用户名: 密码: 验证码:
沥青路面典型基层材料和结构性能试验与工程对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为国民经济大动脉,公路的行车舒适性、使用寿命、抗重轴载的破坏能力等使用性能是工程建设的重心,其中对行车质量的保持程度,尤为公路使用者和建设者的关注热点。而这些性能的实现无疑与基层这一主要的受力层和结构转换层息息相关。路用性能优越的基层,将提高整个公路的使用质量和运营寿命。
     为深入了解柔性、半刚性、刚性三种不同类型的基层对沥青路面使用性能的影响,提出与气候和交通等条件相适应的基层材料结构,本项目在山西省大新高速公路铺筑了实体工程,该试验路段囊括了国内外高等级公路上常见且较合理的基层结构类型,包括4种沥青路面面层厚度结构组合,4种混合料级配类型,4种改性沥青,7种基层结构组合和2种复合式路面结构,总计22种沥青路面结构总长7公里,其在国内沥青路面性能研究中属首次。
     本文依托实体工程,针对目前公路沥青路面常用的柔性基层、刚性基层、半刚性基层等三类基层类型的材料设计与路用性能展开室内试验研究与实体工程现场施工与性能检测验证。采用正交敏感分析方法,结合BISAR程序计算结果,深入分析了基层力学设计参数;结合试验路的铺筑,对三类基层的施工技术进行比较研究,并对试验路的弯沉和裂缝进行了长期的跟踪检测,对试验路裂缝问题进行成因分析并提出有效的处治措施;运用寿命周期费用分析法分析了基层设计对沥青路面建设费用的影响。
     研究认为:
     (1)柔性基层材料组成设计时,采用马歇尔击实成型下的力学指标法能够取得良好的设计效果。采用大马歇尔击实成型条件下,ATB-30级配的力学指标法能够获得良好的低温抗裂性能,并且疲劳性能和高温抗变形性能也较好;ATB-25级配的力学指标法能够同时获得良好的高低温抗变形和疲劳特性;AC-30Ⅱ级配的力学指标法也能够同时获得良好的高低温抗变形和耐疲劳特性;AM-30级配的传统马歇尔法能够获得良好的低温抗裂性能。ATB-30表现出较其他几种类型级配更为优越的高温抗变形、低温抗裂和耐疲劳性能。
     (2)对比贫混凝土、高掺量粉煤灰混凝土基层两种刚性基层的配合比设计、强度、刚度等特性得出:随着粉煤灰含量的增加,水泥含量的减少,抗压强度和抗折强度都逐渐减小,且减小趋势逐渐变缓。粉煤灰在混凝土中起着微集料效应、火山灰效应和滚珠效应,粉煤灰、水泥、集料的不同比例及龄期的变化影响着该类材料的力学特性。
     (3)水泥稳定基层材料的抗压强度>抗折强度,抗压弹性模量>抗折弹性模量,随着龄期的增长,水泥稳定基层材料的强度和模量均逐渐增大。抗压强度随龄期变化规律的线性回归结果:抗压强度Rc=0.0549 T(龄期)+3.5782,R2=0.999,抗压强度随龄期的变化速率前期和后期相差较小。
     (4)路面结构设计中关键因素的正交敏感分析表明,各结构因素的敏感性大小排列为:基层厚度>底基层模量>基层模量;路面承载力计算结果表明,路面承载能力大小排列为刚性基层>半刚性基层>柔性基层。
     (5)柔性基层的施工中施工厚度、温度的选择和防止离析是关键,施工厚度可以加大到粒径的5倍以上,压实温度的控制宜采用粘温曲线确定的温度进行,在温度降低到80℃以前完成碾压成型;刚性基层施工时整平难度较大,可通过添加外掺剂来改善施工性能;半刚性基层的施工过程中,应注意控制含水量和水泥等胶凝材料的用量,以减少半刚性基层裂缝的产生。
     (6)实体工程沥青路面裂缝的分布密度排列为:柔性基层<半刚性基层<刚性基层,裂缝的宽度密度排列为:柔性基层<半刚性基层<刚性基层,最大裂缝宽度排列为:柔性基层<半刚性基层<刚性基层。裂缝处钻芯取样结果表明,裂缝主要为基层反射裂缝,降温速度快和温度过低是导致基层开裂产生路面反射裂缝从而使试验路出现裂缝的主要原因。
     (7)不同基层类型沥青路面的寿命周期费用分析经济评价结果表明,柔性基层较一般半刚性基层沥青路面使用寿命长,能在较长时间内保持较高的服务能力,相对减少行程时间费、车辆运行费和事故费。
     (8)在选择基层类型时,要深入分析刚性、柔性、半刚性基层各自的特点,结合当地的交通量大小、气候条件、水温地质条件,在保证基层满足基本路用性能的前提下,着重考虑主要性能要求,同时兼顾次要性能要求,经济合理地选用可获得最大路用效益的基层。
     研究成果有助于提高我国公路工程技术水平和公路工程建设质量,可为相关规范的修订提供参考。
As the aorta of the national economy, the highway attracts much attention, its performances such as drive comfort, service life and anti-heavy-duty capacity, especially the maintenance of riding quality. And all these performances are closely linked with the roadbase, which is the main stress layer and structural conversion layer. Base layer with excellent performance will improve the operating quality and extend the service life of highway.
