaterials&Interfaces,2012,4:6949-6956.
    [44] SUN G, DONG B, CAO M, et al. Hierarchical dendrite-like magnetic materials ofFe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption[J].Chemistry of Materials,2011,23:1587-1593.
    [45] ZHU J, WEI S, HALDOLAARACHCHIGE N, et al. Electromagnetic fieldshielding polyurethane nanocomposites reinforced with core-shell Fe-silicananoparticles[J]. The Journal of Physical Chemistry C,2011,115:15304-15310.
    [46] LIU J, XU J, CHE R, et al. Hierarchical magnetic yolk–shell microspheres withmixed barium silicate and barium titanium oxide shells for microwave absorptionenhancement[J]. Journal of Materials Chemistry,2012,22:9277-9284.
    [47] LIU J, CHENG J, CHE R, et al. Double-shelled yolk-shell microspheres with Fe3O4cores and SnO2double shells as high-performance microwave absorbers[J]. TheJournal of Physical Chemistry C,2013,117,489-495.
    [48] MENG X, WAN Y, LI Q, et al. The electrochemical preparation and microwaveabsorption properties of magnetic carbon fibers coated with Fe3O4films[J].Applied Surface Science,2011,257:10808-10814.
    [49] HUANG C-Y, MO W-W, ROAN M-L. Studies on the influence of double-layerelectroless metal deposition on the electromagnetic interference shieldingeffectiveness of carbon fibery ABS composites[J]. Surface and CoatingsTechnology,2004,184,163-169.
    [50] GUO J, WANG X, LIAO X, et al. Skin collagen fiber-biotemplated synthesis ofsize-tunable silver nanoparticle-embedded hierarchical intertextures withlightweight and highly efficient microwave absorption properties[J]. The Journal ofPhysical Chemistry C,2012,116:8188-8195.
    [51] YANG J, ZHANG J, LIANG C, et al. Ultrathin BaTiO3nanowires with high aspectratio: a simple one-step hydrothermal synthesis and their strong microwaveabsorption[J]. ACS Applied Materials&Interfaces,2013,5:7146-7151.
    [52] CHEN K, XIANG C, LI L, et al. A novel ternary composite: fabrication,performance and application of expanded graphite/polyaniline/CoFe2O4ferrite[J].Journal of Materials Chemistry,2012,22:6449-6455.
    [53] HE Z, FANG Y, WANG X, et al. Microwave absorption properties ofPANI/CIP/Fe3O4composites[J]. Synthetic Metals,2011,161:420-425.
    [54] CUI C, DU Y, LI T, et al. Synthesis of electromagnetic functionalized Fe3O4microspheres/polyaniline composites by two-step oxidative polymerization[J]. Thejournal of physical chemistry B,2012,116:9523-9531.
    [55] ZHOU W, HU X, BAI X, et al. Synthesis and electromagnetic, microwaveabsorbing properties of core-shell Fe3O4-poly(3,4-ethylenedioxythiophene)microspheres[J]. ACS Applied Materials&Interfaces,2011,3:3839-3845.
    [56] LI G, XIE T, YANG S, et al. Microwave absorption enhancement of porous carbonfibers compared with carbon nanofibers[J]. The Journal of Physical ChemistryC,2012,116:9196-9201.
    [57] YAN D-X, REN P-G, PANG H, et al. Efficient electromagnetic interferenceshielding of lightweight graphene/polystyrene composite[J]. Journal of MaterialsChemistry,2012,22:18772.
    [58] LIU Q, GU J, ZHANG W, et al. Biomorphic porous graphitic carbon forelectromagnetic interference shielding[J]. Journal of Materials Chemistry,2012,22:21183-21188.
    [59] LING J, ZHAI W, FENG W, et al. Facile preparation of lightweight microcellularpolyetherimide/graphene composite foams for electromagnetic interferenceshielding.[J]. ACS Applied Materials&Interfaces,2013,5:2677-2684.
    [60] CELOZZI S, ARANEO R, LOVAT G,郎为民(译).电磁屏蔽原理与应用[M].北京:机械工业出版社,2009.
    [61]赵纯,张玉龙.聚醚醚酮[M].北京:化学工业出版社,2008.
    [62] ATTWOOD T E, DAWSON P C, FREEMAN J L. Synthesis and properties of polyaryl ether ketones[J]. Polymer,1981,22:1096-1103.
    [63] LAKSHMANA R V. Poly ether Ketones[J]. Journal of MacromolecularScience-Reviews in Macromolecular Chemistry and Physics,1995,35:661-712.
