用户名: 密码: 验证码:
植物抗病毒基因工程研究 Ⅰ黄瓜花叶病毒复制酶基因表达载体构建和遗传转化 Ⅱ导入病毒基因的转基因植物释放的风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据已发表的黄瓜花叶病毒(CMV)Fny RNA2基因序列,设计了全长的2a复制
    酶(Replicase)基因的特异引物,以CMV Fny RNA2 cDNA的克隆pFny209为模板,
    进行PCR扩增,得到全长2.5kb的2a复制酶基因扩增产物(RP)。对此产物进行纯化,
    并用NcoⅠ和BspHⅠ进行双酶切,得到三个片段。将不含有GDD保守区的两个片段用
    T4 DNA连接酶连接,并对连接产物进行PCR扩增,得到2.2kb左右的缺失GDD保守
    区的CMV 2a复制酶基因扩增产物(RP△GDD)。以CMV P1 RNA2基因组为模板,
    根据CMV Fny RNA2基因组的发表序列设计引物,进行PCR扩增,得到5'端及3'端
    分别缺失的2a复制酶基因(P1-RP)。将三个不同长度的2a复制酶基因片断克隆到
    pGEM-T Easy Vector上,筛选获得重组质粒pTEVRP、pTEVRP△GDD和pTEVP1-RP。
    对重组质粒进行序列测定,结果表明序列正确。
     将三个复制酶基因重组于植物表达载体中,构建植物基因转化载体系统。用SmaⅠ
    和BamHⅠ对重组质粒pTEVRP和pTEVRP△GDD双酶切,获得全长的(RP)及缺失
    GDD保守区的2a复制酶基因片段(RP△GDD);用SmaⅠ和XbaⅠ对重组质粒
    PTEVP1-RP双酶切获得5'端及3'端分别缺失的复制酶基因片段(P1-RP)。将这些目
    的基因片段定向克隆到植物表达载体pBI121中,PCR及酶切鉴定重组质粒正确。由此
    获得了不同长度的2a复制酶基因的植物表达载体pBIRP、pBIRP△GDD和pBIP1-RP。
     通过三亲交配法分别将三个植物表达载休导入根癌农杆菌EHA105中,PCR及酶
    切鉴定,证实质粒均已导入农杆菌菌株。
     通过叶盘转化法,获得了转化CMV P1-RP基因的烟草植株。对10株转基因烟草
    进行PCR检测,9株能够扩增出目的基因。取PCR鉴定为阳性的3个植株,进行Southern
    blot印迹分析,其杂交结果均为阳性,该结果表明CMV P1-RP基因已整合于烟草基
    因组DNA中。对3株烟草的Northern blot印迹杂交结果也为阳性,表明转入烟草的CMV
    P1-RP基因已在受体植物中转录表达。
     建立了番茄亲本B-1的遗传转化体系,找到了适宜番茄B-1分化的培养基及最佳
    
    
    l 激素比率,芽的分化率(叶盘上形成的芽数与叶盘的比)可达500%以上。
    l 通过叶盘转化法,同样获得了转化CMV Fnv全长的 Za复制酶基因的番茄植株。
    l 对 10株转基因番茄进行 PCR检测,有 7株能够扩增出目的基因。取 3株 PCR鉴定为
    l 阳性的植株,进行 S。uthm hi仇印迹分析,其杂交结果均为阳性,而且其中 1株存在
    l 多拷贝,表明 CMV Ffiy Za复制酶基因已整合于番茄基因组 DNA中。对 3株番茄的
    INorthern blot印迹分析发现2株杂交信号为阳性,表明转入番茄的CMV Ffly Za复制
    D 酶基因已在部分受体植物中得到表达。
    l 用 CMV PI株系和 CMV RB株系接种转基因植物,通过症状观察和 ELISA检测,
    l 转基因植株有三种不同的抗性反应。即症状严重型;症状延迟型;无症状型。ELISA
    l 测定结果也表明,一部分转基因植物对 CMV PI株系和 CMV RB株系没有抗性;一部
    D 分转基因植物具有延迟发病作用;少部分转基因植物具有抗病作用。有关抗性机理的
    0 研究正在进行中。
    D 导入TOMV、TMV移动蛋白基因的烟草和导入CMV PI-RP复制酶基因的烟草,分
    【别经组织培养扩繁并移栽于温室中。4-5叶期分别接种CMVRB株系、PVX、PVY、l
    ITMV,并以非转化普通烟为对照。症状观察表明,病毒在转基因植株上的症状与对照植l
    D 株上的症状无明显差异,ELISA测定也表明转化植株体内病毒的含量与对照相近。
     将导入ToMV移动蛋白基因的烟草接种TMV,一个月后取其系统叶接种心叶烟D
     和三生烟(NN基因型),并以TMV接种心叶烟和三生烟为对照。症状观察结果表明l
     两者接种的JL’叶烟和三生烟病斑大小相近、病斑颜色相同。随后10个月中定期取系统D
     叶接种心叶烟和三生烟,观察病斑大小的变化,没有发现所转基因与接种病毒之间的D
     重组。将导入CMV PI.RP复制酶基因的烟草接种CMV RB株系,一个月后取其系统l
     叶接种蚕豆,并以CMV RB株系接种蚕豆为对照。结果表明两者接种的蚕豆病斑大小 l
     相同。随后6个月中定期取系统叶接种蚕豆,观察病斑大小的变化,也没有发现所转0
     基因与接种病毒之间的重组。D
According to the published RNA2 sequence of Cucumber mosaic virus ( CMV ) Fny, the specific primers were designed. The entire CMV Fny 2a replicase gene (RP) with length of 2.5kb was amplified by polymerase chain reaction (PCR). This PCR product was digested with Nco I and BspH I, and three fragments were obtained. Two fragments which couldn't encode GDD motif were ligated and amplified by PCR. And a 2.2kb product with deletion of GDD motif was obtained. The specific primers were also designed for amplification of a 530bp fragment containing partial replicase gene with GDD motif using CMV PI as template. These three replicase genes of CMV were cloned into pGEM-T Easy Vector. DNA sequence analyses confirmed that the ORFs of the amplicated replicase gene were correct.
