用户名: 密码: 验证码:
基于云理念的开放式电力系统数值仿真系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值仿真在电力系统规划、运行以及安全防御等方面发挥着不可替代的作用。模型完备、可接受的计算精度和效率是对电力系统数值仿真程序的基本要求。随着电力系统规模不断增大、用户分析需求多样,为使用户能快速、灵活地分析和解决各种问题,提供具有良好开放性的电力系统仿真程序具有十分重要的意义。
     论文分析了电力系统数值仿真软件的现状与大量计算机资源闲置的问题,提出了基于云理念的开放式电力系统数值仿真系统方案。主要研究工作如下:
     首先,分析了电力系统数值仿真软件的开放性问题,强调了基于应用程序接口API的二次开发功能的重要性,研发了基于C/S模式的开放式电力系统数值仿真系统。系统基于客户端/服务器(C/S)模式,在客户端和服务器端分别建立制定结构的数据库(一张规范化的函数表),通过查表实现开放式应用程序接口,通过TCP/IP进行通讯,从而实现客户端与服务器端的交互。二次开发的应用不限于客户端具体的语言实现形式,开发了在C++、Matlab和Python环境下的接口库。服务器端的计算引擎实现了开放式电力系统潮流计算模块和开放式电力系统机电暂态仿真模块。实例仿真充分体现了基于C/S模式的API二次开发方案可以使用户通过利用服务器端的强大资源,开发各种高级应用分析程序,并且极大地缩短了开发时间,具有方便、快捷、高效的特点。
     其次,研究了云计算的特征及其应用,结合云计算资源共享的理念,将上述C/S模式扩展为云服务模式,设计了基于云理念的电力系统数值仿真系统方案,确定了客户端和云端协调工作的模式。此方案下的云端资源池建立具有迅速、方便的优点,通过在各类服务器和计算机上安装计算引擎和连接到云端调度中心的服务接口软件构建起资源池,其中计算能力强的资源设备上安装多个接口软件,能同时为多个客户端提供服务。
     最后,提出了计算机计算能力指标和可用计算能力指标,设计并实现了电力系统数值仿真云服务任务调度策略。云端的调度中心负责监听用户的服务申请,并同时监控各资源设备的CPU利用率和内存利用率,计算出当前此设备的可用计算能力指标。当接到用户的服务申请时,调度中心将把当前可用计算能力最强的资源设备的服务接口分配给用户,保证了各设备负载的平衡。实例仿真充分体现了基于云服务理念的资源共享方案可以在不影响云端资源设备提供者正常使用的情况下,有效地利用大量闲置的资源,为用户提供服务,从而提高资源的利用率
The numerical simulation plays an irreplaceable role in the power system planning, operation and security. Having complete models, acceptable computation accuracy and efficiency is the basic requirement of power system numerical simulation software. With the scale of the power system increasing, analysis demands of users have been becoming more and more diverse. To enable users to analyse and solve various problems quickly and flexibly, developing power system simulation software with excellent openness is of great significance.
     Based on studying various power system numerical simulation softwares and analysing the problem of large amounts of idle computer resources, this paper presented an open power system numerical simulation system scheme which is based on the cloud concept. And the main contributions are stated below.
     Firstly, the concept and role of the openness of power system numerical simulation program were discussed, emphasizing the significance of API (Application Program Interface)-based secondary development for the simulation software. An open power system simulation software system based on Client/Server (C/S) mode has been developed. The communication between two sides was realized through TCP/IP and with an identical standardized database (a normalized function table) established on both sides, the open application program interface was realized through table lookup, so the interaction between the client side and server side was achieved. The client-side secondary development is not limited to one programming language. Interface software packages have been developed in different programming languages including C++, Matlab and Python. For the calculation engine on the server side, open power system load flow calculation module and open power system electromechanical transient simulation module have been developed. Through experiments, it is verified that this kind of secondary development proposal enables users to utilize server-side powerful resource and develop various advanced analysis program, which is most convenient and efficient.
     Secondly, the characteristics and applications of cloud computing were introduced. Combined with the concept of cloud resource sharing, the software system based on the C/S mode was extended to the cloud service mode. The power system numerical simulation system scheme based on the cloud concept was designed and the method of collaborative work between the client side and the cloud side was determined as well. In this scheme, cloud-side resource pool can be established quickly and easily. The calculation engine and service interface software are installed on a wide range of computers and the service interface software is connected to the cloud-side dispatching centre so as to establish the resource pool. Multiple interface softwares are installed on the high performance computers so that they can provide services to multiple clients at the same time.