    [64]吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内研究、开发、生产现状[J].化工新材料,2002,30:15-18.
    [65] HERGENROTHER P M, JENSEN B J, HAVENS S J. Poly(arylene ethers)[J].Polymer,1988,29:358-369.
    [66] CAO J K, SU W C, WU Z W, KITAYAMA T, et al. Synthesis and properties ofpoly(ether ether ketone)-poly(ether sulfone)block copolymers[J]. Polymer,1994,35:3549-3556.
    [67] JI X L, YU D H, ZHANG W J, et al. The multiple melting behaviour of immisciblepoly(ether ether ketone)/poly(ether diphenyl ether ketone)blend[J]. Polymer,1997,38:3501-3504.
    [68] ROSE J B. Preparation and properties of poly(arylene ether sulphones)[J].Polymer,1974,15:456-465.
    [69]白杉,周洁.聚醚醚酮树脂应用现状[J].化工科技市场,2008,8:21-23.
    [70] RAMA M, RAO V L, RADHAKRISHMAN T S, et al. Synthesis characterizationand thermal degradation studies of poly(ether ether ketone)copolymers[J].Polymer,1992,33:2834-2839.
    [71]吴忠文.特种工程塑料聚芳醚酮[J].化工新型材料,1999,11:18-20.
    [72] CHEN M, CHEN J Y. Analysis of crystallization kineties of poly(ether etherketone)[J]. Journal of Polymer Science Part B-Polymer Physics,1998,36:1348-1355.
    [73] BONNER W H, et al. Compiler:US,3065205[P].1962-11-20[1959-10-27].
    [74] GOODMAN I, et al. Br,971227[P].1964.
    [75] CLENDINNING R A, FARNBAM A G. Journal of Polymer Science Part A-1:Polymer Chemistry,1967,5:2375-2398.
    [76] ROSE J B,et al. Br,1558671[P].1976.
    [77] Klaus J. Dahl, et al. Compiler:US05/451,521[P].1976-4-27[1974-3-15]
    [78] MAZZANTI J B,et al. Compiler:US,4855387[P].1989-8-8[1987-7-9].
    [79]栾加双.聚醚醚酮纤维的制备及性能研究[M].博士学位论文.吉林大学,2013.
    [80] LIU T, WANG S, MO Z, et al. Crystal structure and drawing-inducedpolymorphism in poly(aryl ether ether ketone) IV[J]. Journal of Applied PolymerScience,1999,73(2):237-243.
    [81] BENJAMIM D C, BRETAS R E S. Crystallization kinetics of a PEEK/LCPblend[J]. Journal of Applied Polymer Science,1995,55(2):233-246.
    [82]马刚,聚醚醚酮/硅灰石复合材料的制备及性能研究[D].博士学位论文.吉林大学,2011.
    [83] PATEL P, HULL T R, MCCABE R W, et al. Mechanism of thermal decompositionof PEEK from a review of decomposition studies[J]. Polymer Degradation andStability,2010,95:709-718.
    [84] AKH M N, ELLIS G, GOMEZ M A, et al. Thermal decomposition of technologicalpolymer blends poly(aryl ether ether ketone)with a thermotropic liquid crystallinepolymer[J]. Polymer Degradation and Stability,1999,66:405-413.
    [85]王洪松,聚醚醚酮基电磁屏蔽复合材料的制备及性能研究[D].硕士学位论文.吉林大学,2012.
    [1] FRICKEL N, GREENBAUM A G, GOTTLIEB M, et al. Magnetic properties anddielectrical relaxation dynamics in CoFe2O4@PU nanocomposites[J]. The Journalof Physical Chemistry C,2011,115:10946-10954.
    [2] ZHU J, WEI S, HALDOLAARACHCHIGE N, et al. Electromagnetic fieldshielding polyurethane nanocomposites reinforced with core-shell Fe-silicananoparticles[J]. The Journal of Physical Chemistry C,2011,115:15304-15310.
    [3] LI Y, CHEN G, LI Q, et al. Facile synthesis, magnetic and microwave absorptionproperties of Fe3O4/polypyrrole core/shell nanocomposite[J]. Journal of Alloys andCompounds,2011,509:4104-4107.
    [4] MA Z, MENG F, ZHAO R, et al. Preparation and dual microwave-absorptionproperties of carboxylic poly(arylene ether nitrile)/Fe3O4hybrid microspheres[J].Journal of Magnetism and Magnetic Materials,2012,324:1365-1369.
    [5] OHLAN A, SINGH K, CHANDRA A, et al. Microwave absorption behavior ofcore-shell structured poly (3,4-ethylenedioxy thiophene)-barium ferritenanocomposites[J]. ACS Applied Materials&Interfaces,2010,2:927-933.
