用户名: 密码: 验证码:
dUBF-CW耦合工艺处理生活污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种低耗污水生态处理系统,构筑湿地(Constructed Wetland, CW)在小水量、分散的生活污水处理及回用领域正得到高度关注。但CW技术存在占地面积大、氮磷去处率低等不足,一定程度上限制了其在生活污水深度处理中的应用,需要严格的预处理工艺作为长期稳定运行的保障。研究开发低能耗、可设备化的预处理工艺,将其与CW技术进行系统耦合,是污水生态处理技术的研究热点和前沿。随着高速厌氧技术的发展,厌氧工艺处理低浓度生活污水(COD<1000mg·L-1)在理论和实践上成为可能,为构建“短流程、低能耗和高效率”的污水生态处理技术提供了理论依据。基于此,本研究首次将厌氧预处理工艺与构筑湿地系统相耦合(double Upflow Anaerobic Sludge Blanket and Anaerobic Filter Coupled with Constructed Wetland, dUBF-CW),建立了一种全新的分散污水深度处理工艺。具体内容包括:
     首先,设计了一种可调控污泥回流的两段复合厌氧反应器(dUBF),作为污水生态处理工艺的预处理装置。本反应器首次将两段厌氧技术与UBF复合厌氧工艺相结合,并在EGSB连续污水回流工艺的基础上加以改进,设计了可控的间断污泥回流工艺,以此来实现低温条件下(<20℃)对生活污水的“短时厌氧”处理。实验表明:在合理控制污泥回流的条件下,dUBF可以在较低温度时实现快速启动,其中,当产酸段和产甲烷段污泥回流时间分别控制为间歇2h运行5s、间歇1h运行10s,及总HRT为4h时,dUBF对COD、SS的去除率分别达到60%、80%以上。
     其次,设计了水平潜流构筑湿地(Subsurface Flow Constructed Wetland, SSCW)和复合垂直流构筑湿地(Integrate Vertical Flow Constructed Wetland, IVCW)两组模拟系统,其特点是:每组系统的基质配置、运行参数相互独立。实验结果表明:两组湿地对COD、NH4+-N的去除达到污水综合排放标准(GB8978-1996)中的一级标准;TP的去除也达到了二级标准。IVCW由于特殊布水方式,输氧条件较好,对各类污染物的去除效果均好于SSCW。
     接着,采用工业副产物——水淬渣作为湿地基质,研究了其强化除磷作用,并从宏观角度分析了CW不同基质层磷素变化规律。研究表明:水淬渣对磷有较高的吸附效果,经Langmuir吸附方程分析,其最大磷素吸附量为3333mg·kg-1,低于钢渣的12500mg·kg-1,高于砂子的270mg·kg-1;基质饱和吸附后,水淬渣中磷素解吸率为0.68%,而砂子和钢渣分别为7.59%和2.15%。虽然水淬渣对磷的吸附效果不如钢渣,但是其水溶液呈中性,对植物生长没有明显副作用(远好于钢渣),所以水淬渣可以作为湿地高效除磷基质。水淬渣除磷的主要机制是:Ca、Al氧化物对污水中磷素的吸附点位活跃,化学吸附-物理沉淀是磷素去除的主要原因。
     进而,研究了CW强化脱氮方法,并探讨了生物强化脱氮机理。研究表明:在湿地表层基质中,添加硝化菌活性强的生物基质,可明显缩短湿地系统的启动时间,使其脱氮效率得到迅速提高,与对照(未添加生物基质)相比,氨氮去除率可提高17%以上;随着湿地运行趋于稳定,湿地系统内的微生物结构逐渐成熟,此时可不必添加生物基质,系统的脱氮效果也可以得到充分保障。
     最后,将dUBF与CW进行系统耦合,提出了一种全新的分散污水“短流程、低能耗、高效率"的深度处理工艺。通过连续运行实验,对工艺进行了整体优化。结果表明:耦合工艺的优化参数为dUBF段HRT=4h, CW段HRT=1d。耦合工艺出水的COD、SS均满足污水综合排放标准(GB8978-1996)中的一级标准;TP满足二级标准;对于NH4+-N,后续处理为IVCW单元可以满足一级标准,后续处理为SSCW单元可以满足二级标准。
As an ecological technology system, constructed wetland (CW) becomes more and more attractive in the field of treating and reusing decentralized domestic wastewater. However, the CW technique has the deficiencies of occupying large land area and low removal efficiency of nitrogen and phosphorus. This has impeded its deep application in the domestic wastewater treatment in some extent. Therefore it is necessary to strengthen the pre-treatment technology before the application of CW technique. Coupling of primary technique with CW is the hot issue in the field of ecological wastewater treatment because of the prominent character of the low energy consumption and equip ability. The development of high speed anaerobic technology has made the anaerobic technology possible to treat the low organic concentration wastewater (COD<1000mg·L-1). Further, it can provide the theoretical basis in developing a new ecological wastewater treatment system with the short flow, low energy and high efficiency. Based on this analysis, the present work coupled the double upflow anaerobic sludge blanket and anaerobic filter (dUBF) with CW (dUBF-CW), and designed a new decentralized domestic wastewater treatment technology for the first time.