     In order to study the impact from flexible base, semi-rigid base and rigid base on the performances of asphalt pavement, and propose the reasonable structure fits the climate condition and transportation condition, Test road with usual and rational base structures at home and abroad was paved in Datong-Xin guangwu expressway in Shanxi Province. The test road includes four pavement structure combinations, four gradation types, four types of modified asphalt, seven base layer structure combinations and two kinds of composite pavement structures, has 22 pavement structure types and a total length of 7km. Both pavement structure types and total length are the firth time in china,
     Relying on real engineering, according to test indoor and test road outdoor, the material design and performance of three main base tapes:flexible base, semi-rigid base and rigid base were studied. Using the orthogonal sensitive analysis method and the BISAR procedure, the design parameter of roadbase courses were analyzed in detail; Combined with the construction of test road, the construction technology of three roadbase courses were compared; with the continuous examination on deflection and cracks, the cause was analyzed and effective treatments were proposed; using the life-cycle-cost-analytic method, the influence on the constructing cost of asphalt pavement about the design of roadbase was analyzed.
     The conclusions as follows:
     (1) With the large-scale Marshall method, Flexible base materials ATB-30 has the excellent anti-distortion capacity under high temperature, crack resistance performance under low temperature and fatigue-tolerance;using physical-mechanical method, ATB-25 has excellent low temperature crack resistance performance, the fatigue-tolerance and anti-distortion capacity under high temperature are also good; using physical-mechanical method, AC-30Ⅱalso has good fatigue-tolerance, anti-distortion capacity under high temperature and crack resistance performance under low temperature; AM-30 with traditional Marshall method has excellent crack resistance performance. Flexible base materials ATB-30 has the more superior anti-distortion capacity under high temperature, anti-crack capacity under low temperature and fatigue-tolerance.
     (2) Comparison the proportioning design, strength and rigidity of lean concrete and high fly ash content concrete:along with the addition of the flying ash and the reduction of cement, the compressive strength and rupture strength all reduce and the reduce trend became weaker. The fly ash plays micro-aggregate effect, pozzolanic effect and ball grinding effect. The proportion and age of fly ash, cement and aggregate affect the mechanical performance.
     (3) Compressive strength>flexural strength, compressive elastic modulus> flexural elastic modulus. With the increase of age, both the strength and modulus of cement-stabilized macadam are increasing. From linear equation:compressive strength Rc=0.0549T(age)+3.5782,R2= 0.999, the variation of compressive strength has little difference between pre-ratio and later.
     (4)Critical factors orthogonal sensitive analysis in pavement structure design show that the sensitivity sequence is thickness of base> subbase modulus> rigid base >base modulus, the calculation result of the bearing capacity of pavement show that the bearing capacity sequence is:rigid base>semi-rigid base> flexible base.
