用户名: 密码: 验证码:
纳米尖晶石型铁氧体和壳聚糖基磁性载体的制备与吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近来,纳米尖晶石型铁氧体作为一种重要的纳米磁性材料,由于其独特的磁学、电学和光学特性及其在磁靶向、磁吸附和磁分离领域的广泛应用而引起人们的极大关注。然而要在上述领域进行应用,首先要满足小粒径和高分散性的条件,其次还要满足表面具有用于负载药物、核素或金属离子的丰富功能基团的条件。因此,纳米尖晶石型铁氧体的控制制备及改性引起了全世界范围内科学家的研究兴趣。本论文在纳米尖晶石型铁氧体的制备、改性及其改性载体对金属离子的吸附方面,尤其在磁性载体对金属离子的吸附机理方面进行了研究。
     在第二章中,首先采用相对简单的低温固相反应法和化学共沉淀法分别制备了CoFe_2O_4、ZnFe_2O_4、Co_(0.5)Zn_(0.5)Fe_2O_4和Fe304几种典型的尖晶石型铁氧体纳米粒子,并对其进行了表征。结合测试结果,对几种铁氧体纳米粒子的磁性来源及其表现出的磁性特征进行了较深入地探讨和理论分析;对ZnFe_2O_4和Fe304纳米粒子表现出的异于块体材料的超顺磁性的原因进行了解释。在对几种铁氧体纳米粒子的饱和磁化强度进行对比的基础上,确定选用不易被氧化的CoFe_2O_4纳米粒子作为磁核,采用低温固相反应法进行制备。
     在第三章中,为了解决传统低温固相反应法制备CoFe_2O_4纳米粒子过程中普遍存在的团聚现象,提高产物分散性,提出了在前驱体混合物中分别添加惰性无机盐NaCl或分散剂PVA的新方法——盐助低温固相反应法和PVA助低温固相反应法。首先,分别研究了NaCl和PVA的用量以及煅烧温度对产物物相、分散性和形貌的影响,结果表明两反应体系在最佳条件下制得的CoFe_2O_4纳米粒子的D_(XRD)分别为16.1nm和16.7nm,比表面积分别为101.12m~2/g和68.74m~2/g,较传统低温固相反应法制得的CoFe_2O_4纳米粒子的比表面明显增大,团聚度明显减小;其次,探讨了盐助和PVA助低温固相反应法合成CoFe_2O_4纳米粒子的反应机理;最后,考察了NaCl和PVA对粒子分散性和形貌影响的可能机理。
     第四章以盐助低温固相反应法制备的高分散CoFe_2O_4纳米粒子作为磁核,以壳聚糖作为改性基体材料,分别制备了磁性壳聚糖、磁性N-位壳聚糖和磁性O-位壳聚糖。首先,用戊二醛作为交联剂,采用传统乳化交联法制备了以交联壳聚糖作为包覆层的磁性壳聚糖;其次,采用1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDAC)作为零-长程交联剂,对壳聚糖的C-2位一NH_2基进行酰胺化,分别制备了以EDTA-壳聚糖和DTPA-壳聚糖作为复合包覆层的磁性N-位壳聚糖;最后,采用一氯乙酸对壳聚糖的C-6位-OH基进行羧甲基化,再对羧甲基化壳聚糖进行酸酐化,然后采用醇解反应将酸酐化的羧甲基壳聚糖和CoFe_2O_4纳米粒子连接在一起,制备磁性O-位壳聚糖。至此,以壳聚糖作为基体材料的三种磁性载体被制备。
     第五章,分别以重金属离子Cu~(2+)和Ni~(2+)作为吸附对象,首先对第四章制得的三种壳聚糖基磁性载体的吸附性能进行了对比研究,结果表明以壳聚糖-螯合剂(EDTA/DTPA)复合材料作为改性材料制得的磁性N-位壳聚糖的吸附效果最好,磁性O-位壳聚糖次之,磁性壳聚糖最差。其次针对目前磁性壳聚糖载体的研究多以制备为主,对其性能研究较少,涉及机理的研究更是少之又少的现状,对三种壳聚糖基磁性载体对金属离子的吸附机理进行了较为深入地研究,并结合IR和XPS分析结果,分别确定了各载体参与吸附螯合的功能基团,提出了几种吸附模型,结果表明磁性壳聚糖的吸附机理类似于N·N型螯合剂,磁性N-位壳聚糖和磁性O-位壳聚糖的吸附机理则类似于N·O型螯合剂。
Recently, nanometer spinel-type ferrites, as important nanometer magnetic materials, have attracted huge attention due to their unique magnetism, electricity and optics properties along with wide applications in magnetic targeted, magnetic adsorption and magnetic separation fields. However, several properties are required for the application in the above outlined several fields:they must be small in diameter and good in dispersibility, and must have functional groups of loading drug, radionuclide or metal ions. Therefore, controlled synthesis and modification of nanometer spinel-type ferrites have drawn continuous and worldwide research attention. In this dissertation, valuable explorations have been carried out on the preparation and modification of nanometer spinel-type ferrites along with metal ions adsorption aspect of modified carriers, especially in metal ions adsorption mechanism of magnetic carriers.