    [6] ZHANG Z, LI Q, YU L, et al. Highly conductive polypyrrole/γ-Fe2O3nanosphereswith good magnetic properties obtained through an improved chemical one-stepmethod[J]. Macromolecules,2011,44:4610-4615.
    [7] FAN X A, GUAN J, CAO X, et al. Low-temperature synthesis, magnetic andmicrowave electromagnetic properties of substoichiometric spinel cobalt ferriteoctahedra[J]. European Journal of Inorganic Chemistry,2010,2010:419-426.
    [8] GU X, ZHU W, JIA C, et al. Synthesis and microwave absorbing properties ofhighly ordered mesoporous crystalline NiFe2O4[J]. Chem Commun,2011,47:5337-5339.
    [9] ZHU W, WANG L, ZHAO R, et al. Electromagnetic and microwave-absorbingproperties of magnetic nickel ferrite nanocrystals[J]. Nanoscale,2011,3:2862-2864.
    [10] ZHU Y F, ZHANG L, NATSUKI T, et al. Facile synthesis of BaTiO3nanotubesand their microwave absorption properties[J]. ACS Applied Materials&Interfaces,2012,4:2101-2106.
    [11] LEE J W, VISWAN R, CHOI Y J, et al. Facile fabrication and superparamagnetismof silica-shielded magnetite nanoparticles on carbon nitride nanotubes[J].Advanced Functional Materials,2009,19:2213-2218.
    [12] MAHTAB F, YU Y, LAM J W Y, et al. Fabrication of silica nanoparticles with bothefficient fluorescence and strong magnetization and exploration of their biologicalapplications[J]. Advanced Functional Materials,2011,21:1733-1740.
    [13] SALGUEIRI O-MACEIRA V, CORREA-DUARTE M A, SPASOVA M, et al.Composite silica spheres with magnetic and luminescent functionalities[J].Advanced Functional Materials,2006,16:509-514.
    [14] WEI S, WANG Q, ZHU J, et al. Multifunctional composite core-shellnanoparticles[J]. Nanoscale,2011,3:4474-4502.
    [15] PETERSEN H, FECHNER P M, FISCHER D, et al. Synthesis, characterization,and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) blockcopolymers[J]. Macromolecules,2002,35:6867-6874.
    [16] D EZ-PASCUAL A M, NAFFAKH M, MARCO C, et al. High-performancenanocomposites based on polyetherketones[J]. Progress in Materials Science,2012,57:1106-1190.
    [17] OZDEN S, CHARAYEV A M,SHAOV A H. The synthesis ofpolyetheretherketones and investigations of their properties[J]. Journal of MaterialsScience,1999,34:2741-2744.
    [18] PATEL P, HULL T R,MOFFATT C. PEEK polymer flammability and theinadequacy of the UL-94classification[J]. Fire and Materials,2012,36:185-201.
    [19] QI Y, DING J, DAY M, et al. Cross-linkable highly fluorinated poly(arylene etherketones/sulfones) for optical waveguiding applications[J]. Chemistry of Materials,2005,17:676-682.
    [20] WANG H, WANG G, LI W, et al. A material with high electromagnetic radiationshielding effectiveness fabricated using multi-walled carbon nanotubes wrappedwith poly(ether sulfone) in a poly(ether ether ketone) matrix[J]. Journal ofMaterials Chemistry,2012,22:21232.
    [21] HEDAYATI M, SALEHI M, BAGHERI R, et al. Tribological and mechanicalproperties of amorphous and semi-crystalline PEEK/SiO2nanocomposite coatingsdeposited on the plain carbon steel by electrostatic powder spray technique[J].Progress in Organic Coatings,2012,74:50-58.
    [22] LAI Y H, KUO M C, HUANG J C, et al. On the PEEK composites reinforced bysurface-modified nano-silica[J]. Materials Science and Engineering: A,2007,458:158-169.
    [23] LIU J, BIN Y,MATSUO M. Magnetic behavior of Zn-doped Fe3O4nanoparticlesestimated in terms of crystal domain size[J]. The Journal of Physical ChemistryC,2012,116:134-143.
    [24] LU Z, DAI J, SONG X, et al. Facile synthesis of Fe3O4/SiO2compositenanoparticles from primary silica particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,317:450-456.
    [25] LIU B, HU W, CHEN C, et al. Soluble aromatic poly(ether ketone)s with a pendant3,5-ditrifluoromethylphenyl group[J]. Polymer,2004,45:3241-3247.
