用户名: 密码: 验证码:
马铃薯Y病毒CP基因不同区段对发夹RNA和人工的miRNA介导的病毒抗性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因沉默是生物体长期以来形成的一种防御机制,阻止外源基因、转座因子、病毒等外源核酸的侵入,保护生物基因组的完整性。小干扰RNA(small interfering RNA, siRNA)和微小RNA(microRNA, miRNA)是两种序列特异性地转录后基因表达的调节因子,是沉默RNA的最主要组成部分。RNA介导的病毒抗性(RNA mediated virus resistance, RMVR)是RNA沉默的一种表现形式,侵入植物细胞的病毒基因组与转基因转录产物具有部分同源性,因此在转录后基因沉默所导致的RNA降解过程中,RNA降解系统识别侵入细胞内的病毒基因组并将其与转基因RNA一起降解。RMVR具有抗病程度高(近乎免疫)、抗性持久、生物安全性高等优点。在基因沉默的研究中已发现“位置效应”的存在,siRNA的有效性可能受到靶序列所处的位置影响。在RNA介导的植物病毒抗性研究中,目前尚未见有关“位置效应”的系统报道。本研究以马铃薯Y病毒外壳蛋白为靶基因分别以hpRNA和人工的miRNA两种方式构建RNA干扰的植物表达载体,系统性的比较PVY CP基因不同区段对RNA介导的病毒抗性的影响,为寻找引发基因沉默的有效片段及更好利用RMVR培育抗病毒转基因植物提供了依据。研究结果和主要结论如下:
     (1)马铃薯Y病毒CP基因不同区段对发夹RNA介导的病毒抗性的影响将PVY CP基因人工的划分为16段各50bp的区段。通过PCR扩增,得到相应的不同区段的正向和反向的片段,通过酶切连入植物表达载体pROKⅡ中;热激法转化大肠杆菌DH5α,筛选并获得hpRNA结构的植物表达载体pROK CPs(pROK CP9~pROK CP16)。
     用成功构建的16个植物表达载体(另外8个为吴斌构建)瞬时侵染本生烟验证其有效性,Northern Blot结果显示,16个植物表达载体均能在植物体内成功表达产生siRNA,且瞬时表达的siRNA能有效地下调靶基因PVY CP的表达。
     将构建的8个植物表达载体利用冻融法导入农杆菌LBA4404。叶盘法转化烟草NC89,经卡那霉素抗性筛选和PCR检测确定转基因植株。T0代转基因植株自交,种子置于含卡那霉素的筛选培养基上进行筛选,共得到的pROK CP9~pROK CP16各50株、62株、56株、55株、45株、63株、72株和55株T1代转基因植株。抗病性分析发现除了转基因株系pROK CP1、pROK CP2、pROK CP3、pROK CP4未获得抗性植株外,其余12个转基因株系中抗性植株的比例分别为27.15%、6.27%、67.65%、70.83%、66.01%、61.34%、66.04%、23.59%、11.11%、55.56%、77.78%和67.25%。结果表明在利用hpRNA介导的抗PVY病毒的研究中,以PVY CP基因上的50bp序列为茎足以介导宿主植株的基因沉默的产生,但由于hpRNA靶位置的差异产生不同的抗病效率,靶向于3′端nt701~nt750区段表现最高水平的抗性;且以CP基因3′端为靶序列的hpRNA转基因植株比以5′端为靶序列的植株更能有效地介导对PVY的抗性。转基因植株的Northern杂交分析表明,转基因都在RNA水平上得到了表达,抗病植株中RNA的积累量明显低于同类型的感病植株,抗性与RNA积累量呈负相关,证实病毒抗性是由RNA介导的;对转基因植株的siRNA表达量的分析,表明植株对病毒的敏感程度与siRNA积累量之间没有明显的相关性。
     对T2代的转基因植株的抗病性分析结果发现,几乎所有的抗性转基因植株的后代均表现很强的抗病毒侵染能力,说明由hpRNA介导的PVY抗性在T2代植株中能够稳定遗传。
     (2)马铃薯Y病毒CP基因不同区段对人工的miRNA介导的病毒抗性的影响以PVY CP基因的全长cDNA序列为靶基因,根据miRNA的特征选取8个不同的位置,M1(nt96~nt115)、M2(nt140~nt159)、M3(nt322~nt341)、M4(nt380~nt399)、M5(nt475~nt494)、M6(nt567~nt586)、M7(nt679~nt698)和M8(nt735~nt754)为amiRNA的靶区。选用拟南芥miR319a前体作为amiRNA表达的骨架,通过PCR扩增的方式替代掉原有的pre miR319a中具有生物学功能的miRNA和miRNA*,得到含有amiRNA和amiRNA*的DNA片段。将扩增产物连入植物表达载体pROKⅡ中。热激法转化大肠杆菌DH5α,筛选并获得重组表达载体pROK amiRcp1~pROK amiRcp8。
     用构建的amiRNA表达载体瞬时侵染本生烟,Northern Blot验证其有效性,结果显示,8个amiRNA植物表达载体均能在植物体内成功表达amiRNA,且瞬时表达的amiRNA能有效地下调靶PVY CP基因的表达。
     将成功构建的amiRNA表达载体利用冻融法导入农杆菌LBA4404。叶盘法转化烟草NC89。再生植株经卡那霉素抗性筛选和PCR检测确定为转基因植株。T0代自交后,经卡那霉素筛选和PCR鉴定,分别获得pROK amiRcp1~pROK amiRcp8的T1代转基因植株98株、96株、114株、116株、117株、111株、110株和116株。抗病性结果显示,表达靶向于马铃薯Y病毒CP基因的amiRNA转基因植株能介导对马铃薯Y病毒的抗性,抗性比例分别为37.68%、50.29%、53.76%、37.75%、29.86%、17.05%、26.27%、64.69%。针对马铃薯Y病毒CP基因不同区段设计的amiRcps其转基因植株所介导的抗病性效果之间存在差异,靶向于3′端的amiRcp 8(nt735~nt754)能表现更高水平的抗性。转基因植株的Northern杂交分析表明,转基因都在RNA水平上得到了表达,且植株的抗性与转基因的表达量成负相关,表明amiRNA介导的病毒抗性是由RNA介导的。对转基因植株的amiRNA的Northern Blot分析,结果显示,所有抗病转基因植株中都有amiRNA存在,且植株的抗性与amiRNA的表达量成正相关。
     对T2代的转基因植株的抗病性分析结果发现,所有的抗性转基因植株的后代都表现高的抗病率,表明由amiRNA介导的PVY抗性在T2代植株中能够稳定遗传。
RNA silencing is a host defence against invasive nucleic acid, such as viruses or transposable retro elements, preserving the integrality of biology. Small interfering and microRNA which is the most important parts of RNA silencing system are the inducing factor of post transcript gene silencing. RNA mediated virus resistance (RMVR) is regarded as an effective strategy in plant resistance against viruses. The expression of virus specific dsRNA which has homology to the invasive virus will active the post transcriptional gene silencing response of the host plant. The RNA silencing system will recognize complementary invasive viral RNAs and triggers degradation of both the transgene RNA and the corresponding viral RNA. RMVR has been widely used in plant antiviral research for its advantage, such as nearly immunity; sustaining resistance; no biosafety problem. In the application of gene silencing, the depending of the postion of target sequence has been found. There is no systematically study in the RNA mediated virus resistance. In our studies, we designed hairpin RNA constructs and artificial miRNA consructs based on different regions of the CP gene of PVY and generated transgenic plants. We aim at disserting if these kinds of tansgene construction could make transgenic plant exhibit different resistant ratio. The result will contribute to the selection of the target sequence and successfully apply the strategy of RMVR, which has an important theory and application value. The main results and conclusions presented in this thesis are as follows:
     (1) Different origins of PVY CP gene influence the resistance of hairpin expressing plants against PVY
     The PVY CP gene was divided into 16 regions. For every region, two PCR fragments were amplified from the whole length of the CP gene. Two PCR fragments were inverted inserted into binary vector pROKⅡ. The ligated products were transferred into E.coli DH5αby heat shock. The plant expression vectors obtained were dubbed pROK CPs (pROK CP9~pROK CP16).