    In order to construct expression vectors, the 2a replicase gene and the 2a replicase gene
    without GDD motif were cleavaged from pGEM-T Easy Vector with Sma I and BamR I. The 530bp partial CMV PI 2a replicase gene fragment was also cleavaged from pGEM-T Easy Vector with Sma I and Xba I. These replicase genes were cloned into plant expression vector pBI121. PCR and double digestion confirmed that the recombination plasmids contain the target genes.
    The three genes in plant expression vectors were transferred into Agrobacterium tumefaciens EHA105 by tri-parental mating method. PCR and double digestion also confirmed that the three of target genes were transferred into Agrobacterium tumefaciens.
    The transformed tobacco plants with CMV Pl-RP gene were obtained via leaf disc transformation mediated by Agrobacterium tumefaciens. PCR analysis of 10 samples of transformed tobaccos showed CMV Pl-RP gene could be amplified from 9 genomic DNA samples with the CMV Pl-RP gene specific primers. 3 genomic DNA samples from PCR positive plants were selected for Southern blot analysis, the result showed all the sample had hybridization signal using CMV Pl-RP gene probe, and no hybridization signal was observed in control. This indicated the target gene has been integrated into the genomic DNA of tobacco. The total RNA were extracted from the 3 Southern blot positive plants, Northern blot showed all the samples had hybridization signal with CMV Pl-RP gene as probe, and no
    
    
    
    
    hybridization signal was observed in control. This result indicated the exogenous CMV Pl-RP gene has been transcribed hi the transformed tobaccos.
    A transformation system was established for the tomato line B-l, The optimum medium and ratio of hormone (MS+Zeatin 0.5mg/ml+BA 3.0mg/ml+IAA0.2mg/ml) to regenerate buds have been founded. The rate of shoot differentiation has reached 500% (the number of buds /per disc).
    The transformed tomato plants with 2a replicase gene were also obtained via leaf disc transformation mediated by Agrobacterium tumefaciens. PCR analysis of 10 samples of transformed tomatos showed CMV RP gene could be amplified from 7 genomic DNA samples with the CMV Pl-RP gene specific primers. 3 genomic DNA samples from PCR positive plants were selected for Southern blot analysis, the result showed all the sample had hybridization signal using CMV Pl-RP gene probe, and no hybridization signal was observed in control. This indicated the target gene has been integrated into the genomic DNA of tomato. The total RNA were extracted from the 3 Southern blot positive plants, Northern blot showed two samples had hybridization signal with CMV Pl-RP gene as probe, and no hybridization signal was observed in control. This result indicated the exogenous CMV Fny RNA2 replicase gene has been transcribed in the transformed tomatos.