     Firstly a new anaerobic-dUBF technique is designed as the primary treatment equipment in the wastewater ecological treatment system. The dUBF is improved based on the two-staged anaerobic technology and UBF equipment, and is used to treat domestic wastewater in low temperature condition(<20℃). In order to improve the removal efficiency of COD and shorten the start-up time, the sludge circumfluence equipment which based on EGSB is added in dUBF. The work time of sludge circumfluence equipment in dUBF could be controlled. The experiment shows that the dUBF can start quickly in the low temperature under the suitable control condition of the sludge circumfluence. When the operating time of the sludge circumfluence equipment at the first and second stages in dUBF is 5 seconds after stopping 2 hours and 10 seconds after stopping 1 hour, the removal efficiency of COD and SS is more than 60% and 80%, respectively.
     At the same time, two simulative wetland systems, i.e. the subsurface flow constructed wetland (SSCW) and integrate vertical flow constructed wetland (IVCW), are designed. The two systems are independently operated between SSCW and IVCW. The treating result of the domestic wastewater shows that, the removal efficiency of COD and NH4+-N meets the first standard of domestic wastewater effluence (GB8978-1996), and the TP removal ability also accord with the second standard of GB8978-1996. Because of the better oxygen transmission condition, the IVCW possesses the higher removal efficiencies than those of the SSCW for all the contaminations.
     Then the industrial byproduct, i.e. water-granulated slag of blast-furnace (WGS), is firstly used as the medium of CW to probe into its effect on removing phosphorus in domestic wastewater. The phosphorus variation mechanism in different CW medium is further explored. The langmuir isotherms adsorption analyses of the experiment show that the phosphorus adsorption capacity of WGS, sand and steel slag is 3333 mg·kg-1,270mg·kg-1, 12500mg·kg-1; the phosphorus desorption ratio of WGS, sand and steel slag is 0.68%,7.59% and 2.15%, respectively. It can be seen that the WGS not only possesses the high phosphorus adsorption capacity and low phosphorus desorption ratio, but also moderates the pH value. Thus WGS can be fairly suitable for a sort of medium in CW. The removal mechanism of WGS on phosphorus is revealed. It is found that WGS contains rich alumina and calcium oxide, and the corresponding absorption position is very active to the phosphorus in the waste water. The chemical and physical absorptions are the critical reasons which lead to the high removal efficiency of WGS on phosphorus.
     Furthermore, the method of strengthened nitrogen removal efficiency of CW is investigated, and the corresponding biological mechanism is explored. It is found that, the addition of biological medium in the surface of new CW can obviously shorten the start-up time of the CW system and improve the nitrogen removal efficiency. Comparing with the control check(without biological medium), NH4+-N removal efficiency of biological medium added CW system increases by 17%. When the CW operation becomes stable, the bacterial morphology tends to be mature. At this time, the sufficiency nitrogen removal efficiency of CW can be kept even without the biological medium.