     The 16 hpRNA constructs (the other 8 hpRNA expression vectors were constructed by Wu Bin) were transferred into N. benthamiana through Agrobacterium tumfaciens mediated transient infection. Northern blot analysis revealed siRNAs were detected in all pROK CPs in?ltrated leaves in transient assay. And all 16 biologically active siRNAs that could effectively down regulate the expression of target mRNA.
     The 16 hpRNA constructs were introduced into NC89 mediated by LBA4404. T1 50, 62, 56, 55, 45, 63, 72, 55 transgenic lines exhibiting kanamycin resistance and positive results in PCR tests for each vector were regenerated after T0 selfing. Virus resistance assay revealed that the 16 transgenic tobacco groups exhibited varying degrees of virus resistance in preventing PVY infection. All the transgenic plants of pROK CP1, pROK CP2, pROK CP3, and pROK CP4 are susceptive to the PVY infection; The resistance ratios of pROK CP5~ pROK CP16 are 27.15%, 6.27%, 67.65%, 70.83%, 66.01%, 61.34%, 66.04%, 23.59%, 11.11%, 55.56%, 77.78% and 67.25%. We demonstrate that 50bp length hpRNA construct is effective for RMVR; however, the hairpin constructs harboring different cDNA regions of the CP gene engendered different silencing efficiencies, the hpRNA targeting the 3′end (nt701~nt750) region exhibited the most highly virus resistance. The plants which harboring the hpRNAi constructs targeting 3′of PVY CP can induced higher virus resistance than those targeting 5′of PVY CP.
     Northern blot analysis revealed that the trangene have been expressed in level of RNA, and the transcripts accumulation level of resistant plants was lower than that of the susceptible transgenic plants. There was an inverse correlation between the resistance and the amount of RNA accumulation in the transgenic plants. The results proved this resistance was RNA mediated. siRNAs were present in all selected resistant and susceptible transgenic plants; No obvious correlation was observed between the expression level of sequence speciflc siRNAs and virus resistance.
     Virus assary in the T2 generation showed that most of the progeny transgenic plants of resistant plant still exhibited high resistance. The results indicated that hpRNA mediated virus resistance can be stably inherited in T2 generation.
     (2) Different origins of PVY CP gene influence the resistance of artificial miRNA expressing plants against PVY We designed eight amiRNAs M1 (nt96~nt115), M2 (nt140~nt159), M3 (nt322~nt341), M4 (nt380~nt399), M5 (nt475~nt494), M6 (nt567~nt586), M7 (nt679~nt698) and M8 (nt735~nt754) derived from PVY Coat Protein RNA sequences. Arabidopsis thaliana miR319a precursor was used as backbone. Through oligonucleotide directed mutagenesis, the natural miR319 and miR319* sequences were replaced with synthetic sequences, each corresponding to a designed amiRNA that targets one region of the PVY CP gene. The generated fragment was digested and inserted into plant binary expression vector pROKⅡto generate pROK amiRcps.
     The 8 amiRNA constructs were transferred into N. benthamiana. In transient assay, Northern blot analysis revealed amiRNAs were detected in all pROK amiRcps in?ltrated leaves. All plants with amiRNA expression exhibited a significantly decreased CP accumulation
     The eight amiRcp expression constructs were introduced into NC89 mediated by LBA4404. After the kanamycin resistance and PCR test, T1 plants 98, 96, 114, 116, 117, 111, 110, 116 were screened. The resistance ratios of amiRcps expressing plants were 37.68%, 50.29%, 53.76%, 37.75%, 29.86%, 17.05%, 26.27%, 64.69%. Virus resistance assay revealed that expression of amiRNA can effective in preventing PVY infection; but not all amiRcps targeting viral CP sequence are equally effective. The amiRcp 8 targeting the 3′end (nt735~nt754) region exhibited high virus resistance.
     Northern blots showed that the trangene have been expressed in level of RNA. There was an inverse correlation between the resistance and the amount of RNA accumulation in the transgenic plants. The results proved this resistance was RNA mediated. AmiRNAs were present in all selected resistant transgenic plants and there is a positive correlation between virus resistance and expression level of amiRNA.
     Virus resistance assay in the T2 generation revealed that most of the progeny transgenic plants of resistant plant still exhibited high resistance. It indicated that amiRNA mediated virus resistance can be stably inherited in T2 generation.