    The transgenic tobaccos with CMV Pl-RP gene and tomatos with CMV Fny RNA2 2a replicase gene were inoculated with the strain of CMV PI and CMV RB respectively. Some of the transgenic plants were found susceptible to virus infection, delayed symptoms appearance were found in several transgenic plants and a few transgenic plants showed resistance to CMV. Further experiment is still going on.
    The transgenic tobaccos with movement proteins of ToMV, TMV and r
引文
1. Allison R F, Schneider W L, Greene A E. 1996. Recombination in plants expressing viral transgenes. Virology, 7:417-422
    2. Anderson J M, Nelson R S, Abel P and Beachy R N. 1987. Lesions and virus accumulation in inoculated transgenic tobacco plants expressing the coat protein gene of tobacco mosaic virus. Wrology,18: 126-132
    3. Anderson J M, Stark D M, Nelson R S, et al.1989. Transgenic plants that express the coat protein genes of tobacco mosaic virus or alfalfa mosaic virus interfere with disease development of some nonrelated virus. Phytopathology, 79: 1284-1290
    4. Baulcombe D C, Saunders G R, Revan M W, et al. 1986. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature, 321: 446-449
    5. Baulcombe D C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. The plant cell, 8: 1833-1844.
    6. Bautista L F, Aleksenko A, Hentzer M, et al. 2000. Antisense silencing of the ere A Gene in Aspergillus nidulan. Appl Environ. Microbiol, 66: 4579-4581
    7. BolJF, Linthorst H J M. 1990. Plant pathogenesis-related proteins induced by virus infection. Ann. Rev. Phytopathology, 28:113
    8. Borja M, Rubio T, Scholthof H B, and Jackson A O.1999. Restoration of wild-type virus by double recombination of tombusvirus mutants with ahost transgene. Mol.Plant-Microbe Interact. 12:153-162.
    9. Bryce W, Falk and George Bruening. 1994. Will Transgenic Crops Generate New Viruses and New Diseases. Science, 263 ( 11 ) : 1395-1396
    10. Buzayan J M, Gerlach W L, Bruening G. 1986. Non enzymatic cleavage and ligation of RNAs Complementary plant Virus Satellite RNA. Nature, 323: 349-352
    11. Carr J P, Gal-on A, PaluKaitis P, et al. 1992. Resistance to tobacco mosaic virus induced by the 54kD gene sequence requires expression of the 54kD protein. Mol.Plant Microbe Interact, 5: 397-404
    12. Carr J P, Gal-on A, PaluKaitis P, et al. 1994. Replicase mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and longdistance movement. Virology, 199:439-447
    13. Carr J P. 1991. Resistance in transgenic plants expressing a honseruetual gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. MoLPlant Microbe Interact, 4: 579-585
    14. Convention on Biological Diversity, UNEP, 1994
    15. Covey S N, Alkaff N S, langaya A, et al.1997. Plant Combat infection by gene silencing. Nature, 385(27, Feb): 781-782
    16. Dale P J. 1995. Regulation and field trailing of transgenic crops. Trends in Biotechnology, 13:398-403
    17. Dezoeten G A, Fulton R W. 1975. Understanding generates possibilites. Phytopathology, 65: 221-222
    
    
    18. Duan Y P, Powll C A, Webb S E.1997. Geminivirus resistance in transgenic tobacco expressing mutated BC1 protein. Mol.Plant Microbe Interaction, 7(5) : 544-552
    19. Edwards M C, Gonsalves D, Prowidenti R. 1983. Genetic analysis of cucumber mosaic virus in relation to host resistance location of determents for pathogenicity to certain legumes and lactuca saligna. Phytopathology, 73: 269-273.
    20. English J H, Muller E, Baulcombe D E. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant cell, 8: 1791-1798
    21. Falk B W, Bruening G.1994. Will transgenoc crops generate new virus and new disease? Science, 263 (5152) : 1395-1396
    22. Farinell L. 1992. Heterologous encapsidation of PVY strain O with transgenic coat protein of PVY strain N in Solanum tuberosum C V.B intje. Bio / Technology, 10: 1020-1025
    23. FDA. Secondary direct food additives permitted in food for human consumption; food additives permitted in feed and drinking water of animals; aminoglycoside 3'-phosphotransferaseⅡ. Federal Register.