     At last, the dUBF is coupled with the CW, and a new domestic wastewater treating technique is proposed. The coupled technique is integrally optimized through continuous operation test. It is found that when the respective HRT at the dUBF and CW stages is 4 hours and 1 day, the removal efficiency of either COD or SS meets the first standard of domestic wastewater effluence (GB8978-1996), and the TP removal accords with the second standard of GB8978-1996. The removal efficiency of NH4+-N followed by the SSCW and IVCW post-treatments meets the first and second standard of GB8978-1996, respectively.
引文
[1]朱国伟.城市污水处理设施的可持续运行研究[J].城市环境与城市生态,2000,13(5):46-48.
    [2]Sankai Toshihiro, Ding Guoji, Emori Noritoshi, et al. Treatment of domestic wastewater mixed with crushed garbage and garbage washing water by advanced gappei-shori johkaso[J]. Water Science and Technology,1997,36(12):175-182.
    [3]Hellstrom D, Jonsson L. Evaluation of small wastewater treatment systems[J]. Water Science and Technology,2003,48(11-12):61-68.
    [4]王凯军,王晓惠,柯建明,等.厌氧处理技术发展现状与未来发展领域[J].中国沼气,1999,17(4):14-17.
    [5]岳春雷,常杰,葛滢,等.利用复合垂直流人工湿地处理生活污水[J].中国给水排水,2003,19(7):84-85.
    [6]国家环境保护局科技标准司编.城市污水土地处理技术指南[M].北京:中国环境科学出版社,1997.
    [7]张虎成.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(2):11-14.
    [8]贺锋.复合构建湿地运行初期理化性质及氮的变化[J].长江流域资源与环境,2002,11(3):279-283.
    [9]白晓慧.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [10]Richardson C J. Mechanisms controlling phosphorus retention capacity in wetlands[J]. Science,1985, 228:1424-1427.
    [11]Drizo A, Frost C A, Grace J. Physicochemical screening of phosphate removing substrates for use in constructed wetland systems[J]. Water Research,1999,33(17):3595-3602.
    [12]Drizo A, Frost C A, Smith K A, et al. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate[J]. Water Science and Technology,1997, 35(5):95-102.
    [13]Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slags and zeolite to be used as substrates in constructed wetland systems[J]. Water Research,1998,32(2):393-399.
    [14]Gray S, Kinross J, Read P. The nutrient assimilative capacity of maerl as a substrate in constructed wetland systems in constructed wetland systems for waste treatment[J]. Water Research,2000,34(8): 2183-2190.
    [15]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [16]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356.
    [17]Shilton A, Pratt S, Drizo A, et al.'Active'filters for upgrading phosphorus removal from pond systems[J]. Water Science and Technology,2005,51(12):111-116.
    [18]Drizo A, Comeau Y, Forget C, et al. Phosphorus saturation potential:a parameter for estimating the longevity of constructed wetland systems[J]. Environmental Science and Technology,2002,36: 4642-4648.
    [19]袁东海,景丽洁,张孟群,等.几种人工湿地基质净化磷素的机理[J].中国环境科学,2004,24(5):614-617.
    [20]Drizo A, Frost C A. Physicochemical screening of phosphate removing substrates for use in constructed wetland systems[J]. Water Research,1997,33(7):3595-3602.
    [21]徐丽花,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [22]Drizo A, Forget C. Phosphorus removal by electric arc furnace steel slag and serpentinite[J]. Water Research,2006,40:1547-1554.
    [23]Stumm W, Morgan J J. Aquatic chemistry:an introduction emphasizing chemical equilibria in natural waters[M]. New York:John Wiley & Sons,1970:583.
    [24]Arias C A, Bubba M D, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J]. Water Research,2001,35(5):1159-1168.
    [25]吴振斌,陈辉蓉,贺锋,等.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-35.