     (5) In the construction of flexible base, the thickness, temperature and prevent separation are key technologies, the construction thickness could be more than 5 times of grain diameter, control of compaction temperature should be determine by viscosity-temperature curve, and the roller compaction should complete before the temperature drops to 80℃.
     (6) The distribution density sequence of The cracks on asphalt pavement construction entity is:flexible base< semi-rigid base< rigid base, the width density sequence of crack is flexible base< semi-rigid base< rigid base, the maximum width sequence of crack is flexible base< semi-rigid base< rigid base. The result of the core-drilling at crack show that the main crack pattern is basement reflect crack. the too fast temperature drop speed and the low temperature is the main reason of the base course crack and the generation of reflect crack, which produce the crack on test road.
     (7) Evaluation different basement asphalt pavement with method of life cycle cost analysis. The results show that flexible base have a long service life than semi-rigid base; hold its service ability in a longer time; reduce the travel time, vehicles running costs and accident cost.
     (8) There are several essential points should be considered in basement pattern selection. The characteristics of rigid base, semi-rigid base and flexible base should be deeply analyzed combined with the local traffic volume, climate condition and hydrogeology condition. Consider the main performance requirements first and make a compromise on the subordinate performance requirements on the premise of guarantee the principle base performance requirements, and select the maximum economic efficiency base.
引文
[1]Asphalt Stabilized Open Graded Base Course. http://www.dot.wisconsin.gov/business/engrserv/airports/documents/p401-010..doc
    [2]沈金安.沥青及沥青混合料的路用性能.北京:人民交通出版社,2001.1.
    [3]周庆桐,王清池,韩绍如.日本沥青路面规范(1978年版).北京:人民交通出版社,1983.3.
    [4]David E.Newcomb, Mark Buncher, Ira J.Huddleston. Concepts of Perpetual Pavements. TRB Circular No.503:Perpetual Bituminous Pavements, December 2001.
    [5]Jim St.Martin, John T.Harvey, Fenella long, Eul-Bum Lee, Carl L.Monismith, Kevin Herritt. Long-life Rehabilitation Design and Construction:Ⅰ—710 Freeway, long Beach, California. TRB Circular No.503:Perpetual Bituminous Pavements, December 2001.
    [6]Perpetual Pavements—A Synthesis. APA (Asphslt Pavement Alliance),2002.
    [7]Prithvi S.Kandhal, E.R.Brown. Comparative Evaluation of 4-inch and 6-inch Diameter Specimens for Testing Large Stone Asphalt Mixes. NCAT Report No.90-5.
    [8]Prithvi S.Kandhal. Large Stone Asphalt mixes:Design and Construction. NCAT Report No.90-4, February 1990.
    [9]公路沥青路面施工技术规范(JTG F40—2004),人民交通出版社,2005.1;