     Finally, the computing ability index and available computing ability index were proposed, which were applied to the cloud service dispatching strategy of the power system numerical simulation system. The cloud-side dispatching centre is responsible for listening to user's service application and monitoring the CPU utilization and memory utilization of various resources and facilities so as to calculate their current available computing ability indexes. When receiving user's service application, the dispatching centre will assign the service interface of the computer whose current available computing abilitiy value is the biggest to the user, which ensures that the computer load balance. Through experiment, it is verified that this system is able to utilize all kinds of idle computing resources to supply service to users without affecting the normal work of resource supplier.
引文
[1]潘学萍.电力系统数值仿真研究综述[J].江苏电机工程,2010,24(1):80-84.
    [2]吕涛.电力系统仿真软件的运用与比较[D].浙江:浙江大学,2005.
    [3]刘鹏著.云计算(第二版)[M].北京:电子工业出版社,2011.
    [4]钱鑫,李琥,施围.电力系统仿真计算软件介绍[J].继电器,2001,30(1):43-46.
    [5]汤涌.电力系统数值仿真技术的现状与发展[J].电力系统自动化,2002,26(17):66-70.
    [6]糜作维,周遥,王林.电力系统仿真工具综述[J].电气开关,2010,48(4):8-14.
    [7]Kezunovic M, Yong Guo. Modeling and simulation of the power transformer faults and related protective relay behavior[J]. IEEE Transactions on Power Delivery, 2000,15(1):44-50.
    [8]Lin Ye, Hai Bo Sun, Xu Ri Song, et al. Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP[J]. Renewable Energy,2012,39(1): 96-106.
    [9]Luwen Cheng, Zhigang Wu, Lingxue Lin, et al. Study on the reliability of integration between smart micro-grid and distribution network [C]. The 2012 Asia-Pacific Power and Energy Engineering Conference,2012:1-5.
    [10]Gjerde S S, Olsen P K, Undeland T M. A transformerless generator-converter concept making feasible a 100 kV low weight offshore wind turbine Part II-The converter[C]. The 2012 IEEE Energy Conversion Congress and Exposition,2012: 253-260.
    [11]Ruhle O. Modern power system analysis tools[C]. The 2011 EPU-CRIS International Conference on Science and Technology,2011:1-6.
    [12]Patil P S, Porate K B. Starting analysis of induction motor:a computer simulation by etap power station[C]. The 2009 2nd International Conference on Emerging Trends in Engineering and Technology,2009:494-499.
    [13]Patel J S, Sinha M N. Power system transient stability analysis using ETAP software[C]. The 2011 National Conference on Recent Trends in Engineering & Technology,2011.
    [14]Hamon C, Elkington K, Ghandhari M. Doubly-fed induction generator modeling and control in DigSilent PowerFactory[C]. The 2010 International Conference on Power System Technology,2010:1-7.
    [15]Sami T, Mahaei S M, Namarvar M T H, et al. Optimal placement of DGs for reliability and loss evaluation using DIgSILENT software[C]. The 2011 10th International Conference on Environment and Electrical Engineering,2011:1-5.
    [16]TongLe Ding, Gang Wang, Haifeng Li. Dynamic modeling and simulation analysis on micro-grid based on DIgSILENT[C]. The 2011 International Conference on Advanced Power System Automation and Protection,2011,2:1240-1245.
    [17]Jae-Ho Kim, Min won Park, AliMH, et al. RTDS analysis of the fault currents characteristics of HTS power cable in utility power network[J]. IEEE Transactions on Applied Superconductivity,2008,18(2):684-688.
    [18]Wei Li, Xiangning Xiao. Electromagnetic and electromechanical transient hybrid real-time simulation technology based on RTDS used in subsynchronous resonance research[C]. The 2010 International Conference on Power System Technology,2010:1-6.
    [19]Dargahi Mahdi, Ghosh Arindam, Ledwich Gerard, et al. Studies in power hardware in the loop (PHIL) simulation using real-time digital simulator (RTDS) [C]. The 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems,2012:1-6.
    [20]罗建民,戚光宇,何正文等.电力系统实时仿真技术研究综述[J].继电器,2006,34(18):79-86.