引文
白庆荣,朱俊华,刘晓玲,朱常香,宋云枝,温孚江。利用RNA介导的抗病性获得抗2种病毒的转基因烟草。植物病理学报,2005,35:148~154
    程英豪,王继伟。植物抗病毒基因工程。生物学通报,1998,33:5~6
    迟胜起,宋云枝,朱常香,郑成超,刘晓玲,温孚江。核基质结合区对马铃薯Y病毒全长非翻译CP基因介导抗病性的影响。植物病理学报,2005,35:345~351
    郭兴启,吕士恩,朱常香,宋云枝,孟祥兵,郑成超,温孚江。利用RNA介导的抗病性获得高度抗马铃薯Y病毒的转基因烟草。植物病理学报,2001,31:250~256
    郭兴启,朱汉城。酶标记羊抗兔间接法检测烟草上马铃薯Y病毒的研究。中国烟草学报,1998,4:38~42
    郭艳合,刘立,蔡荣,钱程。小RNA家族的新成员—piRNA。遗传,2008,30:28~34
    侯伟,沃健儿,刘克洲。核酶在抗病毒基因治疗中的设计策略。医学综述,2005,11:023
    华友佳,肖华胜。microRNA研究进展。生命科学,2005,17:278~281
    李鹏,宋云枝,刘晓玲,朱常香,温孚江。马铃薯Y病毒CP基因5′端和3′端反向重复结构介导的抗病性研究。植物病理学报,2007,37:69~76
    李云,宋云枝,朱常香,温孚江。hpRNA的茎环比例对RNA介导的病毒抗性产生的影响。植物病理学报,2008,38:67~80
    刘晓玲,宋云枝,刘红梅,温孚江,朱常香,白庆荣。PVX25kD运动蛋白基因和外壳蛋白基因介导的抗病性研究。作物学报,2005,31:827~832
    牛颜冰,于翠,张凯,崔晓峰,陶小荣,周雪平。瞬时表达黄瓜花叶病毒部分复制酶基因和番茄花叶病毒移动蛋白基因的dsRNA能阻止相关病毒的侵染。农业生物技术学报,2004,4:484~485
    王秀芳,朱常香,温孚江,竺晓平,郭兴启。一个马铃薯Y病毒山东分离物的分离与鉴定。植物病理学报,2003,33:203~208
    温孚江,朱常香。转录后的基因沉默与植物病毒抗性。生物工程学报,2001,17:159~264
    项瑜,杨兰英,彭学贤。改造的马铃薯Y病毒复制酶介导高度抗病性。生物工程学报,1996,12:258~265
    谢响明.黄瓜花叶病毒(CMV)复制酶基因转化植物及其介导的抗病性研究.植物病理学报,1997,27:192
    徐丽,宋云枝,王文俊,朱常香,温孚江。马铃薯Y病毒复制酶基因不同位置cDNA区段介导对PVY的不同抗性。2010,003~006
    赵明敏,安德荣,黄广华,何祖华,陈江野。瞬时表达靶向TMV外壳蛋白基因的siRNA能干扰病毒侵染。植物病理学报,2006,36:35~40
    赵庆臻,赵双宜,夏光敏。植物RNA沉默机制的研究进展。遗传学报,2005,32:104~110
    周雪平,李德葆。抗病毒基因工程与转基因植物释放的环境风险评估。生命科学,2000,2:4~6
    朱常香,宋云枝,温孚江。多抗PVY、TMV和CMV转基因烟草的培育。中国农业科学,2008,41:1040~1047
    朱常香,宋云枝,张松,郭兴启,温孚江。抗芜菁花叶病毒转基因大白菜的培育。植物病理学报,2001,31:257~264
    朱俊华,朱常香,温孚江,宋云枝。正向和反向重复RNA介导的抗马铃薯Y病毒基因工程比较研究。植物病理学报,2004,34:133~140
    朱俊华,竺晓平,温孚江,白庆荣,朱常香,宋云枝。马铃薯Y病毒衣壳蛋白基因片段长度对RNA介导抗病性的影响。中国科学C辑,2004,47:382~388
    竺晓平,朱常香,宋云枝,温孚江,刘红梅,李向东。CP基因3′端短片段介导的对马铃薯Y病毒的抗性。中国农业科学,2006,39:1153~1158
    Abhary M.K., Anfoka G.H., Nakhla M.K., Maxwell D.P.. Post transcriptional gene silencing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch. Virol., 2006, 151: 2349~2363
    Ahmet M.D. and Gregory J.H.. RNAi: an ever growing puzzle. Trends in biochemical Sciences, 2003, 28: 196~201
    Ai T., Zhang L., Gao Z., Zhu C.X., Guo X.. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant boil., 2011, 13: 304~316
    Allen E., Xie Z., Gustafson A.M., Carrington J.C.. MicroRNA directed phasing during trans acting siRNA biogenesis in plants. Cell, 2005, 121: 207~221
    Alvarez J.P., Pekker I., Goldshmidt A., Blum E., Amsellem Z., Eshed Y.. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 2006, 18: 1134~1151
    Amarzguioui M., Brede G., Babaie E, Gr?tli M., Sproat B. and Prydz H. Secondary structure prediction and in vitro accessibility of mRNA as tools in selection of target sites for ribozymes. Nucleic Acids Research, 2000, 28: 4113~4124
    Ameres S.L., Martinez J., Schroeder R.. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130: 101~112
    Anderson J.M., Palukaitis P. and Zaitlin M..A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proceedings of the National Academy of Sciences, 1992, 89: 8759~8963
    Aravin A., Gaidatzis D., Pfeffer S.. A novel class of small RNAs bind to MILI proteinin mouse testes. Nature, 2006, 442: 203~207
    Bartel D.P.. MicroRNAs: genomics biogenesis mechanism and function. Cell, 2004, 116: 281–297
    Bass B.L.. Double stranded RNA as a template for gene silencing. Cell, 2000, 101: 235~238 Baulcombe D.C.. Mechanisms of pathogen derived resistance to viruses in transgenic plants. Plant Cell, 1996, 8: 1833~1844
    Baulcombe D.C.. Replicase mediated resistance: A novel type of virus resistance in transgenic plants? Trends in Microbiology, 1994, 2: 60~63
    Baulcombe D.C., Saunders G.R., Bevan M.W., Mayo M.A. Harrison B.D.. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature, 1986, 321: 446~449
    Baulcombe D.. RNA silencing in plants. Nature, 2004, 431: 356~363
    Baulcombe D.. RNA silencing. Trends Biochem. Sci., 2005, 30: 290~293
    Baumberger N. and Baulcombe D.C.. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proceedings of the national academy of sciences of the United States of America, 2005, 102: 11928~11933
    Bazzini A.A., Asurmendi S., Hopp H.E., Beachy R.N.. Tobacco mosaic virus (TMV) and potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J Gen Virol., 2006, 87, 1005~1012
    Bernstein E., Caudy A.A., Hammond S.M. and Hannon G.J.. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409: 363~366
    Boutla A., Delidakis C., Livadaras I., Tsagris M. and Tabler M.. Short 5′phosphorylated double stranded RNAs induce RNA interference in Drosophila. Current Biology, 2001, 11: 1776~1780
    Braun C.J. and Hemenway C.L.. Expression of amino terminal portions or full length viral replicase genes in transgenic plants confer resistance to potato virus X infection. Plant Cell, 1992, 4: 735~744
    Braunstein T.H., Moury B., Johannessen M. and Albrechtsen M.. Specific degradation of 3′regions of GUS mRNA in post transcriptionally silenced tobacco lines may be related to 5′3′spreading of silencing. RNA, 2002, 8: 1034~1044
    Brederode F.T., Taschner P.E., Posthumus E. and Bol J.F.. Replicase mediated resistance to alfalfa mosaic virus. Virology, 1995, 207: 467~474
    Brenda L.B.. Double stranded RNA as a template for gene silencing. Cell, 2000, 101: 235~238
    Brigneti G., Voinnet O., Li W.X., Ji L.H., Ding S.W., Baulcombe D.C.. Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J., 1998, 17: 6739~6746
    Brodersen P., Sakvarelidze Achard L., Bruun Rasmussen M., Dunoyer P., Yamamoto Y.Y., Sieburth L., Voinnet O.. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320:1185~1190
    Bucher E., Lohuis D., van Poppel P.M., Geerts Dimitriadou, C., Goldbach R., Prins M.. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol., 2006, 87: 3697~3701
    Carr J.P. and Zaitlin M.. Resistance in transgenic tobacco plants expressing a nonstructural gene sequence of tobacco mosaic virus is a consequence of markedly reduced virus replication. Molecular Plant Microbe Interactions, 1991, 4: 579~585