    [10]公路沥青路面设计规范(JTJ 014—97),人民交通出版社,1997.10;
    [11]公路工程沥青及沥青混合料试验规程(JTJ 052—2000),人民交通出版社,2000.8;
    [12]公路工程无机结合料稳定材料试验规程(JTJ 057—94),人民交通出版社,1994.12;
    [13]公路工程水泥混凝土试验规程(JTJ 053—94),人民交通出版社,1994.12;
    [14]公路路面基层施工技术规范(JTJ 034—93),人民交通出版社,1994.7;
    [15]路基路面现场测试规程(JTJ 059—95),人民交通出版社,2000.2;
    [16]杨群,高速公路沥青稳定基层结构与设计方法研究,东南大学博士学位论文,2001.12:
    [17]葛折圣,黄晓明,根据疲劳性能优选沥青稳定基层的矿料级配,东南大学学报,Vol.31 No.3,2001.5:
    [18]哈尔滨工业大学交通科学与工程学院,柔性基层室内试验阶段性报告,哈尔滨工业大学,2002.1;
    [19]仰建岗,贫混凝土基层沥青路面结构分析与设计研究,硕士论文,2003.6;
    [20]刘伟,贫混凝土基层混凝土路面结构设计研究,硕士论文,2003.5;
    [21]严家彶,道路建筑材料,人民交通出版社,1996.6;
    [22]沙庆林,高等级公路半刚性基层沥青路面,人民交通出版社,1999.8;
    [23]汤林新等,高等级公路路面耐久性,人民交通出版社,1996.3;
    [24]谭淑兰,粉煤灰在沈本高速公路试验路上的研究及应用,辽宁交通科技,1997.2;
    [25]纪辉,陈宝玺,王贵增,关于粉煤灰、石灰、碎石基层最佳配合比的试验研究,森林工程,1997.6;
    [26]颜杏生,饶和根,粉煤灰在高速公路基层中的应用,江西建材,2002.2;
    [27]王树森,级配碎石基层材料组成设计与工艺控制的研究,公路,2001.2;
    [28]王龙,刘东亮,沥青碎石与级配碎石过渡层在防止半刚性基层反射裂缝的对比分析,东北公路,2002.4;
    [29]谭华,贫混凝土基层性能的研究及应用前景分析,广西交通科技,2000.12;
    [30]陈英,孙巍,张宏莉,黄在芳,贫混凝土应用于沥青路面基层,黑龙江交通科技,1999.1:
    [31]徐江萍,王秉纲,陈国甫,路晋,王红领,贫混凝土基层材料强度与龄期关系,长安大学学报(自然科学版),2004.5;
    [32]徐江萍,王秉纲,白祥林,陈国甫,王红领,罗晓珊,道路基层贫混凝土抗压抗折强度特性的研究,东北公路,2002.4
    [33]叶燕呼,李宏标,孙长新,广东省公路半刚性基层和沥青面层材料路用性能的研究,广东公路交通,2001.3;
    [34]应荣华,周志刚,邓筱鹏,外高桥港区道路基层材料试验研究,公路,2001.2;
    [35]徐江萍等,贫混凝土基层材料弯拉弹性模量的试验,长安大学学报(自然科学版),2004.3;
    [36]张云萍,浅谈半刚性基层材料的强度形成原理及缩裂特征,河南科技,2004.5;
    [37]刘清芳,蒋甫,应荣华,水泥稳定碎石半刚性基层材料的抗裂性能分析,中南公路工程,2004.6;
    [38]萧赓等,水泥粉煤灰级配碎石基层混合料的路用性能研究,重庆交通学院学报, 2001.11:
    [39]李农,公路工程材料试验手册,人民交通出版社,2003.4;
    [40]美国国家科学研究院编著,水泥混凝土公路技术,人民交通出版社,2000;
    [41]郑传超,王秉纲,道路结构力学计算,人民交通出版社,2003.1;
    [42]武和平,高等级公路路面设计方法,人民交通出版社,2000.1;
    [43]王秉纲,邓学钧,路面力学数值计算,人民交通出版社,1990.9;
    [44]朱照宏,许志鸿,柔性路面设计理论与方法,1987.9;
    [45]林绣贤,柔性路面结构设计方法,人民交通出版社,1988.11;
    [46]黄卫,钱振东,高等沥青路面设计理论与方法,科学出版社,2001.8;
    [47]汪荣鑫,数理统计,西安交通大学出版社,2003.1;
    [48]何兆益,杨锡武,路基路面工程,重庆交通大学出版社,2001.10;
    [49]徐培华,王安玲,公路工程混合料配合比设计与试验技术手册,人民交通出版社,2001.3:
    [50][匈]A·凯兹迪·张起森,梁锡三译,稳定土道路,人民交通出版社,1989.2;
    [51]沙爱民,半刚性路面结构与性能,人民交通出版社,1998.3;
    [52]李宇峙,邵腊庚,路基路面工程检测技术,人民交通出版社,2002.12;
    [53]杨群,高速公路沥青稳定基层结构与设计方法研究,东南大学博士学位论文,2001.12;
    [54]韩子东,道路结构温度场研究,长安大学硕士学位论文,2001.5;
    [55]吕伟民,沥青混合料设计原理与方法,同济大学出版社,2001.1;
    [56]郝培文,不同沥青用量与级配组成对沥青混合料抗车辙性能的影响,西安公路交通大学学报,Vol.18 No.3(B),1998.7;
    [57]葛折圣,黄晓明,根据疲劳性能优选沥青稳定基层的矿料级配,东南大学学报,Vol.31 No.3,2001.5;
    [58]易湘舒,多年冻土地区沥青稳定碎石基层混合料路用性能研究,长安大学硕士学位论文,2003.6;
    [59]王富玉,大粒径沥青混合料(LSM)的路用性能研究,长安大学硕士学位论文,2001.6:
    [60]李美江,道路材料振动压实特性研究,长安大学硕士学位论文,2002.5;
    [61]江苏省交通科学研究院,LSM混合料设计方法研究.2003.9;
    [62]黄晓明,车同芝,张晓冰,沥青稳定基层路面结构设计综述,河南交通科技,Vol.14No.1,1999.6;
    [63]石宁,长寿命沥青路面概述,国外公路,Vol.20 No.1,2000.2;
    [64]曾宇彤,陈湘华,王端宜,美国永久性路面结构,中外公路,Vol.23 No.3,2003.6;
    [65]哈尔滨工业大学交通科学与工程学院,柔性基层室内试验阶段性报告,哈尔滨工业大学,2002.1。
    [66]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001.