    [21]Jowder F A L. Influence of mode of operation of the SSSC on the small disturbance and transient stability of a radial power system[J]. IEEE Transactions on Power Systems,2005,20(2):935-942.
    [22]Lingxue Lin, Yao Zhang, Qing Zhong, et al. Studies of commutation failures in HVDC system based on Hypersim[C]. The PowerCon 2006 International Conference on Power System Technology,2006:1-7.
    [23]杨佳,杨洪涛,于跃海等.基于Hypersim实时仿真系统的备自投装置测试[J].电力自动化设备,2008,28(4):117-121.
    [24]冯宇,王淑芳,张慧媛.电力系统数字仿真软件ARENE[J].电力建设,2004,25(1):41-42,61.
    [25]唐宝锋,孙运利,范辉等.基于ADPSS的线路保护数值动模建模方法研究[J].电力系统保护与控制,2012,40(19):66-71.
    [26]FANG Tian, YALOU Li, XIAOXIN Zhou. Research, Development and Application of Advanced Digital Power System Simulator (ADPSS) [C]. The 2008 International Conference on Electrical Engineering,2008:1-6.
    [27]叶廷路,王晓蔚,高骏.电力系统全数字仿真装置在河北电网的应用调试[J].电力系统保护与控制,2009,37(13):104-108,128.
    [28]田芳,宋瑞华,周孝信.全数字实时仿真装置与直流输电控制保护装置的闭环仿真试验及分析[J].电网技术,2010,34(12):57-62.
    [29]邵堃,刘宗田,孙智勇.分布式计算环境的比较研究[J].计算机工程与应用,2001,37(13):26-29.
    [30]宁葵,严毅.分布式计算技术发展研究[J].微机发展,2004,14(8):14-16,20.
    [31]Larry Smarr, Charles E.Catlett. Metacomputing[J]. Communications of the ACM, 1992,35(6):44-52.
    [32]肖连兵,黄林鹏.网格计算综述[J].计算机工程,2002,28(3):1-3,50.
    [33]Ali M, Dong ZY, Li X et al. Applications of grid computing in power systems[C]. Australasian Universities Power Engineering Conference,2005, Hobart,25-28.
    [34]Ali M, Dong ZY, Zhang P. Adoptability of grid computing in power systems analysis, operations and control[J]. IET Generation, Transmission & Distribution, 2009,3(10):949-959.
    [35]Meng K, Dong ZY, Wong KP. Enhancing the computing efficiency of power system dynamic analysis with PSS_E[C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics,2009, San Antonio,11-14.
    [36]PTI Inc. PSS/E 31.0 users manual. New York:Siemens Power Transmission & Distribution Inc,2007.
    [37]Axceleon Inc. EnFuzion 8.0 User Manual [EB/OL], http://www.csse.monash. edu.au/cluster/enfman80/book1.htm.
    [38]刘鹏.云计算的定义和特点[EB/OL],http://www.chinacloud.cn/show. aspx?id=741&cid=17
    [39]沈舒.云计算与网格计算的比较[J].软件导刊,2009,8(12):10-11.
    [40]郑莉,董渊,何江舟著.C++语言程序设计(第4版)[M].北京:清华大学出版社,2010.
    [41](美)查普曼著.MATLAB编程(第4版)[M].北京:科学出版社,2011.
    [42](美)迪特尔著,周靖译.Python编程经典[M].北京:清华大学出版社,2003.
    [43]Wikipedia. Cloud Computing [EB/OL], http://en.wikipedia.org/wiki/Cloud_computing.
    [44]Wikipedia. John McCarthy (computer scientist) [EB/OL], http://en.wikipedia.org/ wiki/John McCar2thv (computer scientist)
    [45]HEWITT C. ORGs for scalable, robust privacy-friendly client cloud computing [J]. IEEE Internet Computing,2008,12(5):96-99.
    [46]WANG Li-zhe, TAO Jie, KUNZE M. Scientific cloud computing:early definition and experience[C]. Proc of the 10th IEEE International Conference on High Performance Computing and Communications,2008:825-830.
    [47]BUYYA R, YEO CS, VENUGOPAL S. Market-oriented cloud computing:vision, hype, and reality for delivering IT services as computing utilities[C]. Proc of the 10th IEEE International Conference on High Performance Computing and Communications,2008:5-13.