    24. FDA. Statement of policy: Foods generated from new plant varieties: Notice. Federal Register. 1992,57 (104) : 22984-23005
    25. Frank Van der wilk. 1991. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits virus infection. Plant Molecular Biology, 17: 431-439
    26. Fraser R S.1985. Mechanisms of induced resistance to virus disease .in "Mechanisms of resistance to plant viruses, ed .Fraser R.S.S/. 373-404.
    27. Gal S, Pisan B, Hohn T.1992. Agroinfection of transgenic plants leads to virable cauliflower mosaic virus by intermolecular recombination. Virology, 187: 525-533
    28. Gernoft G, Oney P Smith and Charles R Brown. 1995. Resistance to potato leafroll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology, 85:436-442.
    29. Gibbs A J. 1996. Plant virus classification. Adv. Virus. Res, 14: 263
    30. Golemboski D B, lomonossoff G P, Zaitlin M. Plant transformed with a tobacco mosaic virus nonstructual gene sequence are resistant to the virus. PNAS USA, 87: 6311-6315
    31. Gould A R. 1982. Cucumber mosaic virus RNA3: determination of the neucleotide sequence provides the amino acid sequence of protein 3 a and viral coat protein. Eur. J. Biochem, 126:217-226.
    32. Greene A E, Allison R F.I994. Recombination between viral RNA and transgenic plant transcripts. Science, 263 (5172) : 1423-1425.
    33. Hampei A, Tritz R. 1989. RNA catalytic properties of the minimum TRSV sequence. Biochemistry, 28: 1926.
    34. Hampton R O, Francki R I B. 1992. RNA1 dependent seed transmissibility of cucumber mosaic virus in Phaseolucs vulgaris. Phytopathology, 80: 127-130.
    35. Hancock J F, Grumet R, Hokanson S C. 1996. The opportunity for escape of engineered genes from transgenic crops. Hort Science, 31 (7) : 1080-1085
    36. Harrison B D, Mayo M A. Baulcombe D C. 1987. Virus resistance in transgenic plant that express cucumber mosaic virus satellite RNA. Nature, 328 : 799-802
    
    
    37. Harrison B D, Zhou X P, Otime-Nape G W, et al. 1997. Role of a novel type of double infection in the geminivirus induced epidemic of severe cassava mosaic in Uganda. Ann. Appl. Biol.,131: 437-448
    38. Hayes R J.1990. Complete replication of an eukaryostic virus RNA in vito by a purified RNA-lepedentRNA polymerase. Cell, 63: 363-368.
    39. Hiatt A H, 1990. Antibodies produced in plants. Nature, 344:469
    40. Hull R, Davies F W. 1992. Approaches to nonconvertional control of plant virus disease. Critical Revier in plant science, 11(1) : 17
    41. Inoue H, Nojima H, Okayama H. 1990. High efficiency transformation of Escherichia coli with plasmids.Gene,96: 23-28
    42. Irvan R. Crute and DavidA.Gpin R.1996. Genetics and vlitization of pathogen resistance in plants. The Plant Cell. Vol (8) : 1747-1755
    43. John H, Fithen and Royer N, Beachy. 1993. Genetically engineered protection against viruses in transgenic plants. Annu.Rev. Microbiol. (1) : 739-763.
    44. Jones A L, Thomas C L, and Maule A J. 1998. Methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus, the EMBO, 17:6385-6393
    45. Jones L, Hamilton A J, Voinnnet O, et al. 1999. RNA-DNA interactions and DNA methylation in post-transcriptional gene Silencing. Plant Cell, 11: 2291-2302
    46. Kavanagh T A and Spillane C. 1995. Strategies for engineering virus resistance in transgenic plants. Euphytica, 85: 149-158
    47. Kleiner K.1997. Fields of genes. New Scientist, 155(2096) : 4
    48. Kndall H W, Beachy R, Eisiner T, et al. 1997. Bioengineering of crop. Report of the World Bank on Transgenic Crops. Washington, USA: The World Bank,1-3
    49. Lai M C M. 1992. RNA recombination in animal and plant viruses. Microiological Reviews 56(1) : 61-79
    50. Lapidot M, Gafny R, Ding B, et al. 1994. A Dysfunctional movement protein of tobacco virus Y in transgenic plants. Mol. Plant Microbe Interact, 7: 15-22
    51. Lawson C, Kaniewski W, Haoey L, et al. 1990. Engineering resistance to mixed virus infection in a commercial potato cultiver. Resistance to potato virus X and potato virus Y in transgenic Russet Burbank-Biotechnology, 8: 127-134.