    Carr J.P., Gal On A., Palukaitis P. and Zaitlin M.. Replicase mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long distance movement. Virology, 1994, 199: 439~447
    Carr J.P., Marsh L.E., Lomonossoff G.P., Sekiya M.E. and Zaitlin M.. Resistance to tobacco mosaic virus induced by the 54 kDa gene sequence require expression of the 54 kDa protein. Molecular Plant Microbe Interactions, 1992, 5: 397~404
    Carrington J.C., Ambros V.. Role of microRNAs in plant and animal development. Science, 2003, 301: 336~338
    Castanotto D., and Rossi J.J.. The promises and pitfalls of RNA interference based therapeutics. Nature, 2009, 457: 426~433
    Cerutti H.. RNA interference: traveling in the cell and gaining functions? Trends in Genetics, 2003, 19(1): 39~46
    Chen X.. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 2004, 303: 2022~2025
    Chuang C.F. and Meyerowitz E.M.. Specific and heritable genetic interference by double stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 2000, 97: 4985~4990
    Cogoni C. and Macino G.. Post transcriptional gene silencing across kingdoms. Current Opinion in Genetics & Development, 2000, 10: 638~643
    Cogoni C., Irelan J.T., Schumacher M., Schmidhauser T.J., Selker E.U. and Macino G.. Transgene silencing of the al 1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA DNA interactions or DNA methylation. EMBO J., 1996, 15: 3153~3163
    Cogoni C., Romano N. and Macino G.. Suppression of gene expression by homologous transgenes. Antonie Van Leeuwenhoek, 1994, 65: 205~209
    Cooper B., Lapidot M., Heick J.A., Dodds J.A .and Beachy R.N.. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the functional analog increases susceptibility. Virology, 1995, 206: 307~313
    Covey S.N., Al Kaff N.S., Langara A. and Turner D.S.. Plants combat infection by gene silencing. Nature, 1997, 385: 781~782
    Dalmay T.A., Hamilton S., Rudd S., Angell S., Baulcombe D.C.. An RNA dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell, 2000, 101:543~553
    De haan P., Gielen J.J.L, Prins M., Wijkamp I.G., Schepen A., Peters D., van Grinsven M.Q.J.M., Goldbach R.. Characterization of RNA mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio Technology, 1992, 10: 1133~1137
    Deleris A., Gallego Bartolome J., Bao J., Kasschau K.D., Carrington J.C., Voinnet O.. Hierarchical action and inhibition of plant Dicer like proteins in antiviral defense. Science, 2006, 313: 68~71
    Doench J.G., Petersen C.P., Sharp P.A.. siRNAs can function as miRNAs. Genes Dev., 2003, 17(4): 438~442
    Dougherty W.G. and Parks T.D.. Transgenes and gene suppression: telling us something new? Current Opinion in Cell Biology, 1995, 7:399~405
    Dougherty W.G., Lindbo J.A., Smith H.A., Parks T.D., Swaney S. and Proebsting W.M.. RNA mediated resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Molecular Plant Microbe Interactions, 1994, 7: 544~552
    Du Q., Thonberg H., Wang J., Wahlestedt C. and Liang Z.. A systematic analysis of the silencing effects of an active siRNA at all single nucleotide mismatched target sites. Nucleic Acids Research, 2005, 33: 1671~1677
    Duan C.G., Wang C.H., Fang R.X., Guo H.S.. Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J. Virol., 2008, 82: 11084~11095
    Einav Y., Agami R. and Canaani D.. shRNA mediated RNA interference as a tool for genetic synthetic lethality screening in mouse embryo fibroblasts. FEBS Lett., 2005, 579: 199~202
    Elbashir S., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T.. Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411: 494~988
    Elbashir S.M., Lendeckel W. and Tuschl T.. RNA interference is mediated by 21 and 22 nucleotide RNAs. Genes & Development, 2001, 15:188~200
    Emery J.F., Floyd S.K., Alvarez J., Eshed Y., Hawker N.P., Izhaki A., Baum S.F., Bowman J.L.. Radial patterning of Arabidopsis shoots by class III HD ZIP and KANADI genes. Curr. Biol., 2003, 13: 1768~1774
    English J.J., Mueller E. and Baulcombe D.C.. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear gene. Plant Cell, 1996, 8:179~188
    Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E. and Mello C.C.. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature, 1998, 391: 806~811
    Fuchs M., McFerson J.R., Tricoli D.M., McMaster J.R., Deng R.Z., Boeshore M.L., Reynolds J.F., Russell P.F., Quemada H.D. and Gonsalves D.. Cantaloupe line CZW 30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus 2 is resistance to these three virus in the field. Molecular Breeding, 1997, 3: 279~290
    Fujii H., Chiou T.J., Lin S.I., Aung K., Zhu J.K.. A miRNA involved in phosphate starvation response in Arabidopsis. Curr. Biol., 2005, 15:2038~2043
    Gan J., Tropea J.E., Austin B.P., Court D.L., Waugh D.S., Ji X. Structural insight into the mechanism of double stranded RNA processing by ribonuclease III. Cell, 2006, 124: 355~366
    Golemboski D.B., Lomonossoff G.P. and Zaitlin M.. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistances to the virus. Proceedings of the National Academy of Sciences, 1990, 17: 6311~6315
    Gregory R.I., Chendrimada T.P., Cooch N. and Shiekhattar R.. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell, 2005, 123: 631~640
    Gregory R.I., Yan K.P., Amuthan G., Chendrimada T., Doratotaj B., Cooch N., Shiekhattar R.. The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004, 432: 235~240
    Guo H.S. and Garcia J.A.. Delayed resistance to plum poxpoty virus mediated by a mutated RNA replicase gene: Invovement of a gene silencing mechanism. Molecular Plant Microbe Interactions, 1997, 10: 160~170
    Guo H.S., Xie Q., Fei J.F., Chua N.H.. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell, 2005, 17: 1376~1386
    Gyorgy H., Phillip D.Z.. RNAi: nature abhors a double strand. Curr. Opin. Genet. Dev., 2002, 12(2): 225~232