    [26]Gersberg R M, Elkins B V, Lynon S R, et al. Role of aquatic plants in wastewater treatment by artificial wetlands[J]. Water Research,1986,20(3):363-368.
    [27]Brix H. Functions of macrophytes in constructed wetlands[J]. Water Science and Technology,1994, 29(4):71-78.
    [28]Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting in constructed wetlands Ⅱ. removal of nitrogen and phosphorus[J]. Water Research,1993,29(1):27-34.
    [29]Tanner C C. Substratum phosphorous accumulation during maturation of gravel-bed constructed wetlands[J]. Water Science and Technology,1999,40(3):147-154.
    [30]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [31]Patrick W H, Khalid R A. Phosphate release and sorption by soils and sediments:effect of aerobic and anaerobic conditions[J]. Science,1974,186:53-55.
    [32]Brooks A S. Phosphorus removal by wollastonite:a constructed wetland[J]. Ecological Engineering, 2000,15(1-2):121-132.
    [33]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184.
    [34]Vymazal J. The use of subsurface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience[J]. Ecological Engineering,2002,18(5):633-646.
    [35]Wood A. Constructed wetlands in water pollution control:fundamentals to their understanding[J]. Water Science and Technology,1995,32(3):21-29.
    [36]史莉,张笑一.地沟式污水土地处理+人工湿地中植物对磷的去除效果[J].生态环境,2003,12(3):289-291.
    [37]牛晓君.我国人工湿地植物系统的研究进展[J].四川环境,2005,24(5):45-47.
    [38]刘剑彤,丘昌强,陈珠金,等.复合生态系统工程中高效去除磷、氮植被植物的筛选研究[J].水生生物学报,1998,22(1):1-8.
    [39]徐伟伟,章北平.植物在人工湿地净化污水过程中的作用[J].安全与环境工程,2005,12(2):41-44.
    [40]成水平,况琪军,夏宜峥.香蒲、灯心草人工湿地的研究(Ⅰ)--净化污水的效果[J].湖泊科学,1997,9(4):351-358.
    [41]Fraser L H, Carty S M, Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresource Technology,2004, 94:185-192.
    [42]Huett D O, Morris S G, Smith G, et al. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands[J]. Water Research,2005,39:3259-3272.
    [43]蒋跃平,葛滢,岳春雷.人工湿地植物对观赏水中氮磷去除的贡献[J].生态学报,2004,24(8):1720-1725.
    [44]Ciceka N, Lamberta S, Venema H D, et al. Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting[J]. Biomass and Bioenergy,2006,30:529-536.
    [45]张荣社,李广贺,周琪.潜流湿地中植物对脱氮除磷效果的影响中试研究[J].环境科学,2005,26(4):83-86.
    [46]Kim S Y, Geary P M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Water Science and Technology,2001,44(11-12):61-67.
    [47]吴振斌,任明迅,付贵萍.垂直流人工湿地水力学特点对污水净化效果的影响[J].环境科学,2001,22(5):45-49.
    [48]Machate T, Noll H, Behrens H, et al. Degradation of phenanthrene and hydraulic characteristics in a constructed wetland[J]. Water Research,1997,31(3):554-560.
    [49]Torres J J, Soler A. Study of the internal hydrodynamics in three facultative ponds of two municipal WSPs in Spain[J]. Water Research,1999,33(5):1133-1140.
    [50]Nameche T, Vasel J L. Hydrodynamic studies and modelization for aerated lagoon and waste stabilization ponds[J]. Water Research,1998,32(10):3039-3045.
    [51]Mitsch W J, Wise K M. Water quality, fate of metals, and predictive model validation of a constructed wetlands treating acid mine drainage[J]. Water Research,1998,32(6):1888-1900.
    [52]Luederitz V, Eckert E, Lange-Weber M, et al. Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands[J]. Ecological Engineering,2001,18:157-71.
    [53]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    [54]Wang N, Mitsch W J. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands[J]. Ecological Modelling,2000,126(2-3):101-130.
    [55]吴振斌,梁威,成水平.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):622-624.