    [26] WEI W, ZHANG H, GUAN S, et al. Preparation and characterization oftransparent polyarylethers-silica hybrid membranes with covalently connectedphases[J]. Polymer,2012,53:5002-5009.
    [27] POLETTO M, ZENI M,ZATTERA A J. Dynamic mechanical analysis of recycledpolystyrene composites reinforced with wood flour[J]. Journal of Applied PolymerScience,2012,125:935-942.
    [28] JIANG J,LI L. Synthesis of sphere-like Co3O4nanocrystals via a simple polyolroute[J]. Materials Letters,2007,61:4894-4896.
    [29] ZHU M,DIAO G. Synthesis of porous Fe3O4nanospheres and its application forthe catalytic degradation of xylenol orange[J]. The Journal of Physical ChemistryC,2011,115:18923-18934.
    [30] PU Y, TAO X, ZENG X, et al. Synthesis of Co–Cu–Zn doped Fe3O4nanoparticleswith tunable morphology and magnetic properties[J]. Journal of Magnetism andMagnetic Materials,2010,322:1985-1990.
    [31] XUAN S, WANG Y-X J, YU J C, et al. Tuning the grain size and particle size ofsuperparamagnetic Fe3O4microparticles[J]. Chemistry of Materials,2009,21:5079-5087.
    [32] LV R, CAO A, KANG F, et al. Single-crystalline permalloy nanowires in carbonnanotubes: enhanced encapsulation and magnetization[J]. The Journal of PhysicalChemistry C,2007,111:11475-11479.
    [33] LI N, HU C,CAO M. Enhanced microwave absorbing performance of CoNi alloynanoparticles anchored on a spherical carbon monolith[J]. Physical ChemistryChemical Physics,2013,15:7685-7689.
    [34] LI G, HU G G, ZHOU H D, et al. Absorption of microwaves in La1xSrxMnO3manganese powders over a wide bandwidth[J]. Journal of AppliedPhysics,2001,90:5512-5514.
    [35] WEI J, LIU J,LI S. Electromagnetic and microwave absorption properties of Fe3O4magnetic films plated on hollow glass spheres[J]. Journal of Magnetism andMagnetic Materials,2007,312:414-417.
    [36] NAITO Y,SUETAKE K. Application of ferrite to electromagnetic wave absorberand its characteristics[J]. IEEE Transactions on Microwave Theory and Techniques,1971,19:65-72.
    [37] CHEN Y-J, GAO P, WANG R-X, et al. Porous Fe3O4/SnO2core/shell nanorods:synthesis and electromagnetic properties[J]. The Journal of Physical ChemistryC,2009,113:10061-10064.
    [38] ZHOU J, HE J, LI G, et al. Direct incorporation of magnetic constituents withinordered mesoporous carbon silica nanocomposites for highly efficientelectromagnetic wave absorbers[J]. The Journal of Physical Chemistry C,2010,114:7611-7617.
    [39] THONGSANG S, VORAKHAN W, WIMOLMALA E, et al. Dynamic mechanicalanalysis and tribological properties of NR vulcanizates with fly ash/precipitatedsilica hybrid filler[J]. Tribology International,2012,53:134-141.
    [40] HAMEED N, SREEKUMAR P A, FRANCIS B, et al. Morphology, dynamicmechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxyresin/glass fibre composites[J]. Composites Part A: Applied Science andManufacturing,2007,38:2422-2432.
    [41] BOSZE E J, ALAWAR A, BERTSCHGER O, et al. High-temperature strength andstorage modulus in unidirectional hybrid composites[J]. Composites Science AndTechnology,2006,66:1963-1969.
    [42] MANDAL S,ALAM S. Dynamic mechanical analysis and morphological studiesof glass/bamboo fiber reinforced unsaturated polyester resin-based hybridcomposites[J]. Journal of Applied Polymer Science,2012,125:E382-E387.
    [1] DUAN Y, LIU Z, JING H, et al. Novel microwave dielectric response ofNi/Co-doped manganese dioxides and their microwave absorbing properties[J].Journal of Materials Chemistry,2012,22:18291-18299.
    [2] GONG Y-X, ZHEN L, JIANG J-T, et al. Synthesis of Fe–ferrite compositenanotubes with excellent microwave absorption performance[J]. CrystEngComm,2011,13:6839-6844.
    [3] HU C, MOU Z, LU G, et al.3D graphene-Fe3O4nanocomposites with high-performance microwave absorption[J]. Physical Chemistry Chemical Physics,2013,15:13038-13043.