    Hamilton A., Baulcombe D.. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286: 950~952
    Hamilton A.J., Voinnet O., Chappell L. and Baulcombe D.C.. Two classes of short interfering RNA in RNA silencing. EMBO Journal, 2002, 21: 4671~4679
    Hammond S.M., Bernstein E., Beach D. and Hannon G.J.. An RNA directed nuclease mediates post transcriptional gene silencing in Drosophila cells. Nature, 2000, 404: 293~296
    Hammond S.M., Caudy A.A. and Hannon G.J.. Post transcriptional gene silencing bydouble stranded RNA. Nature Reviews Genetics, 2001, 2: 110~119
    Han J., Lee Y., Yeom K.H., Kim Y.K., Jin H., Kim V.N.. The Drosha DGCR8 complex in primary microRNA processing. Genes Dev., 2004, 18: 3016~3027
    Han J., Lee Y., Yeom K.H., Nam J.W., Heo I., Rhee J.K., Sohn S.Y., Cho Y., Zhang B.T., Kim V.N.. Molecular basis for the recognition of primary microRNAs by the Drosha DGCR8 complex. Cell, 2006, 125: 887~901
    Hannon G.J.. RNA interference. Nature, 2002, 418: 244~251
    Haque A.K., Tanaka Y., Sonoda S. and Nishiguchi M.. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery mottle virus. Plant Molecular Biology, 2007, 63: 35~47
    Hart C.M., Fischer B., Neuhaus J. M. and Meins F.. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense related tobacco chitinase gene. Molecular and General Genetics, 1992, 235: 179~188
    He L., Hannon G.J.. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5: 522~531
    Heale B.S., Soifer H.S., Bowers C., Rossi J.J.. siRNA target site secondary structure predictions using local stable substructures. Nucleic acids research, 2005, 33: e30
    Helliwell C. and Waterhouse P.. Constructs and methods for high throughput gene silencing in plants. Methods, 2003, 30: 289~295
    Himber C., Dunoyer P., Moissiard G., Ritzenthaler C. and Voinnet O.. Transitivity dependent and independent cell to cell movement of RNA silencing. The EMBO Journal, 2003, 22: 4523~4533
    Holen T., Amarzguioui M., Wigger M.T., Babaie E., Prydz H.. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res., 2002, 30: 1757~1766
    Ingelbrecht I.L., Irvine J.E. and Mirkov T.E.. Posttranscriptional gene silencing in transgenic sugarcane dissection of homologous dependent virus resistance in a monocot that has a complex polyploid genome. Plant Physiology, 1999, 119: 1187~1197
    Jackson A.L., Bartz S.R., Schelter J., Kobayashi S.V., Burchard J., Mao M., Li B., Cavet G. and Linsley P.S.. Expression profiling reveals off target gene regulation by RNAi. Nature Biotechnology, 2003, 21: 635~637
    Jan F.J., Fagoaga C., Pang S.Z., Gonsalves D.. A single chimeric transgene derived from two distinct viruses confers multi virus resistance in transgenic plants through homology dependent gene silencing. J. Gen. Virol., 2000, 81: 2103~2109
    Jones L., Hamilton A.J., Voinnet O., Thomas C.L., Maule A.J. and Baulcombe D.C.. RNA–DNA interactions and DNA methylation in post transcriptional gene silencing.Plant Cell, 1999, 11:2291~2301
    Jones Rhoades M.W., Bartel D.P., Bartel B.. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol., 2006, 57: 19~53
    Kang B.C., Yeam I., Jahn M.M.. Genetics of plant virus resistance. Annu Rev Phytopathol., 2005, 43: 581~621
    Kaniewsli W., Lawson C., Sammoms B., Haley L., Hart J., Delannay X. and Tumer N.E.. Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y. Bio Technology, 1990, 8: 750~754
    Kawchuk L.M., Martin R.R. and Mcpherson J.. Sense and antisense RNA mediated resistance to potato leafroll virus in russet Burbank potato plants. Molecular Plant Microbe Interactions, 1991, 4: 247~253
    Khraiwesh B., Ossowski S., Weigel D., Reski R., Frank W.. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol., 2008, 148: 684~93
    Khvorova A., Reynolds A., Jayasena S.D.. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115, 209~216
    Kim V.N.. MicroRNA biogenesis: coordinated cropping and dicing. Nat. Dev. Mol. Cell Biol., 2005, 6: 376~385
    Klahre U., Crete P., Leuenberger S.A., Iglesias V.A. and Meins F.J.. High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proceedings of the National Academy of Sciences, 2002, 99: 11981~11986
    Kooter J.M., Matzke M.A. and Meyer P.. Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Science, 1999, 4: 340~347
    Kumagai H. and Kouchi H.. Gene silencing by expression of hairpin RNA in Lotus japonicus root and root nodules. Molecular Plant Microbe Interactions, 2003, 16: 663~668
    Lagos Quintana M., Rauhut R., Meyer J., Borkjardt A., Tuschl T.. New microRNAs from mouse and human. RNA, 2003, 9: 175~179
    Lau N.C., Lim L.P., Weinstein E.G.. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294: 858~862
    Lawson C., Kaniewski W., Haley L., Rozman R., Newell C., Sanders P. and Tumer N.E.. Engineering resistance to mixed virus infection in a commercial potato cultivar: Resistance to potato virus X and potato virus Y in transgenic Russet Bubank. Bio Technology, 1990, 8: 127~134
    Lee R.C., Ambros V.. An extensive class of small RNAs in Caenorhabditis elegans. Science, 2001, 294: 862~864
    Lee R.C., Feinbaum R.L., Ambros V.. The C.elegans heterochronic gene lin 4 encodes smallRNAs with antisense complementarity to Lin 14. Cell, 1993, 75: 843~854
    Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., Kim V.N.. The nuclear RNaseⅢDrosha initiates microRNA processing, Nature, 2003, 425: 415~419
    Lim L.P., Glasner M.E., Yekta S., Burge C.B., Bartel D.P.. Vertebrate microRNA genes. Science, 2003, 299: 1540
    Lim L.P., Lau N.C., Garrett Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., Johnson J.M.. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433: 769~773
    Lin H.F.. piRNAs in the germline. Science, 2007, 316: 397