    [56]高拯民,李宪法,王绍堂,等.城市污水土地处理利用设计手册[M].北京:中国标准出版社,1990.
    [57]Dierberg F E, DeBusk T A, Jackson S D, et al. Submerged aquatic vegetation-based treatmentwetlands for removing phosphorus from agricultural runoff:response to hydraulic and nutrient loading[J]. Water Research,2002,36(6):1409-1422.
    [58]Verhoeven J TA, Meuleman A FM. Wetlands for wastewater treatment:Opportunities and limitations[J]. Ecological Engineering,1999,12(1-2):5-12.
    [59]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [60]李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [61]卢少勇,金相灿,余刚.人工湿地氮去除机理[J].生态学报,2006,26(8):2670-2677.
    [62]Stottmeister U, WieBner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances,2003,22(1-2):93-117.
    [63]卢少勇,张彭义,余刚,等.农田排灌水的稳定塘-植物床复合系统处理[J].中国环境科学,2004,24(5):605-609.
    [64]白军红,欧阳华,邓伟,等.湿地氮素传输过程研究进展[J].生态学报,2005,25(2):326-333.
    [65]梁威,吴振斌.人工湿地对污水中氮磷去除机制研究进展[J].环境科学研究动态,2000(3):32-37.
    [66]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [67]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护,2000,19(5):320.
    [68]Gerke S, Baker L A, Xu Y. Nitrogen transformations in a wetland receiving lagoon effluent: sequential model and implications for water reuse[J]. Water Research,2001,35(16):3857-3866.
    [69]Fleming-Singer M S, Home A J. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J]. Environment Science and Technology,2002,36: 1231-1237.
    [70]Home A J. Nitrogen removal fromwaste treatment pond or activated sludge plant effluentswith free-surface wetlands[J]. Water Science and Technology,1995,31(12):341-351.
    [71]Tanner C C. Plant for constructed wetland treatment systems A comparison of the growth and nutrient uptake of eight emergent species[J]. Ecological Engineering,1996,7(1):56-83.
    [72]朱青海,曲向荣,李秀珍.苇田养分生物循环的研究[J].生态学杂志,2000,19(6):21-23.
    [73]Reddy, Debusk. Nutrient removal potential of selected aquatic macrophytes[J]. Journal of Environmental Quality,1985,14(4):459-462.
    [74]Tanner C C, Clayton J S, Upsdell M P. Effect of loading rate and planting on treatment of dairy farmwastewaters in constructed wetlands II.Removal of nitrogen and phosphorus[J]. Water Research, 1995,29(1):27-34.
    [75]Koottatep T, Polprasert C. Role of plant uptake on nitrogen removal in constructedwetlands located in the tropics[J]. Water Science and Technology,1997,36(12):1-8.
    [76]Meuleman A F, van Logtestijn R, Rijs Gerard B J, et al. Water and mass budgets of a vertical-flow constructed wetland used for wastewater treatment[J]. Ecological Engineering,2003,20(1):31-44.
    [77]Comin F A, Romero J A, Astorga V, et al. Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff[J]. Water Science and Technology,1997,35(5):255-261.
    [78]张曦,吴为中,温东辉,等.氨氮在天然沸石上的吸附及解吸[J].环境化学,2003,22(2):166-171.
    [79]Burgoon P S, Reddy K R, Debusk T A, et al. Vegetated submerged beds with artificial substrates Ⅱ. N and P removal[J]. J ASCE-EED,1991,117(4):408-424.
    [80]张军,周琪.表面流人工湿地中氮磷的去除机理[J].生态环境,2004,13(1):98-101.
    [81]卢少勇,张彭义,余刚,等.茭草、芦苇与水葫芦的污染物释放规律[J].中国环境科学,2005,25(5):554-557.
    [82]Brix H. The applicability of the wastewater treatment plant in Othfresen as scientific documentation of the root-zone method[J]. Water Science and Technology,1987,19:19-24.