    [4] SUN X, HE J, LI G, et al. Laminated magnetic graphene with enhancedelectromagnetic wave absorption properties[J]. Journal of Materials ChemistryC,2013,1:765-777.
    [5] WANG H, DAI Y, GONG W, et al. Broadband microwave absorption of CoNi@Cnanocapsules enhanced by dual dielectric relaxation and multiple magneticresonances[J]. Applied Physics Letters,2013,102:223113.
    [6] WANG Z, WU L, ZHOU J, et al. Magnetite nanocrystals on multiwalled carbonnanotubes as a synergistic microwave absorber[J]. The Journal of PhysicalChemistry C,2013,117:5446-5452.
    [7] HE Z, FANG Y, WANG X, et al. Microwave absorption properties ofPANI/CIP/Fe3O4composites[J]. Synthetic Metals,2011,161:420-425.
    [8] SAINI P, CHOUDHARY V, VIJAYAN N, et al. Improved electromagneticinterference shielding response of poly(aniline)-coated fabrics containing dielectricand magnetic nanoparticles[J]. The Journal of Physical Chemistry C,2012,116:13403-13412.
    [9] WANG W, GUMFEKAR S P, JIAO Q, et al. Ferrite-grafted polyaniline nanofibersas electromagnetic shielding materials[J]. Journal of Materials Chemistry C,2013,1:2851-2859.
    [10] ZHANG B, DU Y, ZHANG P, et al. Microwave absorption enhancement ofFe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness[J].Journal of Applied Polymer Science,2013,130:1909-1916.
    [11] AKMAN O, KAVAS H, BAYKAL A, et al. Microwave absorption properties ofBaFe12O19-TiO2composite coated with conducting polymer[J]. Journal ofSuperconductivity and Novel Magnetism,2012,26:1369-1373.
    [12] CAO M S, YANG J, SONG W L, et al. Ferroferric oxide/multiwalled carbonnanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotubemultiheterostructures for highly effective microwave absorption[J]. ACS AppliedMaterials&Interfaces,2012,4:6949-6956.
    [13] CHEN K, XIANG C, LI L, et al. A novel ternary composite: fabrication,performance and application of expanded graphite/polyaniline/CoFe2O4ferrite[J].Journal of Materials Chemistry,2012,22:6449-6455.
    [14] CUI K, CHENG Y, DAI J, et al. Synthesis, characterization and microwaveabsorption properties of La0.6Sr0.4MnO3/polyaniline composite[J]. MaterialsChemistry and Physics,2013,138:810-816.
    [15] LIU P,HUANG Y, Synthesis of reduced graphene oxide-conducting polymers-Co3O4composites and their excellent microwave absorption properties[J]. RSCAdvances,2013,3,19033-19039.
    [16] ZHOU W, HU X, BAI X, et al. Synthesis and electromagnetic, microwaveabsorbing properties of core-shell Fe3O4-poly(3,4-ethylenedioxythiophene)microspheres[J]. ACS Applied Materials&Interfaces,2011,3:3839-3845.
    [17] FAN X A, GUAN J, LI Z, et al. One-pot low temperature solution synthesis,magnetic and microwave electromagnetic properties of single-crystal ironsubmicron cubes[J]. Journal of Materials Chemistry,2010,20:1676-1682.
    [18] SINGH K, OHLAN A, PHAM V H, et al. Nanostructured graphene/Fe3O4incorporated polyaniline as a high performance shield against electromagneticpollution[J]. Nanoscale,2013,5:2411-2420.
    [19] YANG C, DU J, PENG Q, et al. Polyaniline/Fe3O4nanoparticle composite:synthesis and reaction mechanism[J]. Journal of Physical Chemistry B,2009,113:5052-5058.
    [20] AL-GHAMDI A A, AL-HARTOMY O A, AL-SOLAMY F, et al. Electromagneticwave shielding and microwave absorbing properties of hybrid epoxy resin/foliatedgraphite nanocomposites[J]. Journal of Applied Polymer Science,2013,127:2227-2234.
    [21] CHISCAN O, DUMITRU I, POSTOLACHE P, et al. Electrospun PVC/Fe3O4composite nanofibers for microwave absorption applications[J]. MaterialsLetters,2012,68:251-254.
    [22] KONG I, HJ AHMAD S, HJ ABDULLAH M, et al. Magnetic and microwaveabsorbing properties of magnetite–thermoplastic natural rubber nanocomposites[J].Journal of Magnetism and Magnetic Materials,2010,322:3401-3409.