    [67]沈金安.国外沥青路面设计方法总汇[M].北京:人民交通出版社,2004:70-200
    [68]王旭东,沙爱民,许志鸿.沥青路面材料动力特性与动态参数[M]北京:人民交通出版社,2002:122—152
    [69]沙爱民,半刚性路面材料结构与性能[M].北京:人民交通出版社,1998:92-107
    [70]陈传尧,疲劳与断裂[M].武汉:华中科技大学出版社,2001
    [71]高镇同,疲劳性能测试[M].北京:国防工业出版社,1980:2-93
    [71]程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990:132-145
    [72]姚祖康.对国外沥青路面设计指标的评述[J].公路,2003,(2):18~25
    [73]Suresh著,王光中等译.材料的疲劳[M].北京:国防工业出版社.1993
    [74]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社.1999:91—107
    [75]Development and validation of a mechanistic recursive-incremental deterioration model for cement stabilized base courses Dr..Christian Busch TRB2006Annual CD-ROM
    [76]沙爱民,张登良,许永明.无机结合料稳定级配砂砾的疲劳特性研究[J].土木工程学报,1993,26(1):68—73
    [77]Judycki J. Comparison of fatigue criteria for flexible and semi-rigid pavements[C].. Proceedings,8th International Conference on Asphalt Pavements, Seattle,1997, Vol.2.
    [78]刘忠根等.半刚性基层材料室内试验研究[J].吉林建筑学院学报,2003,20(1):38—42
    [79]张立翔.混凝土疲劳损伤强度可靠置信限分析[J].工程力学.2004,21(4):139~43
    [80]姚卫星,杨晓华.疲劳裂纹随机扩展模型进展.力学与实践[J].1995,17(3):1~7
    [81]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报,1994,27(3):33—40
    [82]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997
    [83]郑健龙,周志刚,张起森.沥青路面抗裂设计理论与方法[M].北京:人民交通出版社,2002:80—112
    [84]童小燕,王德俊,徐濒.疲劳损伤过程的热能耗散分析[J].金属学报,1992,28(4):163~169
    [85]沈成康.断裂力学[M].上海:同济大学出版社,1996:43-87
    [86]周志刚.交通荷载下沥青类路面疲劳损伤开裂研究[D].武汉:中南大学,2003[38]曾春花.疲劳分析方法及应用[M].北京:国防工业出版社,1991:20-100
    [87]葛折圣.沥青稳定基层疲劳性能研究[J].华东公路.2001,130(3):62-66
    [88]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986:18-66
    [89]刘爱萍.二灰碎石基层疲劳性能的模型试验研究[J].四川大学学报,2001,33(2):22-26
    [90]胡力群.半刚性基层材料结构类型与组成设计研究[D].西安:长安大学,2004
    [91]张敏霞.循环荷载水泥土的疲劳特性及损伤行为研究[D].福州:福州大学,2004
    [92]邓学钧,黄晓明,杨军.半刚性路面疲劳特性的环道试验研究[J].东南大学学报,1995,25(1):94--99
    [93]王宏畅,黄晓明,傅智.半刚性基层材料路用性能的试验研究[J].公路交通科技,2005.11.