    [83]Seidel K. Avgau von bacterium coil durch hohere wasserpflanzen[J]. Naturwiss,1964,51:395.
    [84]Seidel K. Reinigung von Gewassern durch hohere pflanzen[J]. Naturwiss,1966,53:289-297.
    [85]Kickuth S K. Macrophytes and Water Purification Biological Control of Water Pollution[M]. Philadelphia:Pensylvania Univercity Press,1976.
    [86]吴振斌,徐光来,周培疆.复合垂直流人工湿地污水氮的去除效果研究[J].农业环境科学学报,2004,23(4):757-760.
    [87]郑少奎,张燕燕,杨志峰.低温下表面流人工湿地中氨氮型富营养化水体净化研究[J].环境科学,2006,27(10):2014-2018.
    [88]Brij Gopal. Natural and constructed wetland for wastewater treatment:potentials and problems[J]. Water Science and Technology,1999,40(3):27-35.
    [89]Platzer C, Mauch K. Soil clogging in vertical flow reed beds-mechanisms, parameters, consequences and solutions[J]? Water Science and Technology,1997,35(5):175-181.
    [90]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [91]Brix H. Use of constructed wetlands in water pollution control:Historical development, present status, and future perspectives[J]. Water Science and Technology,1994,30:209-223.
    [92]俞孔坚,李迪华,孟亚凡.湿地及其在高科技园区中的营造[J].中国园林,2001,2:26-28.
    [93]孙亚兵,冯景伟,田园春,等.自动增氧型潜流人工湿地处理农村生活污水的研究[J].环境科学学报,2006,26(3):404-408.
    [94]钱大益,潘建通,解亚林,等.复合人工湿地在处理生活污水中的应用研究[J].环境污染治理技术与设备,2006,7(1):85-88.
    [95]何成达,季俊杰,葛丽英,等.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水,2004,20(7):11-15.
    [96]孙铁珩,李宪法.城市污水自然生态处理与资源化利用技术[M].北京:化学工业出版社,2006.
    [97]Winter K J, Goetz D. The impact of sewage composition on the soil clogging phenomena of vertical flow constructed wetlands[J]. Water Science and Technology,2003,48(5):9-14.
    [98]Cheung M. Roles of immobilized biomass in an anaerobic hybrid reactor[D]. Hong Kong:the Hong Kong Polytechnic University,2003.
    [99]Lettinga G Advanced anaerobic wastewater treatment in the near future[J]. Water Science and Technology,1997,35(10):5-12.
    [100]Lettinga G, A C van Haadel. Anaerobic digestion for energy production and environmental protection, in:T B Johnanaaon(eds.). Renewable Energy Sources for Fuel and Electricity[M]. Washington, D C: Island Press,1993,817-839.
    [101]Kato M T. The anaerobic treatment of low strength wastewater in UASB and EGSB reactors[J]. Water Science and Technology,1997,36 (6):375-382.
    [102]Richard M, Dinsdale F R. Anaerobic digestion of short chain organic acids in an expanded granular sludge bed reactor[J]. Water Research,2000,34(9):2433-2438.
    [103]Jeison D, Chamy R. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in Dilute and concentrated wastewater treatment[J]. Water Science and Technology,40(8):91-97.
    [104]Jules B, van Lier. Anaerobic treatment of partly acidified wastewater in two-stage expanded granular sludge bed (EGSB) Ssytem at 8℃[A]. Proc.8th-International Conf. on Anaerobic Digestion[C].1997, (2):86-93.
    [105]严月根.啤酒废水常温相-两相厌氧颗粒污泥床处理的对照研究[J].中国环境科学,1990,10(4):304-308.
    [106]Lettinga G, Roersma R, Grin P. Anaerobic treatment of raw domestic sewage at ambient temperature using a granular bed UASB reactor[J]. Biotechnology Bioengineering,1983,25(7):1701-1723.
    [107]Alderman B J, Theis T L, Collins A G. Optimal design for anaerobic pretreatment of municipal wastewater[J]. Environmental Engineering, ASCE 1998,124(1):4-10.