    Lin S.S., Wu H.W., Elena S.F., Chen K.C., Niu Q.W., Yeh S.D., Chen C.C., Chua N.H.. Molecular evolution of a viral non coding sequence under the selective pressure of amiRNA mediated silencing. PLoS. Pathog., 2009, 5: e1000312
    Linbo J.A., Dougherty W.G.. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interference with tobacco etch virus replication in transgenic plants and protoplasts. Virology, 1992, 189:725~733
    Lindbo J.A. and Dougherty W.G.. Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology, 1992, 189: 725~733
    Lindbo J.A., Silva Rosales L., Proebsting W. M. and Dougherty W.G.. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. The Plant Cell, 1993, 5:1749~1759
    Llave C., Kasschau K.D., Rector M.A., Carrington J.C.. Endogenous and silencing associated small RNAs in plants. Plant Cell, 2002, 14: 1605~1619
    Lomonossoff G.P.. Pathogen derived resistance to plant viruses. Annu Rev Phytopathol., 1995, 33: 323~343
    Long D., Lee R., Williams P., Chan C.Y., Ambros V., Ding Y.. Potent effect of target structure on microRNA function. Nat Struct Mol Biol., 2007, 14: 287
    Luo K.Q., Chang D.C.. The gene silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochemical and Biophysical Research Communications, 2004, 318: 303~310
    Lucioli A., Noris E., Brunetti A., Tavazza R., Ruzza V., Castillo A.G., Bejarano E.R., Accotto G.P. and Tavazza M.. Tomato yellow leaf curl Sardinia virus Rep derived resistance to homologous and heterologous Geminivirus occurs by different mechanisms and is overcome if virus mediated transgene silencing is activated. Journal of Virology, 2003, 77:6785 ~6798
    Lyn O′Brien.. Inhibition of multiple strains of Venezuelan equine encephalitis virus by a pool of four short interfering RNAs. Antiviral Research, 2007, 75: 20~29
    Macrae I.J., Zhou K., Li F., Repic A., Brooks A.N., Cande W.Z., Adams P.D., Doudna J.A.. Structural basis for double stranded RNA processing by Dicer. Science, 2006, 311: 195~198
    Marano M.R. and Baulcombe D.. Pathogen derived resistance targeted against the negative strand RNA of tobacco mosaic virus RNA strand specific gene silencing? Plant Journal, 1998, 13: 537~546
    Martinez J., Patkaniowska A., Urlaub H., Lührmann R. and Tuschl T.. Single stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell, 2002, 110: 563~574 Matzke M., Matzke A.J. and Kooter J.M.. RNA: guiding gene silencing. Science, 2001, 293: 1080~1083
    McManus M.T. and Sharp P.A.. Gene silencing in mammals by small interfering RNAs. Nature Reviews Genetics and Nature, 2002, 3:737~747
    Meister G., Landthaler M., Patkaniowska A., Dorsett Y., Teng G., Tuschl T.. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell, 2004, 15: 185~197
    Mette M.F., Aufsatz W., van der Winden J., Matzke M.A., Matzke A.J.. Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J., 2000, 19: 5194~5201
    Metzler M., Wilda M., Busch K., Viehmann S., Borkhardt A.. High expression of precursor microRNA 155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer, 2004, 39: 167~169
    Miki D., Itoh R. and Shimamoto K.. RNA silencing of single and multiple members in a gene family of rice. Plant Physiology, 2005, 138:1903~1913
    Missiou A, Kalantidis K, Boutla A, Tzortzakaki S, Tabler M, Tsagris M.. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing. Mol. Breed, 2004, 14:185~197
    Molnar A., Bassett A., Thuenemann E., Schwach F., Karkare S., Ossowski S., Weigel, D., Baulcombe D.. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J., 2009, 17
    Molnár A., Csorba T., Lakatos L., Várallyay E., Lacomme C. and Burgyán J.. Plant virus derived small interfering RNAs originate predominantly from highly structured single stranded viral RNAs. The Journal of Virology, 2005, 79: 7812~7818
    Mourrain P., Beclin C., Elmayan T., Feuerbach F., Godon C., Morel J.B., Jouette D., Lacombe A.M., Nikic S., Picault N.. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell, 2000, 101: 533~542
    Nakahara K, Carthew RW.. Expanding roles for miRNAs and siRNAs in cell regulation. Curr. Opin. Cell Biol., 2004; 16: 127~133
    Napoli C., Lemieux C. and Jorgensen R.. Introduction of a chimeric chalcone synthetase gene in Petunia results in reversible co suppression of homologous genes in transplants. Plant Cell, 1990, 2: 279~289
    Niu Q.W., Lin S.S., Reyes J.L., Chen K.C., Wu H.W., Yeh S.D., Chua N.H.. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol., 2006, 24: 1420~1428
    Nyk(?)nen A., Haley B. and Zamore P.D.. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 2001, 107: 309~321
    Overhoff M., Alken M., Far R.K., Lemaitre M., Lebleu B., Sczakiel G., Robbins I.. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J. Mol. Biol., 2005, 348: 871~881
    Paddison P.J., Caudy A.A., Bernstein E., Hannon G.J. and Conklin D.S.. Short hairpin RNAs (shRNAs) induce sequence specific silencing in mammalian cells. Genes & Development, 2002, 16: 948~958
    Palatnik J.F., Allen E., Wu X., Schommer C., Schwab R., Carrington J.C., Weigel D.. Control of leaf morphogenesis by microRNAs. Nature, 2003, 425:257~263
    Palauqui J.C., Elmayan T., Pollien J.M. and Vaucheret H.. Systemic acquired silencing: transgene specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non silenced scions. The EMBO Journal, 1997, 16: 4738~4745
    Pandolfini T., Molesini B., Avesani L., Spena A. and Polverari A.. Expression of self complementary hairpin RNA under the control of the rolc promoter confers systemic disease resistance to Plum Pox Virus (PPV) without preventing local infection. BMC Biotechnology, 2003, 3: 7~22
    Pang S.Z., Jan F.J., Consalves D.. Nontarget DNA sequences reduce the transgene length necessary for RNA mediated tospovirus resistance in transgenic plants. Proceedings of the National Academy of Sciences, USA, 1997, 94: 8261~8266
    Parizotto E.A., Dunoyer P., Rahm N., Himber C., Voinnet O.. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev., 2004, 18: 2237~2242
