用户名: 密码: 验证码:
生物柴油磁性固体催化剂的制备及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前生物柴油产业技术为液体催化工艺,存在设备腐蚀、工艺复杂、环境污染等问题,固体催化技术是解决的有效途径已成为研究的热点,但催化剂回收工艺复杂、不彻底,磁性固体催化剂不仅有固体催化剂的优点,而且具有易回收、反应操作简便等优点,本文对磁性固体催化剂进行了研究,主要内容和结果如下:
     1、用共沉淀法制备出比饱和磁化强度为70.11emu/g的磁核,并创新性地将磁核引入本实验室筛选并优化的固体催化剂中,使其中的载体SiO_2兼备负载活性成分与保护磁核的作用,所得催化剂用磁场可简单高效回收。研究确定了催化剂制备工艺为:溶胶中超声分散磁核→凝胶→陈化→抽滤→真空干燥→研磨→预湿→浸渍→真空干燥→煅烧。
     2、采用单因素实验和正交实验研究了磁性固体催化剂制备工艺,确定最佳条件为:Si/Fe摩尔比2,陈化温度65℃,陈化时间3h,K/Si摩尔比为1.5,煅烧温度450℃,煅烧时间3h。红外、X-衍射、振动样品磁强计、扫描电镜表征催化剂组成为K_2CO_3/SiO_2-Fe_3O_4,其中SiO_2和K_2CO_3均为无定形结构,比饱和磁化强度为4.18 emu/g,催化剂表面烧结,内部包有磁性载体小颗粒。
     3、通过单因素和正交实验确定磁性固体催化剂催化制备生物柴油的最佳反应条件为:催化剂加入量10%,醇油比12,反应温度65℃,反应时间40min,搅拌速度400r/min。在此条件下,第一批次反应的相对转化率为105.48%,第二批次为99.50%,磁性固体催化剂可重复使用。通过煅烧再生,催化剂可进一步延长使用。
At present, liguid catalyst is mainly utilized in biodiesel industry, but there are problems such as equipment corrosion, environment pollution and complex process. Biodiesl solid catalyst is becoming more and more important because it is an effective way to solve these problems. However, solid catalyst is hard to be recycled completely with complex technology. Magnetic solid catalyst not only has advantages of the solid catalyst but also is easy to be recycled and operated. In this dissertation, magnetic solid catalyst was prepared, and the main content and results were as follows:
     1. Magnetic core was prepared with co-precipitation method and its Specific Saturation Magnetization reached 70.11 emu/g. This magnetic core was innovativly introduced into the catalyst made in our lab. So the carrier SiO_2 of this catalyst could play two roles: loading active component and protectiong magnetic core. The magnetic solid catalyt could be recycled easily and efficiently. The process to prepare the catalyst was confirmed as follows: dispersing the magnetic core in sol with ultrasonic method→forming gel→aging→filtrating gel in vacuum→drying in vocuum→crushing→prewetting—"-impregnating—* drying in vocuum→calcining.
     2. Single factor and orthogonal experiment were applied to research the process to prepare magnetic solid catalyst, and finally the optimal conditions were confirmed as follows: Si/Fe molar ratio 2, aging temperature 65℃, aging time 3h, K/Si molar ratio 1.5, calcining temperature 450℃, calcining time 3h. By characterization with Infrared Ray, X-ray Diffraction, Vibrating Sample Magnetometer, Scanning Electron Micrographs, it was found that the component of the catalyst was K_2CO_3/SiO_2-Fei_3O_4 therein SiO_2 and K_2CO_3 were both amorphous structure, the Specific Saturation Magnetization value of magnetic solid catalyst was 4.18 emu/g and the surface of the catalyst was sintered, but there were small particles of magnetic carrier under the surface.
     3. By single factor and orthogonal experiment, the reaction conditions to procduce biodiesel with magnetic solid catalyst were optimized as follows: catalyst dose 10%, molar ratio of methonal to oil 12, reaction temperature 65℃, reaction time 40 min, and stirring speed 400r/min. Under the optimal conditions, the comparative conversion was 105.48% in the first reaction, 99.50% in the second reaction. The magnetic solid catalyst could be reused; moreover it could be regenerated to prolong its application by calcining.
引文
1.安文杰,许德平,杜显云.超临界甲醇法制备生物柴油工艺探讨.粮食与油脂,2005,21(8):21-23.
    2.北京化工大学.一种酸碱制备生物柴油的方法.中国,200410038292.4.2005-2-16.
    3.北京化工大学.一种磁性纳米固体碱催化剂及其制备方法.中国,02125589.X,2004-01-28.
    4.北京化工大学.一种磁性固体超强酸催化剂Zr(SO_4)_2/Fe_3O_4及制备方法.中国,02117135.1,2003-11-05.