    [108]van der Last A R M, Lettinga G. Anaerobic treatment of domestic sewage under moderate(Dutch) conditions using upflow reactors at increased superficial velocities[J]. Water Science and Technology,1992,25(7):167-178.
    [109]Kobayashi H A, Stenstrom M K, Mah R A. Treatment of low strength wastewater using the anaerobic filter[J]. Water Research,1983,17(8):903-909.
    [110]Bull M A, Sterrit A M, Lester J N. An evaluation of four start-up regimes for anaerobic fluidized bed reactor[J]. Biotechnology Letters,1983,5(4):333-338.
    [111]Tarek A E, Marcel H Z. Low temperature of domestic sewage in upflow anaerobic sludge blanket and anaerobic hybrid reactors[J]. Water Science and Technology,1999,39(5):177-185.
    [112]European Union Council of Minister. Council Directive of 21 May 1991 concerning urban wastewater treatment[M]. Official J European Communities,1991:135.
    [113]Brito A G, Rodrigues A C, Melo L F. Granulation during the start-up of a UASB reactor used in the treatment of low strength wastewater[J]. Biotechnology Letters,1997,19(4):363-367.
    [114]Schmidt J E, Ahring B K. Granular sludge formation in up-flow anaerobic sludge blanket(UASB) reactor[J]. Biotechnology Bioengineering,1996,49(3):229-246.
    [115]Uemura S, Harada H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J]. Bioresource Technol,2000,72(3):275-282.
    [116]Jayantha K S, Ramanujam T K. Start-up criteria for an up-flow anaerobic sludge blanket (UASB) reactor[J]. Bioprocess Engineering,1995,13(6):307-310.
    [117]Wilson F, Yu H, Tay J H. An empirical model for predicting the organic concentration of anaerobic filter effluents[J]. Water Environmental Research,1995,70(3):299-305.
    [118]Herdova B, Drtil M. Anaerobic treatment of the municipal wastewater under psychrophilic conditions[J]. Bioprocess and Biosystems Engineering,2000,22(5):385-390.
    [119]Barber W P, Stuckey D C. The use of the anaerobic baffled reactor(ABR) for wastewater treatment: a review[J]. Water Research,1999,33(7):1559-1578.
    [120]Barbosa R A, Santanna G L. Treatment of raw domestic sewage in a UASB reactor[J]. Water Research,1989,23(12):1483-1490.
    [121]王凯军,Lettinga G.水解与颗粒污泥膨胀床串联工艺处理城市污水[J].中国给水排水,1999,15(8):19-22.
    [122]Cheng Wen, Xia Huang, Yi Qian. Domestic wastewater treatment using an anaerobic bioreactor couple with membrane filtration[J]. Process Biochemistry,1999,35(3-4):335-340.
    [123]周琪.升流式厌氧污泥层反应器水力混合特性研究[J].环境科学学报,1995,15(2):170-177.
    [124]钱易,王凤芹.常温下厌氧生物滤池处理生活污水的实验研究[J].给水排水,1994,20(1):24-27.
    [125]蒋柱武,张选军,张亚雷.厌氧复合床反应器处理生活污水的试验研究[J].中国给水排水,2006,22(11):80-83.
    [126]Talarposhti A M, Donnelly T, Anderson G K. Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor[J]. Water Research,2001,35(2):425-432.
    [127]何成达.DASB、W-SFCW特性及联合工艺处理生活污水的研究[D].南京:河海大学,2004.
    [128]Lettinga G, Rebac S. Challenge of psychrophilic anaerobic wastewater treatment[J]. Trends in Biotechnology,2001,9(19):363.
    [129]Blaszczyk R. Response and recovery of anaerobic granules from shock loading[J]. Water Environ Res.1994,28:675-680.
    [130]刘敏,任南琪.UASB反应器酸化后的状态及恢复研究[J].中国沼气,2003,21(2):7-10.
    [131]李建政.产酸相最佳发酵类型工程控制对策[J].中国环境科学,1998,18(5):398-402.