     In chapter 2, spinel-type CoFe_2O_4, ZnFe_2O_4, Co_(0.5)Zn_(0.5)Fe_20_4 and Fe_3O_4 nanoparticles were prepared by relatively facile low temperature solid state method and chemical co-precipitation method, respectively, and were characterized. Uniting test results, the magnetism origin and their magnetic characteristics were discussed and analyzed, and the reasons of presenting superparamagnetism for ZnFe_2O_4 and Fe_3O_4 nanoparticles different from block materials were interpreted. Through comparing with the saturated magnetization of above outlined spinel-type ferrites nanoparticles, CoFe_2O_4 nanoparticles were chosen as magnetic core and low temperature solid state method chosen as synthesis method.
     In chapter 3, to solve the problem of particle agglomeration widely existing in traditional low temperature solid state synthesis of CoFe_2O_4 nanoparticles and enhance dispersibility of resultants, new methods, salt-assisted low temperature solid state method and PVA-assisted low temperature solid state method through introducing of inner inorganic salt NaCl or dispersant PVA in precursor mixtures were come up. Firstly, the effects on the phase, dispersibility and morphology of the resultants for NaCl and PVA addition amount and calcined temperature were investigated, respectively. The results indicated that the D_(XRD) of the as-prepared CoFe_2O_4 nanoparticles at optimal condition was 16.1nm and 16.7nm, and the surface area was 101.12m2/g and 68.74m~2/g, respectively, it can be seen that the surface area increased apparently and the degree of agglomeration decreased apparently compared with the as-prepared CoFe_2O_4 nanoparticles via traditional low temperature solid state method. Secondly, the reaction mechanism of salt-assisted and PVA-assisted low temperature solid state synthesis of CoFe_2O_4 nanoparticles was discussed. Finally, the possible influence mechanism on particles dispersibility and morphology of NaCl and PVA was studied.
     In chapter 4, magnetic chitosan, magnetic N-site chitosan and magnetic O-site chitosan were prepared using the high dispersive CoFe_2O_4 nanoparticles prepared by salt-assisted low temperature solid state method as magnetic core and using chitosan as modifying based materials. First of all, using glutaraldehyde as crosslinking agent, magnetic chitosan which using crosslinking chitosan as coating layer was prepared via traditional emulsion crosslinking method. Next, using 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride (EDAC) as zero-length crosslinking agent, through acylating C-2 site-NH_2 of chitosan, magnetic N-site chitosan which using EDTA-chitosan and DTPA-chitosan as hybrid coating layer, respectively, was prepared. Lastly, magnetic O-site chitosan was prepared through carboxymethylating C-6 site—OH of chitosan, anhydriding of carboxymethyl chitosan and alcoholysis reacting of anhydrided-chitosan, in turn. Thus, three kind of magnetic carriers using chitosan as based materials were prepared.
     In chapter 5, firstly, the contrastive research of adsorption properties of three kind of magnetic chitosan carriers prepared in chapter 4 was carried out using heavy metal ions Cu~(2+)and Ni~(2+) as adsorption object, respectively. The results indicated that the adsorption properties of magnetic N-site chitosan using chitosan-chelating agent (EDTA/DTPA) hybrid materials as modifying materials were best, magnetic O-site chitosan were next and magnetic chitosan were last. Secondly, aiming at the actuality that the research of magnetic chitosan carriers mostly concentrated on preparation, less research on adsorption properties, and much less research on adsorption mechanism, the adsorption mechanism of three kind of magnetic chitosan carriers for heavy metal ions was studied, uniting the analysis results of IR and XPS, the functional groups of participating in chelating were confirmed, the adsorption model was put forward, and the results indicated that the adsorption mechanism of magnetic chitosan was similar to NN-type chelating agent, and that magnetic N-site chitosan and magnetic O-site chitosan were similar to N·O-type chelating agent.
引文
[1]李凤生.超细粉体技术.北京:国防工业出版社,2000
    [2]张立德.超微粉制备与应用研究.北京:中国石化出版社,2001
    [3]都有为.纳米磁性材料及其应用.中国高校科技与产业化,2002,7:36-39