    [23] MAITI S, SHRIVASTAVA N K, SUIN S, et al. Polystyrene/MWCNT/graphitenanoplate nanocomposites: efficient electromagnetic interference shieldingmaterial through graphite nanoplate-MWCNT-graphite nanoplate networking[J].ACS Applied Materials&Interfaces,2013,5:4712-4724.
    [24] YAN D-X, REN P-G, PANG H, et al. Efficient electromagnetic interferenceshielding of lightweight graphene/polystyrene composite[J]. Journal of MaterialsChemistry,2012,22:18772-18774.
    [25] ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-polymer microcellularfoams for electromagnetic interference shielding[J]. ACS Applied Materials&Interfaces,2011,3:918-924.
    [26] FRISTRUP C J, JANKOVA K,HVILSTED S. Hydrophilization of poly(ether etherketone) films by surface-initiated atom transfer radical polymerization[J]. PolymerChemistry,2010,1:1696-1701.
    [27] LIU Y-L. Developments of highly proton-conductive sulfonated polymers forproton exchange membrane fuel cells[J]. Polymer Chemistry,2012,3:1373-1383.
    [28] MIYATAKE K, HIRAYAMA D, BAE B, et al. Block poly(arylene ether sulfoneketone)s containing densely sulfonated linear hydrophilic segments as protonconductive membranes[J]. Polymer Chemistry,2012,3:2517-2522.
    [29] OZDEN S, CHARAYEV A M, SHAOV A H. The synthesis ofpolyetheretherketones and investigations of their properties[J]. Journal of MaterialsScience,1999,34:2741-2744.
    [30] PATEL P, HULL T R,MOFFATT C. PEEK polymer flammability and theinadequacy of the UL-94classification[J]. Fire and Materials,2012,36:185-201.
    [31] GUPTA T K, SINGH B P, DHAKATE S R, et al. Improved nanoindentation andmicrowave shielding properties of modified MWCNT reinforced polyurethanecomposites[J]. Journal of Materials Chemistry A,2013,1:9138-9149.
    [32] LING J, ZHAI W, FENG W, et al. Facile preparation of lightweight microcellularpolyetherimide/graphene composite foams for electromagnetic interferenceshielding[J]. ACS Applied Materials&Interfaces,2013,5:2677-2684.
    [33] LIU Z, BAI G, HUANG Y, et al. Microwave Absorption of single-walled carbonnanotubes/soluble crosslinked polyurethane composites[J]. Journal of PhysicalChemistry C,2007,111:13696-13700.
    [34] WANG G-S, ZHANG X-J, WEI Y-Z, et al. Polymer composites with enhancedwave absorption properties based on modified graphite and polyvinylidenefluoride[J]. Journal of Materials Chemistry A,2013,1:7031-7036.
    [35] YANG L, PHUA S L, TOH C L, et al. Polydopamine-coated graphene asmultifunctional nanofillers in polyurethane[J]. RSC Advances,2013,3:6377-6385.
    [36] CUI C, DU Y, LI T, et al. Synthesis of electromagnetic functionalized Fe3O4microspheres/polyaniline composites by two-step oxidative polymerization[J].Journal of Physical Chemistry B,2012,116:9523-9531.
    [37] WANG Y, GUAN X N, WU C-Y, et al. Processable colloidal dispersions ofpolyaniline-based copolymers for transparent electrodes[J]. Polymer Chemistry,2013,4:4814-4820.
    [38] CHANG C-W, LIOU G-S,HSIAO S-H. Highly stable anodic green electrochromicaromatic polyamides: synthesis and electrochromic properties[J]. Journal ofMaterials Chemistry,2007,17:1007-1015.
    [39] YU H, WANG T, WEN B, et al. Graphene/polyaniline nanorod arrays: synthesisand excellent electromagnetic absorption properties[J]. Journal of MaterialsChemistry,2012,22:21679-21685.
    [40] KANG E T, NEOH K G,TAN K L. Polyaniline: A polymer with many interestingintrinsic redox states[J]. Progress in Polymer Science,1998,23:277-324.
    [41] LIU W, KUMAR J, TRIPATHY S, et al. Enzymatically synthesized conductingpolyaniline[J]. Journal of The American Chemical Society,1999,121:71-78.
    [42] TITVINIDZE G, KREUER K-D, SCHUSTER M, et al. Proton conductingphase-separated multiblock copolymers with sulfonated poly(phenylene sulfone)blocks for electrochemical applications: preparation, morphology, hydrationbehavior, and transport[J]. Advanced Functional Materials,2012,22:4456-4470.
    [43] LI G, XIE T, YANG S, et al. Microwave absorption enhancement of porous carbonfibers compared with carbon nanofibers[J]. The Journal of Physical ChemistryC,2012,116:9196-9201.