    [132]Nozhevnikova A N, Holliger C, Ammann A, et al. Psychrophilic methanogenesis in sediments of deep lakes[J]. Water Science and Technology,1997,36:57-64.
    [133]Kettunen R H, Rintala J A. The effect of low temperature(5-29℃) and adaptation on the methanogenic activity of biomass[J]. Appl Mircobiol Biotechnol,1997,48:570-576.
    [134]Miron Y. The role of sludge residence time in the hydrolysis of lipids, carbohydrates and proteins during the anaerobic treatment of domestic sewage[J]. Water Research,2000,34(4):1705-1713.
    [135]Sander W. Anaerobic hydrolysis kinetics of particulate substrate[J]. Water Science and Technology, 2000,41(1):17-24.
    [136]Shigeki U, Hideki H. Treatment of sewage by a UASB reactor under moderate to low temperature conditions[J]. Biores Technol,2000,72:275-282.
    [137]吕炳南,陈志强.污水生物处理新技术[M].哈尔滨:哈尔滨工业大学出版社,2005.
    [138]李亚新.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001.
    [139]Pereboom J, Vereijken T. Methanogenic granule deveopment in fullscale internal circulation reactors[J]. Water Science and Technology,1994,30(8):9-21.
    [140]雒维国.潜流型人工湿地对氮污染物的去除效果研究[D].南京:东南大学,2005.
    [141]Kivaisi K A. The potential for constructed wetlands for wastewater treatment and reuse in developing country:a review[J]. Ecological Engineering,2001,16:545-560.
    [142]Chueng K C, Venkitachalam T H. Improving phosphate removal of sand infiltration system using alkaline fly ash[J]. Chemosphere,2000,21:243-249.
    [143]Johansson L, Petter G J. Phosphate removal using blast furnace slags and opoka-mechanisms[J]. Water Research,1999,34(1):259-265.
    [144]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [145]李晓东,孙铁珩,李海波,等.人工湿地除磷研究进展[J].生态学报,2007,27(3):1226-1232.
    [146]黄娟.人工湿地的运行调控及氮转移规律研究[D].南京:东南大学,2004.
    [147]周巧红.复合垂直流构建湿地微生物类群多样性及其活性研究[D].武汉:中国科学院水生生物研究所,2005:38.
    [148]Bubba M D, Arias C A, Brix H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm[J]. Water Research, 2003,37:3390-3400.
    [149]Kozub D D, Liehr S K. Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate [J].Water Science and Technology,1999,40(3):75-82.
    [150]Albert J O. Nitrogen removal in constructed wetlands treating nitrified meat processing effluent[J]. Water Science and Technology,1995,32(3):137-147.
    [151]Lin Y F, Jing S R, Wang T W, et al. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands[J]. Environmental Pollution,2002,119(3): 413-420.
    [152]Comin F A. Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff[J]. Water Science and Technology,1997,35(5):255-261.
    [153]Knight R L, Victor W E, Payne J, et al. Constructed wetlands for livestock wastewater management [J]. Ecological Engineering,2000,15(3):41-55.
    [154]鄢璐,王世和,钟秋爽,等.强化供氧条件下潜流型人工湿地运行特性[J].环境科学,2007,28(4):736-741.
    [155]王晟,徐祖信,李怀正.潜流湿地处理不同浓度有机污水的差异分析[J].环境科学,2006,27(11):2194-2200.
    [156]贺锋,吴振斌,陶菁,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50.
    [157]马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,2002:39-42.
    [158]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,1999:226-227.
    [159]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002:130-137.
    [160]付贵萍,吴振斌,张晟.构建湿地堵塞问题的研究[J].环境科学,2004,25(3):144-149.
    [161]袁怡,黄勇,龙腾锐.厌氧氨氧化过程的研究进展[J].工业水处理,2003,23(2):1-6.
    [162]王松林,苏雅玲,何义亮,等.低动力生活污水处理系统的中试研究[J].水处理技术,2005,31(11):76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700