    52. Lecoq H.1993. Aphid transmission of a non aphid transmissble strain of zucchini yellow mosaic potyvirus from transgenic plants expressing the coat protein of plum pox potyvirus. Mol.Plant-Microbe Interact, 8:1833-1844
    53. Lin Q, Chen IC, 1991. Isolation and characterizaton of a cDNA clone encoding the antiviral protein from Phytolacca americana. Plant Molecular Biology, 17: 609
    54. Lindbo J A and Dougherty W. 1992. Pathogen-derived resistance to a potyvirus Immune and resistance phenoptypes intransgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol.Plant-Microbe Interact, 5: 144-153.
    55. Losey J E, Rayor L S, Carter M E. 1999. Transgenic pollen harms monarch arvae. Nature, 399: 214
    
    
    56. Lommel S A, and Xiong Z.1991. Reconstitution of a functional red clove mosaic virus by recombination rescue of the cell-to-cell movement gene expressed in a transgenic plant J.Cell Biochem.15A: 151.
    57. Lot and kaper J M. 1976a. Short communications further studies on the RNA component distribution among the nucleoproteins of cucumber mosaic virus. Virology, 74: 223-226.
    58. Macfarlane S A. 1992. Plants transformed with a region kD replicase gene of pea early browning virus RNA1 are resistant to virus infection .Proc Natl Acad Sci, USA, 89: 5829-5833
    59. Maly, Shenko S I, Kondakova O A, Nazarova J V, et al. 1993. Reduction of tobacco mosaic virus accumulation in transgenic plants producing non-functional viral transport proteins. J.Gen Virol, 74:1149-1156
    60. Mariani C, Beuckeleer M D. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 347:737
    61. Marsh L E, Pogue G P, Connell J P, et al. 1991. Artificial defective interfering RNAs derivide from brone mosaic virus. J gen virol, 72: 1787
    62. Mccartney H A, Lacey E, 1991 . Journal of Aerosol. Science, 22: 467-471
    63. Mcgrath P. 1997. Lethal hybrid decimates harvest. New Scientist, 1 55 (2097) : 8
    64. Melcher U. 1990. Similarities between putative transport protein of plant viruses. J Gen Virol,.71:1009-1018
    65. Mikkelsen T R. 1996. The risk of crop transgenic spread. Nature, 380: 3 1
    66. Mossop D W. 1977. Association of RNA3 with aphid transmission of cucumber mosaic virus. Virology, 81:177-181.
    67. Mueller E, Giller J, Davenport G, et al. 1995. Transgenic virus resistance in plants related to homology-dependent gene silencing, plant journal; 7(6) : 1001: 1013
    68. OECD ( Organisation for Economic Cooperation and Development). Safety evaluation of foods produced by modern biotechnology: Concepts and principles.OECD, Paris, 1993
    69. OECD. Safety evaluation of foods produced by modern biotechnology : concepts and principles. Paris, 1991:59
    70. Palukaitis P. 1991. Mapping functional domains in cucumber mosaic virus and its satellite RNAs.Can. J. Plant pathol.13: 155-162.
    71. Peggy G. 1999. Lemaux. Impact of public perception on regulatory policy for agriculture biotechnology. Plant Biotechnology, 16(1) : 73-78
    72. Ponz F, Rowhanei A, Mircetich S M, et al. 1987. Cherry leafroll virus infections are affected by a satellite RNA that the virus does not support . Virology,160: 183-190
    73. Powell Abel P, Nelson R. Sdebhoffrnan N, Roger, Beachy R N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science, 232: 738-743 .
    74. Prins M, Goldbach R. 1996. Arch Virology, 141 : 2259-2276
    
    
    75. Que Q D, Wang H Y, English J, Jortgensen R A. 1997. The frequency and degree of co-suppression by sense Chalcone Synthase Transgenes are Dependent on Transgene Promoter Strength and are Reduced by Premature Nonsense Codons in the Transgene Coding Sequence. Plant Cell, 9: 1357-1368
    76. Ranee I M, Tian W, Mathews H, de Kochko A, Beachy R N and Fauquet C. 1994. Particle desiccation of mature embryo-derived calli, a simple treatment that dramatically enhances the regeneration ability of indica rice. Plant Cell Rep, 13: 637-651.