    [4]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [5]Kubo R, Kawabata A, Kobayashi A. Electronic properties of small particles. Annu. Rev. Mater. Sci.,1984,14:49-66
    [6]周志刚.铁氧体磁性材料.北京:科学出版社,1982
    [7]曹茂盛,邓启刚,鞠刚,等.a-Fe纳米粉末制备及其表征.通报材料,2000,2:42-43
    [8]Kuhn L T, Bojesen A, Timmermann L, et al. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. J. Phys., Condens. Matter,2002,4: 13551-13567
    [9]魏智强,乔宏霞,温贤伦,等.阳极弧放电等离子体制备镍纳米粉末.兰州理工大学学报,2004,30(1):39-41
    [10]胡军辉,吴润,夏辉,等.高频等离子弧对纳米钴粉的组织结构的影响.材料科学与工艺,2000,8(1):74-76
    [11]Wang J, Deng T, Lin Y L, et al. Synthesis and characterization of CoFe_2O_4 magnetic particles prepared by co-precipitation method:Effect of mixture procedures of initial solution. J. Alloy. Compd.,2008,450:532-539
    [12]刘海燕,王燕,张学俊,等.硬脂酸溶胶凝胶法-共沸蒸馏法制备钙钛矿型纳米LaCoO_3.稀有金属,2009,1:57-61
    [13]陈兴,邓兆祥,李宇鹏,等.水热法制备超顺磁性铁氧体纳米微粒.无机化学学报,2002,18(5):460-464
    [14]Riivas J. First steps towards tailoring fine and ultrafine iron particles using micromulsions. IEEE Trans. Magn.,1993,29(6):2655-2657
    [15]Pillai V. Magnetic properyies of barium ferrite synthesized using a macroemilsion mediated process. J. Magn. Magn. Mater.,1992,116:L229-L304
    [16]Feltin IV, Peleni M P. New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir,1997,13:3927-3933
    [17]Ravindranathan P, Patil K C. Novel solid solution precursor method for the preparation of ultrafine nickel-zinc ferrites. J. Mater. Sci.,1987,22(9):3261-3264
    [18]Srinvasan T T, Ravindranathan P, Cross L E, et al. Studies on high-density nickel zinc ferrite and its magnetic properties using novel hydrazine precurors. J. Appl. Phys.,1988,63:3789-3791
    [19]杨或,贾殿赠,葛炜炜,等.低热固相反应制备无机纳米材料的方法.无机材料学报,2004,20(8):881-888
    [20]Li F, Wang H, Wang L, et al. Magnetic properties of ZnFe_2O_4 nanoparticles produced by a low-temperature solid-state reaction method. J. Magn. Magn. Mater, 2007,309:295-299
    [21]Cao Z G, Zhou S W, Liu J H, et al. Preparation of superparamagnetic Dextran-coated nanoparticles used as a novel gene carrier into human bladder cancer cell. The Chinese-German Journal of Clinical Oncology,2005,4(3):183-186
    [22]徐雪青,沈辉,邓润坤,等.一种N-酰基氨酸在四氧化三铁纳米颗粒表面的吸附特征.化学研究与应用,2003,15(2):187-190
    [23]Garcia-Cerda L A, Torres-Garcia V A, Matutes-Aquino J A, et al. Magnetic nanocomposites:preparation and characterization of Co-ferrite nanoparticles in a silica matrix. J. Alloy. Compd.,2004,369:148-151
    [24]Campo A D, Sen T, Lellouche J P, et al. Multifunctional magnetite and silica-magnetite nanoparticles:Synthesis, surface activation and applications in life sciences. J. Magn. Magn. Mater.,2005,293:33-40
    [25]Huang X H, Chen Zh H. A study of nanocrystalline NiFe2O4 in a silica matrix. Mater. Res. Bull.,2005,40:105-113
    [26]Zhang S P, Dong D W, Sui Y, et al. Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process. J. Alloy. Compd.,2006,415:257-260
    [27]Ramanujan R V, Purushotham S, Chia M H. Processing and characterization of activated carbon coated magnetic particles for biomedical applications. Mater. Sci. Eng. C,2006,26:134-139
    [28]Wozniak M J, Wozniak P, Bystrzejewski M, et al. Magnetic nanoparticles of Fe and Nd-Fe-B alloy encapsulated in carbon shells for drug delivery systems:Study of the structure and interaction with the living cells. J. Alloy. Compd.,2006,423:87-91
    [29]Kuo S L, Wu N L. Electrochemical characterization on MnFe_2O_4/carbon black composite aqueous supercapacitors. J. Powder Sources,2006,162:1437-1443
    [30]林本兰,沈晓冬,崔升.油酸修饰纳米Fe304的制备及其表征.兵器材料科学与工程,2006,29(1):70-72
    [31]赵慧君,王德平,黄文,等.化学修饰对Fe304磁性微球性能德影响.材料研究学报,2004,18(5):494-498
    [32]温燕梅,卢泽勤.聚乙二醇-Fe304粒子的制备.化学研究与应用,2002,14(5):563-565
    [33]Zhang Ch F, Sun H W, Xia J Y, et al. Synthesis of polyacrylamide modified magnetic nanoparticles and radio labeling with ~(188)Re for magnetically targeted radiotherapy. J. Magn. Magn. Mater.,2005,293:193-198
    [34]Yang J, Park S B, Yoon H G, et al. Preparation of poly ε-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharmace.,2006, 324:185-190
    [35]Sindhu S, Jegadesan S, Parthiban A, et al. Synthesis and characterization of ferrite nanocomposite spheres from hydroxylated polymers. J. Magn. Magn. Mater.,2006, 296:104-113
    [36]Naik R, Kroll E, Rodak D, et al. Magnetic properties of iron-oxide and (iron, cobalt)-oxide nanoparticles synthesized in polystyrene resin matrix. J. Magn. Magn. Mater.,2004,272-276:E1239-E1241