    [94]潘友强,杨军.国内外足尺加速路面试验研究概况[J].中外公路,2005,12:23-26
    [95]卢喜经.混凝土疲劳断裂及尺寸效应研究[D].大连:大连理工大学,2000.
    [96]孟书涛.半刚性基层沥青路面性能加速加载试验研究[J].公路交通科技,1997,14(1):59-64
    [97]吴赣昌.沥青路面温度裂缝尖端的应力强度因子分析[J].中国公路学报,1995(2):18-37
    [98]谢文忠,余叔藩.半刚性基层沥青路面结构疲劳寿命的环道试验研究[J].中国公路学报,1990,3(3):11-20
    [99]徐东伟.沥青路面加铺层力学分析及疲劳寿命预估[D].西安:长安大学,2005
    [100]吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析[J].中国公路学 报.1998(1):21-28.
    [101]易成.疲劳裂纹扩展理论及其在混凝土疲劳性能研究中的应用[J].哈尔滨建筑大学学报,2000(10):37-41
    [102]王宏畅,黄晓明,傅智.半刚性基层表面裂缝影响因素[J].交通运输工程学报,2005(6):37-45 [75]周富杰,孙立军.沥青罩面层荷载应力的三维有限元分析[J].中国公路学报.1999.10
    [103]王宏畅,黄晓明.高等级沥青路面基层底裂缝三维数值分析[J].公路交通科技,2005(12)
    [104]彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算方法及其应用[J].中国公路学报,1998(4):16-25
    [105]蔡敏,蔡四维.混凝土与纤维混凝土的疲劳裂纹扩展分析[J].东南大学学报,1998(9)
    [106]岳福青,杨春风.半刚性基层沥青路面温缩裂缝的有限元分析[J].桂林工学院学报,2004(1)
    [107]Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Final Report, Part 2 chapter2, Material Characterization, March 2004.
    [108]Shell International Petroleum Co. Ltd. Shell Pavement Design Manual-Asphalt Pavements and Overlays for Road Traffic London,1978.
    [109]H L Theyse, M de Beer, F C Rust, Overview of the South African Mechanistic Pavement Design Analysis Method, Paper No.961294,75th TRB Meeting, January 7-11,1996,Washington,D.C.
    [110]Jameson G, Sharp K and Potter D. New guidelines for the design of flexible pavements for Australia conditions. Proceeding 9th International Conference on Asphalt Pavements, Copenhagen,2002.
    [111]de Beer M. Developments in the failure criteria of the South African mechanistic design Procedure for asphalt pavements. Proceedings,7th International Conference on Asphalt Pavements, Nottingham,1992, Vol.3.
    [112]Valkering C P and Stapel F D R. The Shell Pavement design method on a personal computer. Proceedings 7th International Conference on Asphalt Pavements, Nottingham,1992, vol.1.
    [113]F reeme C R, de Beer M and Viljoen A W. The behavior and mechanistic design of asphalt pavements. Proceedings,6th International Conference on Structural Design of Asphalt Pavements, Ann Arbor,1987, Vol.1.
    [114]Kenis W J, Sherwood J A and McM ahon R F. Verification and APPlication of the VESYS structural subsystem.Proceedding s,5th International Conference on 5 Structural Deslgn of Asphalt Pavements, Ann Arbor,1982, Vol.1.
    [115]Judycki J. Comparison of fatigue criteria for flexible and semi-rigid pavements. Proceedings,8th International Conference on Asphalt Pavements, Seattle,1997, Vol.2.
    [116]Autret P, De Boissoudy A B and Marchand J P. ALlzE 111 practice. Proceedings,5th International Conference on Structural Design of Asphalt Pavements, Ann Arbor,1982, Vol.1.
    [117]Troshchenko V.T. Some peculiarities of fatigue crack growth at various stages of its development[J]. Strength of materials Vol.35, No.6,2003.