    Parker R. and Song H.. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol., 2004, 11: 121~127
    Pasquinell A.E., Ruvkun G.. Control of developmental timing by micrornas and their targets. Annu. Rev. Cell Dev. Biol., 2002, 18: 495~513
    Pooggin M., Shivaprasad P.V., Veluthambi K., Hohn T.. RNAi targeting of DNA virus in plants. Nat. Biotechnol., 2003, 21: 131~132
    Prins M. and Goldbach R.. RNA mediated virus resistance in transgenic plants. Archives of Virology, 1996, 141: 2259~2276
    Prins M.. Broad virus resistance in transgenic plants. Trends in Biotechnology, 2003, 21: 373~375
    Prins M., de Haan P., Luyten R., van Veller M., van Grinsven M.Q. and Goldbach R.. Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein gene sequences. Molecular Plant Microbe Interactions, 1995, 8: 85~91
    Qu J., Ye J., Fang R.X.. Artificial microRNA mediated virus resistance in plants. Journal of virology, 2007; 81:6690~6699
    Rajagopalan R., Vaucheret H., Trio J., Barrel D.P.. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev., 2006, 20: 3407~3425
    Ratcliff F., Harrison B.D. and Baulcombe D.C.. A similarity between virus defense and gene silencing in plants. Science, 1997, 276: 1558~1560
    Reinhart B.J., Slack F.A., Basson M., Pasquinelli A.E., Bettinger J.C., Rougvie A.C., Horvitz H.R., Ruvkun G.. The 21 nucleotide let 7 RNA regulates C. elegans developmental timing in Caenorhabditis elegans. Nature, 2000, 403: 901~906
    Reinhart B.J., Weinstein E.G., Rhoades M.W., Bartel B., Bartel D.P.. MicroRNAs in plants. Genes Dev., 2002, 16: 1616~1626
    Revers F., Gall O.L., Candresse T., Maule A.J.. New advances in understanding the molecular biology of plant/potyvirus interactions. Molecular Plant Microbe Interactions, 1999, 12: 367~376
    Sanford J.C. and Johnston S.A.. The concept of parasite derived resistance: deriving resistance genes from the parasite own genome. Journal of Theoretical Biology, 1985, 113: 395~405
    Sayaka H., Shin ichiro O., Eri A.. The effects of spacer sequences on silencing efficiency of plant RNAi vectors. Plant Cell Rep., 2007, 26: 651~659
    Schubert S., Grunweller A., Erdmann V.A., Kurreck J.. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol., 2005, 348: 883~893
    Schwab R., Ossowski S., Riester M., Warthmann N., Weigel D.. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18: 1121~1133
    Schwab R., Palatnik J.F., Riester M., Schommer C., Schmid M., Weigel D.. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8: 517~527
    Schwarz D.S., Hutvagner G., Du T., Xu Z., Aronin N., Zamore P.D.. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115: 199~208
    Shao Y., Chan C.Y., Maliyekkel A., Lawrence C.E., Roninson I.B., Ding Y.. Effect of targetsecondary structure on RNAi efficiency. RNA, 2007,13:1631~1640
    Sijen T., Wellink J., Hiriart J.B, and van Kammen A.. RNA mediated virus resistance: role of repeated transgenes and delineation of targeted regions. The Plant Cell, 1996, 8: 2277~2294
    Smith H.A., Swaney S.L., Parks T.D., Wernsman E.A. and Dougherty W.G.. Transgenic plant virus resistance mediated by untranslatable sense RNAs: Expression, regulation and fate of nonessential RNAs. The Plant Cell, 1994, 6: 1441~1453
    Smith N.A., Singh S.P., Wang M., Stoutjesdijk P.A., Green A.G. and Waterhouse P.M.. Gene expression: Total silencing by intron spliced hairpin RNAs. Nature, 2000, 407: 319~320
    Sonada S.. Analysis of the nucleocapsid protein gene from Tomato spotted wilt virus as target and inducer for posttranscriptional gene silencing. Plant science, 2003, 164: 717~725
    Song E., Lee S K., Wang J., Ince N., Ouyang N., Min J., Chen J., Shankar P. and Lieberman J.. RNA interference targeting Fas protects mice from fulminant hepatitis. Nature medicine, 2003, 9: 347~351
    Song J.J., Liu J., Tolia N.H., Schneiderman J., Smith S.K., Martienssen R.A., Hannon G.J., Joshua Tor L.. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol., 2003, 10: 1026~1032
    Song J.J., Smith S.K., Hannon G.J. and Joshua Tor L.. Crystal structure of Argonaute and its implications for RISC slicer activity. Science, 2004, 305:1434~1437
    Sontheimer E.J.. Assembly and function of RNA silencing complexes. Nature Reviews Molecular Cell Biology, 2005, 6: 127~138
    Stam M, de Bruin R., Kenter S., Renier A.L., van der Hoorn., Blokland R., Mol J.N.M. and Kooter J.M.. Post transcriptional silencing of chalcone synthase in Petunia by inverted transgene repeats. Plant Journal, 1997, 12: 63~82
    Steffen S., Arnold G., Volker A.E., Jens K.. Local RNA Target Structure Influences siRNA Efficacy: Systematic Analysis of Intentionally Designed Binding Regions. J. Mol. Biol., 2005, 348: 883~893
    Stephen I.R., Jyothishmathi S., Marina S., Stephen L., Alan M.G.. Effects of local mRNA structure on post transcriptional gene silencing. PNAS, 2008, 105: 13787~13792
    Stoutjesdijk P.A., Singh S.P., Liu Q., Hurlstone C.J., Waterhouse P.A. and Green A.G.. HpRNA mediated targeting of the arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant physiology, 2002, 129: 1723~1731
    Sunkar R., Chinnusamy V., Zhu J.H., Zhu J.K.. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci., 2007, 12: 301~309
    Sunkar R., Zhu J.K.. Novel and stress regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004, 16: 2001~2019
    Swaney S., Powers H., Goodwin J., Rosales L.S. and Dougherty W.G.. RNA mediated resistance with nonstructural genes from the tobacco etches virus genome. Molecular Plant Microbe Interactions, 1995, 8: 1004~1011
    Tagami Y., Inaba N., Kutsuna N., Kurihara Y., Watanabe Y.. Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA Res., 2007, 14: 227~233
    Tang G., Reinhart B.J., Bartel D.P., Zamore P.D.. A biochemical framework for RNA silencing in plant. Genes Dev., 2003, 17: 49~63