    [37]Huang Z B, Tang F Q. Preparation, structure, and magnetic properties of polystyrene coated by Fe_3O_4 nanoparticles. J. Colloid Interface Sci.,2004,275:142-147
    [38]Tanyolac D, Ozdural A R. BSA adsorption onto magnetic polyvinylbutyral microbeads. J. Appl. Polym. Sci.,2001,80:707-715
    [39]Margel S, Wiesel E. Acrolein polymerization:Monodisperse, homo, and hybrido microspheres, synthesis, mechanism, and reaction. J. Polym. Sci. Chem. Ed.,1984, 22:145-158
    [40]Oster J, Parker J, Brassard L a. Polyvinyl-alcohol-based magnetic beads for rapid and efficient separation of specific or unspecific nucleic acid sequences. J. Magn. Magn. Mater.,2001,225,145-150
    [41]Okada M, Ashihara Y, Yano A, et al. US Patent 5320944, June 14,1994
    [42]Cocker T M, Fee C J, Evans R A. Preparation of magnetically susceptible polyacrylamide/magnetite beads for use in magnetically stabilized fluidized bed chromatography. Biotechnol. Bioeng.,1997,53:79-87
    [43]Yang C, Liu H, Guan Y, et al. Preparation of magnetic poly(methylmethacrylate-divinylbenzene-glycidylmethacrylate) microspheres by spraying suspension polymerization and their use for protein adsorption. J. Magn. Magn. Mater.,2005,293:187-192
    [44]Horak D. Magnetic polyglycidylmethacrylate microspheres by dispersion polymerization. J. Polym. Sci. Part A,2001,39:3707-3715
    [45]Hor a k D, Boh a cek J, S ubrt M. Magnetic poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) microspheres by dispersion polymerization. J. Polym. Sci. Part A,2000,38:1161-1171
    [46]Qiu G H, Wang Q, Wang C, et al. Polystyrene/Fe_3O_4 magnetic emulsion and nanocomposite prepared by ultrasonically initiated miniemulsion polymerization. Ultrasonics Sonochemistry,2007,14:55-61
    [47]Yanase N, Noguchi H, Asakura H, et al. Preparation of magnetic latex particles by emulsion polymerization of styrene in the presence of a ferrofluid. J. Appl. Polym. Sci.1993,50:765-776
    [48]Sutor J J. US Patent 5648124, July 15,1997
    [49]Lacava L M, Garcia V A P, Kuckelhaus S, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J. Magn. Magn. Mater.,2004,272-276:2434-2435
    [50]Dutz S, Andra W, Hergt R, et al. Influence of dextran coating on the magnetic behaviour of iron oxide nanoparticles. J. Magn. Magn. Mater.,2007,311:51-54
    [51]邱礼平,马细兰,温其标,等.不同链淀粉含量改性高链淀粉磁性微球制备及其结构的研究.中国粮油学报,2006,21(6):92-97
    [52]Saravanan M, Bhaskar K, Maharajan G, et al. Ultrasonically controlled release and targeted delivery of diclofenac sodium via gelatin magnetic microspheres. Int. J. Pharmace.,2004,283:71-82
    [53]Chatterjee J, Haik Y, Chen C J. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. J. Magn. Magn. Mater.,2001,225,21-29
    [54]Park J H, Im K H, Lee S H, et al. Preparation and characterization of magnetic chitosan particles for hyperthermia application. J. Magn. Magn. Mater.,2005, 293:328-333
    [55]季君晖.壳聚糖对铜离子吸附行为及机理研究.离子交换与吸附,1999,15(6):511-517
    [56]完莉莉,汪玉庭.新型冠醚交联壳聚糖的合成.化学试剂,2001,23(1):6-7
    [57]赵希荣.壳聚糖化学改性新进展.精细与专用化学品,2003,11(18):18-20
    [58]Wu F C, Tseng R L, Juang R S. Comparative adsorption of metal and dye on flake- and bead-types of chitosans prepared from fishery wastes. J. Hazard. Mater.,2000, 73:63-75
    [59]Chiou S H, Wu W T. Immobilization of candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomater.,2004,25:197-204
    [60]Gumusderelioglu M, Agi P. Adsorption of concanavalin A on the well-characterized macroporous chitosan and chitin membranes. Reactive Funct. Polym.,2004,61: 211-220
    [61]Shi X Y, Tan T W. Preparation of chitosan/ethylcellulose complex microcapsule and its application in controlled release of Vitamin D_2. Biomater.,2002,23:4469-4473
    [62]Kang D Y, Mei X X, Yu J Y, et al. pH-sensitive chitosan/gelatin hybrid polymer network microspheres for delivery of cimetidine. Polym. Int.,1996,39(4):333-337
    [63]戚晓红,蒋莉,李晓宇,等.壳聚糖对实验性脂肪大鼠肝及线粒体的体视学分析.中国生化药物杂志,2001,22(1):8-10
    [64]陆书来,陈丽,邢福保,等.壳聚糖在药物研究中应用的最新进展.保鲜与加工,2002,2(3):10-13
    [65]Muzzarelli R A A. Chitin and its derivatives:New trends of applied research. Carbonhydr. Polym.,1983,3:53-75
    [66]朱启忠,韩晓弟,赵宏,等.壳聚糖对废水中蛋白质的吸附作用.资源开发与市场,2005,21(5):387-388,390
    [67]Barbara K. Application of chitin-and chitosan-based materials for enzyme im-mobilizations:a review. Enzyme and Microbial Technology,2004,35:126-139
    [68]Nozawa Y, Matsushita T, Yamashina K, et al. Immobilization of trypsin on chitin and chitosan by solid-state mix-grinding. Biotechnol. Bioeng.,1982,24:753-756