    [118]Freeme C R, Maree J H and Viljoen A W. Mechanistic design of asphalt pavements and verification using the heavy vehicle simulator. Proceedings.5th International Conference on Structural Design of Asphalt Pavements, Ann Arbor,1982, Vol. 1.
    [119]Ivasyshyn A.D., Vasyliv B.D.. Effects of the size and form of specimens on the diagram of growth rates of fatigue cracks[J]. Materials Science Vol.37, No.6,2001.
    [120]A. C. collop, D. cebon. a theoretical analysis of fatigue cracking in flexible pavements [J].
    [121]刘中林,大粒径沥青混合料组成结构的研究[J].土木工程学报,2004.37(07):59—63.
    [122]顾辉,王惠勇,沥青稳定碎石不同成型方法对比研究[J]-现代交通技术,2007.4(01):12—15.
    [123]解晓光,压实工艺对沥青混凝土力学性能的影响[J].东北公路,2001.24(02):29-31.
    [124]解晓光,沥青混合料马歇尔击实法与振动压实法成型工艺的比较研究[J].中国公路学报,2001.14(01):9—12.
    [125]魏建国,基于不同成型方法的沥青碎石混合料性能对比[J].交通运输工程学报, 2007.7(02):41—45.
    [126]曹卫东,集料级配评估的贝雷法[J].中外公路,2005(01):84.87.20.李冬仓,朱敏慧,高速公路沥青稳定碎石柔性基层试验段的施工[J].公路交通科技(应用技术版),2007(06):52—54.
    [127]陆长兵,大粒径沥青稳定碎石基层性能研究[D],硕士,东南大学,南京,2004
    [128]胡斌,沥青路面柔性基层(沥青稳定碎石)应用研究[D],硕士,长安大学,西安,2005
    [129]李福普,沥青稳定碎石与级配碎石应用技术研究[J].公路交通科技(应用技术版),2007(07):42-46.
    [130]蔡声佩,沥青碎石基层在老路改造中的应用研究[J]公路,2003(12):115-117.
    [131]许爱丽,大粒径沥青碎石基层沥青路面力学分析[J].河北工业大学学报,2007.36(06):115-118.
    [132]王玲娟,沥青稳定碎石基层混合料设计方法和路用性能研究[D],硕士,长安大学,西安,2004
    [133]冯新军,郝培文,查旭东,ATB40在旧水泥混凝土路面改建中的应用技术研究[J]公路122
    [134]葛折圣,沥青稳定碎石基层混合料矿料级配的优化[J].中国公路学报,2002.15(04):4—6.
    [135]赵新坡,密级配沥青稳定碎石基层材料与性能研究[D],硕士,长安大学,西安,2006
    [136]何仁清,ATB-30沥青稳定碎石下面层在工程实践中的应用[J].公路,2005(101:125—130.
    [137]张起森,沥青路面在美国的应用与发展[J].国外公路,2001.21(01):1-5.
    [138]王国忠,高寒地区沥青稳定碎石基层柔性路面适应性研究[D],博士,南京林业大学,南京,2006
    [139]潘勐,永久性路面综述[J].北方交通,2006(08):38—42.
    [140]胡德明,级配变化对混合料性质及路用性能的影响[J].武汉理工大学学报,2007.29(09):47—50.22.
    [141]邱仁科,沥青稳定碎石ATB25的配合比优选及施工工艺研究[J]-公路交通科技(应用技术版),2007(07):47—50.
    [142]叶松,大粒径沥青混凝土路用性能及施工特性研究[D],硕士论文,长安大学,西安,2005
    [143]韩庆华.张永德等,柔性基层沥青路面车辙深度影响因素分析[J],交通标准化,2009年,第一期
    [144]滕旭秋,李晓钟,沥青碎石基层混合料设计及碾压工艺研究[J],兰州交通大学学报(自然科学版),2007,V26(4)
    [145]李长来,温度对沥青混合料压实性能的影响[J].公路,1999(12):26.28.
    [146]蒋国良,级配和成型方法对沥青混合料性能的影响[J].公路,2002(06):129-133.
    [147]李立寒,麻旭荣,级配离析沥青混合料性能的试验研究[J].同济大学学报(自然科学版),2007.35(12):1622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700