    [44] HAMEED N, SREEKUMAR P A, FRANCIS B, et al. Morphology, dynamicmechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxyresin/glass fibre composites[J]. Composites Part A: Applied Science andManufacturing,2007,38:2422-2432.
    [45] THONGSANG S, VORAKHAN W, WIMOLMALA E, et al. Dynamic mechanicalanalysis and tribological properties of NR vulcanizates with fly ash/precipitatedsilica hybrid filler[J]. Tribology International,2012,53:134-141.
    [46] GU H, TADAKAMALLA S, HUANG Y, et al. Polyaniline stabilized magnetitenanoparticle reinforced epoxy nanocomposites[J]. ACS Applied Materials&Interfaces,2012,4:5613-5624.
    [47] ZHANG W D, SHEN L, PHANG I Y, et al. Carbon nanotubes reinforced nylon-6composite prepared by simple melt-compounding[J]. Macromolecules,2004,37:256-259.
    [48] YU R, QIAO X, ZHANG T, et al. Research progress of novel radar wave absorbing materials[J]. Ordnance Material Science and Engineering,2004,27,64-66.
    [49] COLANERI N F, SCHACKLETTE L W. EMI shielding measurements ofconductive polymer blends[J]. Instrumentation and Measurement, IEEETransactions on,1992,41:291-297.
    [50] AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shieldingmechanisms of CNT/polymer composites[J]. Carbon,2009,47:1738-1746.
    [51] WANG J, XIANG C, LIU Q, et al. Ordered mesoporous carbon/fused silicacomposites[J]. Advanced Functional Materials,2008,18:2995-3002.
    [52] HAO X, YIN X, ZHANG L, et al. Dielectric, electromagnetic interferenceshielding and absorption properties of Si3N4–PyC composite ceramics[J]. Journalof Materials Science&Technology,2013,29:249-254.
    [1]邢丽英,蒋诗才,李斌太,等.隐身材料[M].北京:化学工业出版社,2004.
    [2]张月芳,郝万军,等.电磁辐射污染及其防护技术[M].北京:冶金工业出版社,2010.
    [3]杨士元.电磁屏蔽理论与实践[M].北京:国防工业出版社,2006.
    [4]刘顺华,刘军民,等.电磁波屏蔽及吸波材料[M].北京:化学工业出版社,2007.
    [5]康青.新型微波吸收材料[M].北京:科学出版社,2006.
    [6]王洪松,聚醚醚酮基电磁屏蔽复合材料的制备及性能研究[D].硕士学位论文.吉林大学,2012.
    [7] QIN F, BROSSEAU C. A review and analysis of microwave absorption in polymercomposites filled with carbonaceous particles[J]. Journal of Applied Physics,2012,111:061301.
    [8] OLMEDA L, HOURQUEBLE P, JOUSSE F. Microwave properties of conductivepolymers[J]. Synthetic metals,1995,69:205-208.
    [9] DAS N C, CHAKI T K, KHASTGIR D, et al. Electromagnetic interferenceshielding effectiveness of ethylene vinyl acetate based conductive compositescontaining carbon fillers[J]. Appl Polym Sci2001,80:1601-1608.
    [10]LUO X C,CHUNG D D L. Electromagnetic interference shielding using continuouscarbon-fiber carbon-matrix and polymer-matrix composites[J]. Composites Part B1999;30(3):227-31.
    [11]THOMASSIN J-M, JEROME C, PARDOEN T, et al. Polymer/carbon basedcomposites as electromagnetic interference (EMI)shielding materials[J]. MaterialsScience and Engineering R,2013,74:211-232.
    [12]DAS N C, CHAKI T K, KHASTGIR D. Electromagnetic interference shieldingeffectiveness of onductive carbon black and carbon fiber-filled composites based onrubber and rubber blends[J].Advances in Polymer Technology,2001,20(3):226-236.
    [13]THOSTENSON E T,REN Z,CHOU T W. Advances in the science and technologyof carbon nanotubes and their composites:a review[J]. Compos Sci Technol2001;61:1899-912.
    [14]QIANG C, XU J, ZHANG Z, et al. Magnetic properties and microwave absorptionproperties of carbon fibers coated by Fe3O4nanoparticles[J]. Journal of Alloys andCompounds,2010,506,93–97.
    [15]PALIGOVá M, VILáKOVA J, SáHA P, et.al. Electromagnetic shielding of epoxyresin omposites containing carbon fibers coated with polyaniline base[J]. PhysicaA,2004,332:421-429
    [16]LI G, XIE T, YANG S, et al. Microwave absorption enhancement of porous carbonfibers compared with carbon nanofibers[J]. The Journal of Physical ChemistryC,2012,116:9196-9201.