    [69]Zouboulish A I, Loukidou M, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal polluted soils. Process Biochem., 2004,39:909-916
    [70]Tsezos M. Biosorption of metals:the experience accumulated and the outlook for technology development. Hydrometallurgy,2001,59:241-243
    [71]Cabuk A, Akar T, Tunah S, et al. Biosorption characteristics of Bacillus sp.ATS-2 immobilized in silica gel for removal of Pb(II). J. Hazard. Mater., B,2006,136: 317-323
    [72]Tewari N, Vasudevan P, Guha B K. Study on biosorption of Cr (VI) by Mucar hiemalis. Biochem. Eng. J.,2005,23:185-192
    [73]Rangel-Mendez J R, Monroy-Zepeda R, Leyva-Ramos E, et al. Chitosan selectively for removing cadmium(II), copper(Ⅱ), and lead(II) from aqueous phase:pH and organic matter effect. J. Hazard. Mater,2009,162:503-511
    [74]Cheung W H, Szeto Y S, McKay G. Enhancing the adsorption capacities of acid dyes by chitosan nano particles. Bioreso. Technol.,2009,100:1143-1148
    [75]Ding P, Huang K L, Li G Y. Kinetics of adsorption of Zn(II) ion on chitosan derivatives. Int. J. Biol. Macromol.,2006,39:222-227
    [76]Yi H, Wu L, Bentley W E, et al. Biofabrication with chitosan. Biomacromol.,2005, 9:2881-2894
    [77]Delben F, Stefancich S, Muzzarelli R A A. Chelating ability and enzymatic hydrolysis of water-soluble chitosans. Carbohydrate Polym.,1992,19:17-23
    [78]Ngah W S W, Endud C S, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React. Funct. Polym.,2002, 50:181-190
    [79]Ngah W S W, Kamari A, Koay Y J. Equilibrium and kinetics studies of adsorption of copper(Ⅱ) on chitosan and chitosan/PVA beads. Int. J. Biological Macromol.,2004, 34:155-161
    [80]丁明,孙虹.Fe_3O_4/壳聚糖核壳磁性微球的制备及特性.磁性材料及器件,2001,32(6):1-3
    [81]姜炜,李凤生,杨毅,等.磁性壳聚糖复合微球的制备和性能研究.材料科学与工程学报,2004,22(5):660-662
    [82]Feng T, Du Y M, Yang J H, et al. Immobilization of a nonspecific chitosan hydrolytic enzyme for application in preparation of water-soluble low-molecular-weight chitosan. J. Appl. Polym. Sci.,2006,101:1334-1339
    [83]Zhang J, Zhang S T, Wang Y P, et al. Composite magnetic microspheres of tamarind gum and chitosan:preparation and characterization. J. Macromol. Sci. Part A:Pure Appl. Chem.,2007,44:433-437
    [84]An X N, Su Z X. Characterization and application of high magnetic property chitosan particles. J. Appl. Polym. Sci.,2001,81:1175-1181
    [85]Yang P F, Lee C K. Hyaluronic acid interaction with chitosan-conjugated magnetite particles and its purification. Biochemi. Eng. J.,2007,33:284-289
    [86]董海丽,樊振江.化学共转化法制备磁性壳聚糖微球及表征.广西轻工业,2006,97:43-44
    [87]Kim D H, Lee S H, Im K H, et al. Biodistribution of chitosan-based magnetite suspensions for targeted hyperthermia in ICR mice. IEEE Trans Magn.,2005,41(10): 4158-4160
    [88]Dnekbas E B, Kilicay E, Birlikseven C, et al. Magnetic chitosan microspheres: preparation and characterization. React. Funct. Polym.,2002,50:225-232
    [89]Jiang D S, Long S Y, Huang J, et al. Immobilization of pycnoporus sanguines laccase on magnetic chitosan microspheres. Biochem. Eng. J.,2005,25:15-23
    [90]Zhang W, Shen H, Xie M Q, et al. Synthesis of carboxymethyl-chitosan-bound magnetic nanoparticles by the spraying co-precipitation method. Scr. Mater.,2008, 59:211-214
    [91]Wang Y J, Wang X H, Luo G S, et al. Adsorption of bovin serum albumin(BSA) onto the magnetic chitosan nanoparticles prepared by a microemulsion system. Bioresour. Technol.,2008,99:3881-3884
    [92]Zhi J, Wang Y J, Lu Y C, et al. In situ preparation of magnetic chitosan/Fe_3O_4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym.,2006,66:1552-1558
    [93]Wu Y, Guo J, Yang W L, et al. Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres. Polym.,2006,47: 5287-5294
    [94]Yen S S, Rembaum A, Landel R F. US patent.4285819,1981
    [95]Rorrer G L, Hsien T, Way J D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Ind. Eng. Chem. Res.,1993,32: 2170-2178
    [96]金玉仁,李冬梅,张海涛,等.原子能科学与技术,1998,32(增刊):136
    [97]金玉仁,李冬梅,张宝川,等.磁性壳聚糖的制备及其对三价锕系和镧系元素的吸附性能研究.离子交换与吸附,1999,15(2):177-181
    [98]Chang Y C, Chen D H. Preparation and adsorption properties of monodisperse chitosan-bound Fe_3O_4 magnetic nanoparticles for removal of Cu(II) ions. J. Colloid Interf. Sci.,2005,283:446-451
    [99]Chang Y C, Chang S W, Chen D H. Magnetic chitosan nanoparticles:Studies on chitosan binding and adsorption of Co(II) ions. React. Funct. Polym.,2006,66: 335-341