    Tanzer A., and Stadler P.F.. Molecular evolution of a microRNA cluster. J. Mol. Biol., 2004, 339: 327~335
    Tanzer M.M., Thomps W.F., Law M.D., Wernsman E.A. and Uknes S.. Characterization of posttranscriptionally suppressed transgene expression that confers resistance to tobacco etch virus infection in tobacco. Plant Cell, 1997, 9: 1411~1423
    Tenllado F., Carcia Luque and Serra M.T.. Resistance to pepper mild mottle tobamovirus conferred by the 54kD gene sequence in transgenic plants does not require expression of the wild type 54kD protein. Virology, 1996, 219: 330~335
    Tijsterman M., Ketting R.F., Okihara K.L., Sijen T.and Plasterk R.H.. RNA helicase MUT 14 dependent gene silencing triggered in C. elegans by short antisense RNAs. Science, 2002, 295: 694~697
    Tomari Y. and Zamore P.D.. Perspective: machines for RNAi. Genes & Development, 2005, 19: 517~529
    Tuschl T., Zamore P.A., Lehman R., Bartel D.P., Sharp P.A.. Targeted mRNA degradation by double stranded RNA in vitro. Genes Dev., 1999, 13: 3191~3197
    Ui Tei K., Naito Y., Takahashi F., Haraguchi T., Ohki Hamazaki H., Juni A., Ueda R., Saigo K.. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Research, 2004, 32: 936~948
    Ui Tei K., Zenno S., Juni A., Saigo K.. RNA I induced in mammalian and Drosophila cells via transfection of dimmers and trimers of short interfering RNA. Journal of RNAi and Gene Silencing, 2005, 1: 79~87
    Urcuqui Inchima S., Haenni A.L., Bernardi F.. Potyvirus Proteins: a Wealth of Functions. Virus Res. 2001; 74:157~175
    Vaistij F.E., Jones L. and Baulcombe D.C.. Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA dependent RNA polymerase. Plant Cell, 2002, 14:857~867
    Van der Krol A.R., Mur L.A., de Lange P., Mol J.N. Stuitje A.R.. Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Molecular Biology, 1990, 14:457~466
    Van der Vlugt R.A.A., Ruiter R.K. and Goldback R.. Evidence for sense RNA mediated virus resistance to PVYN in tobacco plants transformed with the viral coat protein cistron. Plant Mol. Biology, 1992, 20: 631~639
    Van der Wilk F., Willink D.P.L., Huisman M.J., Huttinga H. and Goldbach R.. Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plant inhibits viral infection. Plant Molecular Biology, 1997, 17: 431~439
    Vanitharani R., Chellappan P. and Fauquet C.M.. Short interfering RNA mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proceedings of the National Academy of Sciences, USA, 2002, 100: 9632~9636
    Vaucheret H., Vazquez F., Crete P., Bartel D.P.. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev., 2004, 18: 1187~1197
    Vazquez Rovere C., del Vas M., Hopp H.E.. RNA mediated virus resistance. Curr Opin Biotechnol., 2002, 13: 167~172
    Voinnet O., Lederer C. and Baulcombe D.C.. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell, 2000, 103: 157~167
    Voinnet O., Vain P., Angell S. and Baulcombe D.C.. Systemic spread of sequence specific transgene RNA degradationin plants is initiated by localized introduction of ectopic promoterless DNA. Cell, 1998, 95: 177~187
    Wang M.B, Abbot D.C., Waterhouse P.M.. A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Molecular Plant Pathology, 2000, 1: 347~356
    Wang M.B., Abbott D.C, Waterhouse P.M. Intron mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J. Genet. Breed, 1997, 51:325~334
    Warthmann N., Chen H., Ossowski S., Weigel D., Herve P.. Highly specific gene silencing by artificial miRNAs in rice. PLoS One, 2008, 3: e1829
    Waterhouse P.M. and Graham M.W.. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA, 1998, 95:13959~13964
    Watson J.M., Fusaro A.F., Wang M. Waterhouse P.M.. RNA silencing platforms in plants. FEBS Lett., 2005, 579: 5982~5987
    Wesley S.V., Helliwell C.A., Smith N.A., Wang M., Rouse D.T., Liu Q., Gooding P.S., Singh S.P., Abbott D., Stoutjesdijk P.A., Robinson S.P., Gleave A.P., Green A.G. and Waterhouse P.M.. Construct design for efficient, effective and high throughput gene silencing in plants. Plant Journal, 2001, 27: 581~590
    Westerhout E.M. and Berkhout B.. A systematic analysis of the effect of target RNAstructure on RNA interference. Nucleic Acids Research, 2007, 35: 4322~4330
    Xie Z., Fan, B., Chen C., Chen Z.. An important role of an inducible RNA dependent RNA polymerase in plant antiviral defense. Proc. Natl. Acad. Sci., USA, 2001, 98: 6516~6521
    Xie Z., Johansen L.K., Gustafson A.M., Kasschau K.D., Lellis A.D., Zilberman D., Jacobsen S.E., Carrington J.C.. Genetic and functional diversifi cation of small RNA pathways in plants. PLoS Biol., 2004, 2:E104
    Xu L., Song Y.Z., Zhu J.H., Guo X.Q., Zhu C.X., Wen F.J.. Conserved Sequences of Replicase Gene Mediated Resistance to Potyvirus through RNA Silencing. Journal of plant biology, 2009, 62:550~559
    Yoshinari K., Makoto M., Kazunari T.. Effects on RNAi of the tight structure, sequence and position of the target region. Nucleic Acids Research, 2004, 32: 691~699
    Young S.L., Richard C.W.. Making a better RNAi vector for Drosophila: use of intron spacers. Methods, 2003, 30: 322~329
    Yu J.Y., Wang T.W., Vojtek A.B., Parent J.M. and Turner D.L.. Use of short hairpin RNA expression vectors to study Mammalian neural development. Methods in Enzymology, 2005, 392: 186~199
    Zamore P.D.. Ancient Pathways Programmed by Small RNAs. Science, 2002, 296: 1265~1269
    Zamore P.D., Tuschl T., Sharp P.A. and Bartel D.P.. RNAi: Double stranded RNA directs the ATP dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000, 101: 25~33
    Zeng Y., Wagner E.J., Cullen B.R.. Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell, 2002, 9: 1327~1333
    Zhao T., Wang W., Bai X., Qi Y.. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J., 2008, 28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700