    77. Ratcliff F G, MacFarlane S A, Baulcombe D C. 1999. Gene Silencing without DNA-RNA-mediated cross-protein between viruses. Plant Cell, 11:1207-1215
    78. Rikke, Bagger J, Rgensen E. 1999. Ecological risks of growing genetically modified crops. Plant Biotechnology, 16(1) : 69-71
    79. Rizzo T M , Paluraitis P. 1988. Nucleotide sequence and evolutionary relationships of cucumber mosaic virus strains: CMV RNA2. J Gen Virol, 69: 1777-1778.
    80. Robertson D L, Joyce G F. 1990. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature, 344: 467-468
    81. Robinson D J, 1996. Environmental risk assessment of release of transgenic plants containing virus-derived insert. Transgenic Research, 5: 359-362
    82. Roosinck M J. 1991. Differential replication in zucchini squash of cucumber mosaic virus satellite RNA1 of the helper virus. Virology ,181: 371-373
    83. Roosinck M J. 1991. Temperature-sensitive replication of cucumber mosaic virus in muskmelon maps to RNA1 of a slow strain. J Gen Virology, 72: 1747-1750.
    84. Sambrook J, Fritsch E F, ManiatisT. 1989. Molecular clong: A Laboratory Manual.2nd ed. New York: Cold Spring Harbor Laboratory
    85. Sarver N, Cantin E M, Chang P S, et al. 1990. Ribozymes as potential anti-HIV-1 therapeutic agents. Science, 247: 1222-1225.
    86. Shintaku M.1991. Genetic mapping of cucumber mosaic virus .in :viral genes of plant pathogenesis. Springer-Verlag, New York. 156: 164
    87. Simon A E, Howell S T. 1986. The Virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3 'end of the helper virus genome. EMBO.J, 5: 3423
    88. Tames C, and Krattiger A. 1996. Globle review of the field testing and commercialization of transgenic plant 1986-1995, the first decade of crop biotechnology. ISAAA Brief No 1, ISAAA ithaca.
    89. Tenllado F, Garcia-luque I, Serra MT, et al. 1995. Nicotiana benthamiana plants transforned with the 54-KDa region of the pepper mild mottle tobamovirus replicase gene exhibit two types of resistance responses against viral infection. Virology, 211:170-183 .
    90. Van der Vmgt Raa, Ruiter R K. GoldbachR W. 1992. Evidence for sense RNA-mediated protection to PVY in tobacco plants transformed with the coat protein cistron. Plant. MolBiol, 20: 631-639
    91. WHO. Application of the principles of substantial equivalence to the safety evaluation of food components from plants derived by modern biotechnology. Report of a WHO Workshop. WHO Food
    
    safety Unit.WHO/FNU/FOS/95.1.1995
    92.WHO. Health aspects of marker gene in genetically modified plants. Report of a WHO Workshop.WHO Food safety Unit. WHO/FNU/FOS/93.6.1993
    93.WHO. Strategies for assessing the safety of foods produced by biotechnology. Report of a Joint FAO/WHO Consultation. World Health Organization, Geneva, 1991:59
    94.Wilson T A M. 1993. Strategies to protect crop plant against viruses: Pathogen-derived resistance blossoms. Proc Natl Acad Sci USA, 90:3134~3141
    95.Winter mantel W M, Banerjee N, Oliver J C, et al. 1997. Cucumber mosaic virus is restricted from entering minor veninsin transgenic tobacco exhibiting replicase-mediated resistance. Virology, 231:248~257
    96.Wolf S, Drom C M, Deachy R N. 1989. Movement protein of tobacco mosaic virus modifies prasmodesmatal size exclusion limit. Sci, 246:377~379
    97.Xiong Z. 1997. Assessment of risks associated the application of genetically engineered virusresistant plants. Abstracts of the 3~(rd) Hangzhou International Symposium on Plant Pathology and Bio technology.p93.
    98.Yamaya J, Yoshiokca M, Meshi T, et al. 1988.Expression of Tobacco mosaic virus RNA in transgenic plants. Mol Gen Genet, 211. 520~525
    99.Yutaka Tabei. 1999. Environmental risk assessment of transgenic melon in Japan, Plant Biotechnology,16(1): 65~68.