    [100]Donia A M, Atia A A, Elwakeel K Z. Recovery of gold(III) and silver(I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy,2007,87: 197-206
    [101]Donia A M, Atia A A, Elwakeel K Z. Selective separation of mercury(Ⅱ) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde. J. Hazard. Mater.,2008,151:372-379
    [102]Namdeo M, Bajpai S K. Chitosan-magnetite nanocomposites as magnetic carrier particles for removal of Fe(Ⅲ) from aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects,2008,320:161-168
    [103]Zhou L M, Wang Y P, Liu Z R, et al. Characterization of equilibrium, kinetics studies for adsorption of Hg(Ⅱ), Cu(Ⅱ), and Ni(Ⅱ) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater.,2009,161:995-1002
    [104]Elwakeel K Z, Atia A A, Donia A M. Removal of Mo(Ⅵ) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins. Hydrometallurgy, 2009,97:21-28
    [105]Zhou Y T, Nie H L, Christopher B W, et al. Removal of Cu2+from aqueous solution by chitosan-coated magnetic nanoparticles modified with a-ketoglutaric acid. J. Colloid Interface Sci.,2009,330:29-37
    [106]赵振国.吸附作用应用原理.北京:化学工业出版社,2005
    [107]近藤精一,石川达雄,安部郁夫著.李国希译.吸附科学.北京:化学工业出版社,2005
    [108]刘邦瑞.螯合浮选剂.北京:冶金工业出版社,1982
    [109]刘文刚,魏德洲,周东琴,等.螯合捕收剂在浮选中的应用.国外金属选矿,2006,7:4-8,20
    [110]Sidgwick N V.J. Chem. Soc,1941,433-443
    [111]Dorman J L, Fiorani D. Nanophase magnetic materials:size and interaction effects on static and dynamical properties of fine particles. J. Magn. Magn. Mater.,1995, 140-144:415-418
    [112]Popplewell J, Sakhnini L. The dependence of the physical and magnetic properties of magnetic fluids on particle size. J. Magn. Magn. Mater.,1995,149:72-78
    [113]Penninga I, De Waard H, Moskowitz B M. Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field. J. Magn. Magn. Mater.,1995, 149:279-286
    [114]Kodama R H. Magnetic nanoparticles. J. Magn. Magn. Mater.,1999,200:359-372
    [115]Alexion C, Arnold W, Hulin P, et al. Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J. Magn. Magn. Mater., 2001,225:187-193
    [116]张春雷,李爽,余加祐,等.铁酸盐MFe204的氢气还原热失重分析和氧缺位铁酸盐MFe20_((4_8))的制备条件.无机化学学报,1999,15(2):211
    [117]石晓波,李春根,汪德先.电位滴定判断二元金属氢氧化物的复合化.应用化学,2002,19(4):398
    [118]李荫远,李国栋.铁氧体物理学.北京:科学出版社,1978
    [119]忻新泉,郑丽敏.室温和低热温度固-固相反应合成化学.大学化学,1994,9(5):1-7
    [120]周益明,忻新泉.低温固相合成化学.无机化学学报,1999,15(3):273-292
    [121]龙德良,梁斌,忻新泉.室温和低热固相反应在合成化学中的应用.应用化学,1996,13(6):1-6
    [122]雷立旭,忻新泉.室温固相化学反应与固体结构.化学通报,1997,2:1-7
    [123]Bailar J C. Comprehensive inorganic chemistry. Oxford:Pergamon Press,1973: 607-618
    [124]徐华蕊,李凤生,陈舒林,等.沉淀法制备纳米级粒子的研究-化学原理及影响因素.化工进展,1996,(5):29-31
    [125]朱步瑶,赵振国.界面化学基础.北京:化学工业出版社,2003
    [126]Druska P, Steinike U, SepelAk V. Surface structure of mechanically activated and of mechanosynthesized zinc ferrite. J. Solid State Chem.,1999,146(1):13-21
    [127]Shenoy S D, Joy P A, Anantharaman M R. Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J. Magn. Magn. Mater.,2004,269(2):217-226
    [128]黄昆原著.韩汝琦改编.固体物理学.北京:高等教育出版社,1988
    [129]George T R. Harry S. Magnetism Vol3. New York and London:Academic Press, 1963
    [130]Berkowitz A E, Kneller E. Magnetism and Metallurgy. New York and London: Academic Press,1969
    [131]宁青菊,谈国强,史永胜.无机材料物理性能.北京:化学工业出版社,2006
    [132]Chen J, Srinivasan G, Hunter S, Babu V S, Seehra M S. Observation of superparamagnetism in rf-sputtered films of zinc ferrite. J. Magn. Magn. Mater., 1995,146:291-297
    [133]Sugimoto M. The past, present, and future of ferrites. J. Am. Ceram. Soc,1999, (82): 269-280
    [134]Grigorova M, Blythe H J, Blaskov V, et al. Magnetic properties and Mossbauer spectra of nanosized CoFe_2O_4 powders. J. Magn. Magn. Mater.,1998,183:163-172
    [135]Ohmori M, Matijevic E. Preparation and properties of uniform coated inorganic colloidal particles:8. Silica on iron. J. Colloid Interface Sci.,1993,160:288-292
    [136]Pallai V, Shah D O. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater.,1996,163:243-248
    [137]Raj K, Moskowitz B, Casciari R. Advances in ferrofluid technology. J. Magn. Magn. Mater.,1995,149(1-2):174-180
    [138]McMichael R D, Shull R D, Swartzendruber LJ, et al. Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater.,1992,111(1-2):29-33
    [139]Alexiou C, Jurgons R, Schmid R, et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J. Magn. Magn. Mater.,2005,293(1): 389-393