    [48]ARMBRUST M, FOX A, GRIFFITH R. Above the clouds:a Berkeley view of cloud computing[R/OL], http://www.grid.pku.edu.cn/cloud/Berkeley-above the clouds.pdf.
    [49]张建勋,古志民,郑超.云计算研究进展综述[J].计算机应用研究,2010,27(2):429-433.
    [50]刘鹏.判断云计算的三条参考标准[J].广播与电视技术,2010,37(10):58-59.
    [51]陈小燕.云计算的应用与研究[J].电脑编程技巧与维护,2012,12:12-13.
    [52]林守林,邵宗有,刘新春等.一种基于CPU利用率的功率控制策略的研究与实现[J].计算机工程与科学,2009,31(z1):282-285.
    [53]张恒旭,杨卫东,薛禹胜.数字仿真中的用户自定义建模技术[J].水电自动化与大坝监测,2003,27(4):1-5,9.
    [54]吴中习,周泽听,张启沛等.《电力系统分析综合程序》用户程序接口(PSASP/UPI)的开发和应用[J].电网技术,1996,20(2):15-20.
    [55]中国电力科学研究院.PSASP6.2用户手册.北京:中国电力科学研究院,2004.
    [56]PTI Inc. PSS/E program application manual(V30.3.2). Siemens Power Transmission & Distribution Inc,2007.
    [57]Federico Milano. An Open Source Power System Analysis Toolbox[J]. IEEE TRANSACTIONS ON POWER SYSTEMS,2005,20(3):1199-1206.
    [58]张采,周孝信.可控串补自抗扰控制器[J].电网技术,1997,21(5):57-61.
    [59]吴军,吴中习.最优潮流在PSASP/UPI环境下的研究和开发[J].电网技术,1997,21(2):70-72,75.
    [60]刘磊,管晓宏.基于改进标准钟方法和全时域仿真的电力系统安全性评估[J].中国电机工程学报,2004,24(1):11-17.
    [61]韩肖清,侯媛媛,韩肖宁.基于PSASP/UPI节点PV曲线的快速求取[J].电力系统及其自动化学报,2008,20(5):45-50.
    [62]王武双,王晓茹,黄飞等.电力系统仿真软件PSASP接口研究与应用[J].电网技术,2011,35(7):113-117.
    [63]糜作维,周遥,王林.电力系统仿真工具综述[J].电气开关,2010,48(4):8-10,14.
    [64]罗中远,张沛超,郁惟镛等.基于PSS/E27的大型电力系统故障分析平台[J].继电器,2004,32(9):57-59,67.
    [65]程改红,徐政.基于粒子群忧化的最忧负荷恢复算法[J].电力系统自动化,2007,31(16):62-65,74.
    [66]廖晓晖,张沛超.基于Python开发PSS/E高级应用程序[J].继电器,2008,36(11):9-12.
    [67]张恒旭,刘玉田,张鹏飞.极端冰雪灾害下电网安全评估需求分析与框架设计[J].中国电机工程学报,2009,29(16):8-14.
    [68]西安交通大学等著.电力系统计算[M].北京:水利电力出版社,1978.
    [69]王锡凡著.现代电力系统分析[M].北京:科学出版社,2003.
    [70]谢茂涛,宋中山.LVS集群系统负载均衡策略的研究[J].计算机工程与科学,2006,28(8):30-31,39.
    [71]万本庭,陈明,鲁强.一种QoS Min-Min异构分布式系统任务调度策略[J].计算机工程,2007,33(11):50-52.
    [72]刘嫒媛,高庆一,陈阳.虚拟计算环境下虚拟机资源负载均衡方法[J].计算机工程,2010,36(16):30-32.
    [73]胡志刚,欧阳晟,阎朝坤.云环境下面向能耗降低的资源负载均衡方法[J].计算机工程,2012,38(5):53-55.
    [74]肖文名,李永生,陈晓宇.高性能计算系统性能评测关键问题探讨[J].计算系统应用,2008,(3):115-118.
    [75]殷新春,陈崚,谢立.一种选择最佳处理器个数的策略[J].计算机应用,2003,4(23):14-15.
    [76]Poly Wonopoulos C D, Banerjee U. Processor allocation for horizontal and vertical parallelism and related speedup bounds. IEEE Trans On Comp,1987, 36(4):410-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700