    100.Zhou X P, Liu Y L.1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease on Uganda has arisen by interspecific recombination, J Gen Virology,78:2101~2111
    101.Zhou X P, Liu Y, Robinson D J, et al. 1998. Four DNA——A variants among Pakistani isolates of cotton leaf curl virus and their affinities tDNA-ageminivirus isolates from okra. J. Gen. Virol, 79:915~923
    102.Zhou X P, Liu Y L, Calvert L, et al. 1997. Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol.,78:2101~2111
    103.Zinnen T M, Fulton RW. 1986. Cross protection between sunnhemp mosaic and tobacco mosaic viruses. J. Gen. Virol, 67:1679~1687
    104.陈谷,叶长明,李宝键.1999.植物抗病毒基因工程研究进展.生物技术通报,(6):17~22
    105.陈炯,陈剑平.1999.植物抗病毒基因工程研究进展.浙江农业学报,11 (2):101~108
    106.陈青.1999.烟草花叶病毒和番茄花叶病毒的移动蛋白基因克隆、序列分析及其转基因.浙江大学硕士学位论文
    107.丁勇,吴乃虎,陈春霞等.1994.基因工程与农业.北京:科学技术出版社.164~176
    108.傅荣昭等.1994.植物遗传转化手册.中国科学技术出版社.
    109.顾红雅,瞿礼嘉,明小天等.1995.植物基因与分子操作.北京:北京大学出版社.
    
    
    110.侯喜林,张增翠.2000.植物基因工程食品的安全性及其评价.南京农业大学学报,23 (2):109~113
    111.华志华,黄大年.1999.转基因植物中外源基因的遗传行为.植物学报,41(1):1~5
    112.贾士荣.1997.转基因植物食品中标记基因的安全性.中国农业科学,30(2):1~15
    113.贾士荣.1998.转基因作物的安全性争论及其对策.生物技术通报,(6):1~7
    114.金冬雁,黎孟枫.1992.分子克隆(第二版).北京:科学出版社
    115.静安编译.1999.让人欢喜让人忧的转基因生物.世界博览,9:49~50
    116.瞿礼嘉等编著.现代生物技术导论.北京:高等教育出版社 施普林格出版社,1998
    117.李德葆,周雪平等.1996.基因工程操作技术.上海:上海科技出版社
    118.梁训生,谢联辉.1994.植物病毒学,农业出版社.
    119.钱迎倩.1999.转基因作物的利弊分析.生物技术通报.15 (5):17~20
    120.钱迎倩等.1998.转基因植物的生态风险评价.植物生态学报,22(4):289~299
    121.宋艳茹,李枞,候林林.1994.双价外壳蛋白基因植物表达载体的构建及马铃薯转基因植株的鉴定.植物学报,36 (11):842~848
    122.王关林,方宏筠.1998.植物基因工程原理与技术,科学出版社.
    123.王景雪,孙毅.1999.农杆菌介导的植物基因转化研究进展.生物技术通报,7~13
    124.王兆骞等编著.面向二十一世纪的生态学.北京:中国环境科学出版社.1999
    125.魏伟,钱迎倩,马克平,桑卫国.1999.遗传修饰生物体(GMOs)生态风险的监测 生物多样性.7(4):312~319
    126.温孚江.1993.大麦黄矮病毒研究进展.山东农业科学,(1):4~10
    127.吴刚.1996.植物转基因沉默与对策.生物技术.
    128.吴志平,徐步进.1999.转基因植物释放后在环境中成为杂草的风险性.生物工程进展,1997(1):9~13
    129.杨竹平,晓梅,王亦菲.1996.植物抗病毒基因工程策略.上海农业学报,12 (3):89~96
    130.俞德超.1993.抗植物病毒基因工程的研究进展及评估.植物生理学通讯,29 (2):141~147
    131.张鹤龄,李天然,哈斯阿古拉等.1995.抗卷叶病毒(PLRV)转基因马铃薯及其抗病性的研究.病毒学报,11(4):342~350
    132.张强华.2000.遗传修饰代谢物及其安全性.科学(中文版),5:41~42
    133.周雪平,李德葆.2000.抗病毒基因工程与转基因植株释放的环境风险评估.生命科学,(1):4~6
    134.周雪平,薛朝阳,刘勇,李德葆.1997.番茄花叶病毒番茄分离物与烟草花叶病毒蚕豆分离物生物学、血清学比较及PCR特异性将测.植物病理学报,27 (1):53~58.
    135.周雪平.1992.含卫星RNA的黄瓜花叶病毒(CMV)弱株系防治植物病毒病研究,南京农业大学博士学位论文)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700