    [17]YAN D-X, REN P-G, PANG H, et al. Efficient electromagnetic interferenceshielding of lightweight graphene/polystyrene composite[J]. Journal of MaterialsChemistry,2012,22:18772.
    [18]LIU Q, GU J, ZHANG W, et al. Biomorphic porous graphitic carbon forelectromagnetic interference shielding[J]. Journal of Materials Chemistry,2012,22:21183-21188.
    [19]LING J, ZHAI W, FENG W, et al. Facile preparation of lightweight microcellularpolyetherimide/graphene composite foams for electromagnetic interferenceshielding[J]. ACS Applied Materials&Interfaces,2013,5:2677-2684.
    [20]ZHANG H B, YAN Q, ZHENG W G, et al. Tough graphene-polymer microcellularfoams for electromagnetic interference shielding[J]. ACS Applied Materials&Interfaces,2011,3:918-924.
    [21]ESWARAIAH V, SANKARANARAYANAN V, RAMAPRABHU S.Functionalized graphene-PVDF foam composites for EMI shielding[J].Macromolecular Materials and Engineering,2011,296:894-898.
    [22]YANG Y L, GUPTA M C, DUDLEY K L, et al. Conductive carbon nanofiber-polymer foam structures[J]. Advanced Materials,2005,17:1999-2003.
    [23]Yang Y L, Gupta M C, Dudley K L, et al. Novel carbon nanotube-polystyrene foamcomposites for electromagnetic interference shielding[J]. Nano Letters,2005,5:2131-2134.
    [24]Yan D X, Ren P G, Pang H, et al. Efficient electromagnetic interference shieldingof lightweight graphene/polystyrene composite[J]. Journal of Materials Chemistry,2012,22:18772-18774.
    [25]李立朝.聚苯乙烯基碳微球的制备研究[D].博士学位论文.北京化工大学,2007.
    [26]MEMETEA L T, BILLINGHAM NC. Hydroperoxides in polyacrylonitrile and theirrole in carbon-fibreformation[J].Polym Degradation Stabilization,1995,47:189-201.
    [27]TAKAHAGI T, SHIMADA I, FUKUHARA M, et al. XPS studies on the chemicalstructure of the stabilized polyacrylonitrile fiberin the carbon fiber productionprocess[J]. Journal of Polymer Science Part A: Polymer Chemistry,1986,24:3101-3107.
    [28]BASHIR Z. A critical review of thestabilization of polyacrylonitrile[J]. Carbon,1991,29:1081-1090.
    [29]SCHURZ J. Discoloration effects inacrylonitrile polymers[J]. Journal of PolymerScience,1958,28:438-439.
    [30]GRASSIE N, HAY J N. Thermal coloration andinsolubilization in polyacrylonitrile[J]. Journal of Polymer Science,1962,56:189-202.
    [31]DALTON S, HEATLEY F, BUDD P M. Thermal stabilization of polyacrylonitrilefibers[J]. Polymer,1999,40:5531-5543.
    [32]葛曷一,陈娟,柳华实,等.聚丙烯腈预氧化纤维碳化中的结构演变与碳纤维微观结构[J].化工学报2009,60:239-243.
    [33]HIDETO K, KOHJI T. Mechanism and kinetics of stabilization reaction of PANand related copolymers[J]. Polymer Journal,1997,29:557-562.
    [34]吴梅玉,吴艺琼,刘海清.电纺聚丙烯腈基碳纳米纤维的制备[J].厦门大学学报(自然科学版),2011,50:67-69.
    [35]WATT W, JOHNSON W. A research on the carbonization process of PAN-basedprecursor fiber[J]. Polymer Preparation,1968,9:1245.
    [36]BAHRAMI S H, BAJAJ P, SEN K.Thermal behavior of acrylonitrile carboxylicacid copolymers[J]. Journal of Applied Polymer Science,2003,88:685-698.
    [37]邱英华,王同华,宋成文,等.用Raman和XRD研究聚丙烯腈在真空热解过程中形成碳膜时微观结构的变化.2004年材料科学与工程新进展论文集[C].北京:中国材料研究学会,2004.
    [38]KERCHER A K, NAGLE D C. Microstruetural evolutima during charcoalcarbonization by X-ray diffraction analysis[J]. Carbon,2003,41:15-27.
    [39]李斌鹏.碳基复合吸波材料的制备和表征[D].硕士学位论文.山东大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700