    [140]Lavela P, Tirado J L. CoFe_2O_4 and NiFe_2O_4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources,2007,172: 379-387
    [141]Chae K P, Lee J G, Kweon H S, et al. The crystallographic, magnetic properties of Al, Ti doped CoFe_2O_4 powders grown by sol-gel method. J. Magn. Magn. Mater.,2004, 283:103-108
    [142]Choi E J, Ahn Y, Kim S, et al. Superparamagnetic relaxation in CoFe_2O_4 nanoparticles. J. Magn. Magn. Mater.,2003,262:L198-L202
    [143]Wanger J, Autenrieth T, Hempelmann R. Core shell particles consisting of cobalt ferrite and silica as model ferrofluids. J. Magn. Magn. Mater.,2002,252:4-6
    [144]Zhao D, Wu X, Guan H, et al. Study on supercritical hydrothermal synthesis of CoFe_2O_4 nanoparticles. The Journal of Supercritical Fluids,2007,42:226-233
    [145]Linda J C, Amyn S T, Angus P W, et al. Continuous hydrothermal synthesis of CoFe_2O_4 nanoparticles. Fluid Phase Equilib.,2003,210(2):307-317
    [146]Bensebaa F, Zavaliche F, L'Ecuyer P, et al. Microwave synthesis and characterization of Co-ferrite nanoparticles. J. Colloid Interface Sci.,2004,277(1):104-110
    [147]Kim S J, Lee SW, An S Y, et al. Mossbauer studies of superexchange interactions and atomic migration in CoFe2O4. J. Magn. Magn. Mater.,2000,215-216:210-212
    [148]Yan C-H, Xu Z-G, Cheng F-X, et al. Nanophased CoFe_2O_4 prepared by combustion method. Solid State Commun.,1999,111 (5):287-291
    [149]Hou X M, Zhou F, Liu W M. A facile low-cost synthesis of ZnO nanorods via a solid-state reaction at low temperature. Mater. Lett.,2006,60(29-30):3786-3788
    [150]Li Q W, Wang Y M, Luo G A. pH-Response of nanosized MnO_2 prepared with solid state reaction route at room temperature. Sens, actuators B:Chem.,1999,59(1): 42-47
    [151]Li Q W, Luo G A, Shu Y Q. Response of nanosized cobalt oxide electrodes as pH sensors. Anal. Chim. Acta,2000,409(1-2):137-142
    [152]Lang J P, Xin X Q. Solid state synthesis of Mo(W)-S cluster compounds at low heating temperatures. J. Solid State Chem..,1994,108(1):118-127
    [153]Cullity B D. Elements of X-ray Diffraction 2nd. Addision-Wesley,1978
    [154]倪星元,姚兰芳,沈军,等.纳米材料制备技术.北京:化学工业出版社,2008
    [155]Wiley J B, Kaner R B. Rapid solid-state precursor synthesis of materials. Sci.,1992, 255:1093-1097
    [156]Liu Y L, Liu Z M, Yang Y, et al. Simple synthesis of MgFe_2O_4 nanoparticles as gas sensing materials. Sens. Actuators B:Chem.,2005,107(2):600-604
    [157]Sepelak V, Menzel M, Becker K D, et al. Mechanochemical reduction of magnesium ferrite. J. Phys. Chem. B,2002,106:6672-6678
    [158]Chen W F, Li F S, Yu J Y, et al. Rapid synthesis of mesoporous ceria-zirconia solid solutions via a novel salt-assisted combustion process. Mater. Res. Bull.,2006,41: 2318-2324
    [159]陈伟凡,李凤生,于吉义,等.盐助溶液燃烧法制备高比表面氧化铈纳米粉体.中国稀土学报,2006,24(4):408-413
    [160]Xia B, Lenggoro I W, Okuyama K. Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv. Mater.,2001,13(20):1579-1582
    [161]Itoh Y, Lenggoro I W, Okuyama K. Size tunable synthesis of highly crystalline BaTiO_3 nanoparticles using salt-assisted spay pyrolysis. J. Nanopart. Res.,2003, 5(3-4):191-198
    [162]Xia B, Lenggoro I W, Okuyama K. Nanoparticle separation in salted droplet microreactors. Chem. Mater.,2002,14(6):2623-2627
    [163]李余增.热分析.北京:清华大学出版社,1987
    [164]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [165]Ye X R, Jia D Z, Yu J Q, et al. One-step solid-state synthesis of nanomaterials. Adv. Mater.,1999,11:941-942
    [166]Jia D Z, Yun J Q, Xia X. Synthesis of CuO nanometer powder by one step solid reaction at room temperature. Chin. Sci. Bull.,1998,43:571-573
    [167]Jing Z H, Wu S H. Preparation and gas sensing properties of γ-Fe_2O_3 nanopowders by solid-state grinding method at room temperature. Chin. J. Inorg. Chem.,2006,22:483-487
    [168]Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc,1938,60:309-319
    [169]Valenzuela R. Magnetic Ceramics. Cambridge:Cambridge University Press,1994
    [170]Lee J G, Park J Y, Oh Y J, et al. Magnetic properties of CoFe_2O_4 thin film prepared by a sol-gel method. J. Appl. Phys.,1998,84(5):2801
    [171]Ammar S, Helfen A, Jouini N, et al. Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium. J. Mater. Chem.,2001,11: 186-192
    [172]王世荣,李祥高,刘东志,等.表面活性剂化学.北京:化学工业出版社,2005
    [173]Calvo, P, Lopez C R, Jato J L, et al. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Poly. Sci.,1997,63:125-132
    [174]沈德言.红外光谱在高分子中的应用.北京:科学出版社,1982
    [175]曾昭琼.有机化学.第三版.北京:高等教育出版社,1993
    [176]K im H, Achermann M, Baer L P, et al. Synthesis and characterization of Co/CdSe core/shell nanocomposites:Bifunctional magnetic-optical nanocrystals. J. Am. Chem. Soc,2005,127:544-546
    [177]Satake K, Okuyama T, Ohashi M, et al. The spectrophotometric determination of amine, amino acid and peptide with 2,4,6-Trinitrobenzene 1-sulfonic acid. J. Biochem.,1960,47:654-660
    [178]Mokrasch L C. Use of 2,4,6-trinitrobenzenesulfonic acid for the coestimation of amines, amino acids, and proteins in mixtures. Anal. Biochem.,1967,18(1):64-71
    [179]Habbeb A F S A. Determination of free amino groups in proteins by trinitrobenzenesulfonic acid. Anal. Biochem.,1966,14(3):328-336
    [180]Snyder S L, Sobocinski P Z. An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem.,1975,64(1):284-288
    [181]Olde Damink L H H, Dijkstra P J, Luyn M V. Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci.:Mater. Med.,1995,6:460-472
    [182]刘涛,张贵峰,周卫斌,等.凝胶过滤色谱-多角度激光散射法测定琥珀酰明胶自由氨基修饰度.分析化学研究报告,2007,1(35):43-48
    [183]Ofner C M, Bubnis W A. Chemical and swelling evaluations of amino group crosslinking in gelatin and modified gelatin matrices. Pharmaceu. Res.,1996,13: 1821-1827
    [184]Yalpani M, Hall L D. Some chemical and analytical aspects of polysaccharide modifications. Ⅲ. Formation of branched-chain, soluble chitoan derivatives. Macromol.,1984,17:272-274
    [185]黄晓佳,王爱勤,袁光谱.N-烷基壳聚糖衍生物的合成及其对阳离子的吸附性能.应用化学,2000,17(1):66-68
    [186]Paradossi G, Chiessi E, Venanzi M, et al. Branched-chain analogues of linear polysaccharides:a spectroscopic and conformational investigation of chitosan derivatives. Int. J. Biological Macromol.,1992,14(2):73-80
    [187]Heimbach J, Rieth S, Mohamedshan F, et al. Safety assessment of iron EDTA [sodium ions (Fe~(3+)) ethylenediaminetetraacetic acid]:summary of toxicological, fortification and exposure data. Food Chem. Toxicol.,2000,38:99-111
    [188]Martinez C E, Motto H L. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut,2000,107:153-158
    [189]Pandey U, Mukherjee A, Sarma H D, et al. Evaluation of 90Y-DTPA and 90Y-DOTA for potential application in intra-vascular radionuclide therapy. Appli. Radiat. Isot., 2002,57:313-318
    [190]Inoue K, Yamaguchi T, Shinbaru R, et al. Adsorption behaviors of some complexane types of chemically modified chitosan for metal ions. Adv Chitin Sci.,1996,1: 271-274
    [191]Inoue K, Ohto K, Yoshizuka K, et al. Adsorption behaviors of some metal ions on chitosan modified with EDTA-type ligand. Bunseki Kagaku,1995,44(4):283-287
    [192]Inoue K, Ohto K, Yoshizuka K, et al. Adsorption behavior of metal ions on some carboxymethylated chitosans. Bunseki Kagaku,1993,42(11):725-731
    [193]Kim Y M, Choi K S, Chung T S, et al. Chelating polymers of chitosan-based sulfur derivatives and the synthesis and metal ion adsorption characteristic. Pollimo,1988, 12(1):86-98
    [194]Kim Y W, Abn B J, Kim O Y. Graft-copolymerization of Citra conic acid onto chitosan and metal take-up efficiency of the copolymer comparing with other graft-copolymers of chitosan. Chitin and Chitosan Kenkyu,1995,1(2):98-99
    [195]汪玉庭,栾兆坤.交联壳聚糖冠醚的合成及其对金属离子的吸附性能.环境化学,1998,17(4):349-353
    [196]Grabarek Z, Gergely J. Zero-length cross linking procedure with the use of active esters. Anal. Biochem.,1990,185:131-135
    [197]Staros J V, Wright R W, Swingle D M. Enhancement by N-hydroxy sulfosuc cinimide of water-soluble carbodiimide-mediated coupling reactions. Anal. Biochem.,1986,156:220-222
    [198]DeSilva N S. Interactions of Surfactant Protein D with Fatty Acids. Am. J. Respir. Cell Mol. Biol.,2003,29:757-770
    [199]Taniuchi M. Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc. Natl. Acad. Sci.,1986,83:4094-4098
    [200]张叔良,易大年,吴天明.红外光谱分析与新技术.第一版.北京:中国医药科技出版社,1993
    [201]高洪斌.有机化学.第三版.北京:高等教育出版社,1999
    [202]冯金城.有机化合物结构分析与鉴定.第一版.北京:国防工业出版社,2001
    [203]常建华,董绮功.波谱原理及分析.第一版.北京:科学出版社,2001
    [204]韩怀芬,陈小娟,金漫彤.交联阳离子淀粉的合成及其对重金属离子的吸附.化工环保,2005,25(3):235-238
    [205]潘道凯.物质结构.北京:高等教育出版社,1988
    [206]Winter M J. d-Block chemistry. New York:Oxford University Press,1994
    [207]Paulino A T, Simionato J I, Garcia J C, et al. Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr. Polym.,2006,64:98-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700