    5.毕艳兰.油脂化学.北京:化学工业出版社,2005,45.
    6.蔡志强,邬国英,林西平等.固定化脂肪酶催化合成生物柴油的研究.中国油脂,2004,29(8):29-32.
    7.陈洁渝,严春杰.煤系高岭土/醋酸钾插层复合物制备及意义.矿产保护与利用.2004,6:16-20.
    8.陈令允.磁性氧化铁纳米粒子的制备、表面改姓及其应用研究[硕士学位论文].南京:南京理工大学,2005.
    9.陈文伟.乌桕籽油制备生物柴油的研究[博士学位论文].南昌:南昌大学,2006.
    10.陈允魁.红外吸收光谱法及其应用.上海:上海交通大学出版社,1993.
    11.崔士贞,刘纯山.固体碱催化大豆油酯交换反应的研究.工业催化,2005,13(7):32-35.
    12.高静,王芳,谭天伟.固定化脂肪酶催化废油合成生物柴油.化工学报,2005,56(9):1727-1730.
    13.贵州大学.固相催化法制备麻疯树生物柴油,中国,200610050997.7,2006-08-30.
    14.暨南大学.利用潲水油合成生物柴油的方法.中国,200510100044.2,2006-03-08.
    15.贾庆明,郑茂盛,王亚明.性纳米催化剂SO_4~(2-)/TiO_2/Fe_3O_4的制备及表征.西安交通大学学报,2005,39(7):779-782.
    16.江苏工业学院.采用固体碱法制备生物柴油的方法.中国,200510037862.2.2005-09-17.
    17.黄小明.负载型固体碱催化大豆油酯交换的研究[硕士学位论文].河南:河南工业大学,2005.
    18.梁杉垣.一种生物柴油.中国,200410026584.6,2005-01-12.
    19.李凤生,罗付生,杨毅,刘宏英.磁响应纳米四氧化三铁/壳聚糖复合微球的制备及特性.磁性材料及器件,2002,33(6):1-4
    20.李凤铉.磁性纳米固体超强酸催化剂的合成及性能研究[硕士学位论文].2004.
    21.李为民,郑晓林,徐春明等.固体碱法制备生物柴油及其能.化工学报,2005,56(4):711-716.
    22.李玉芹,曾虹燕.碳酸根型镁铝复合氢氧化物的合成和表征及其催化性能.工业催化,2005,13(12):37-42.
    23.刘文卿.实验设计.北京:清华大学出版社,2005,70.
    24.刘先桥,官月平,邢建民,马志亚,刘会洲.磁性微球的制备及在细胞分离中的应用.化学通报,2004,67(10):723-728。
    25.吕亮,吾国强,汪金良,杨金女,段雪,李峰.新型固体碱催化剂在油脂酯交换反应中的应用.皮革化工,2001,18(3):37-40.
    26.吕亮,吾国强,段雪,李峰,杜以波.水滑石的制备、表征及其在酯交换反应中的应用.精细石油化工.2001(1):9-12.
    27.梅长松.磁性纳米固体超强酸的合成及催化性能研究[硕士学位论文].哈尔滨:哈尔滨工程大学,2002.
    28.孟鑫,辛忠.KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工,2005,34(3):282-286.
    29.苗世顶,马鸿文,冯武威,张盼,刘贺.煅烧分解钾长石提取碳酸钾的实验研究.非金属矿.2004,27(1):5-8.
    30.闵恩泽,唐忠,杜泽学,吴巍.发展我国生物柴油产业的探讨.中国工程科学,2005,7(4):1-5.
    31.南京大学.利用粗脂肪酸合成生物柴油的方法.中国,200610038517.5,2006-09-06.
    32.倪蓓.生物柴油欧美发展动态及在我国的前景.当代石油化工,2005,13(6):21-24.
    33.戚龙水,马鸿文,苗世顶.碳酸钾助熔焙烧分解钾长石热力学实验研究.中国矿业.2004,13(1):73-75.
    34.齐荣.磁性纳米固体碱催化剂的结构设计与性能研究[硕士学位论文].北京:北京化工大学,2003.
    35.深圳清华大学研究院.磁性纳米TiO_2/SiO_2/Fe_3O_4复合光催化剂净化废水方法及装置.中国,200410026699.5,2005-01-12.
    36.苏克曼,潘铁英,张玉兰.波谱解析法.上海:华东理工大学出版社,2003,80-81.
    37.孙锦宜,工业催化剂的失活与再生.北京:化学工业出版社,2006:3.
    38.孙世尧,贺华阳,王连鸳,杨基础.超临界甲醇中制备生物柴油.精细化工.2005,22(11):916-919.
    39.孙小嫚.菜籽油酯交换制备生物柴油的研究[硕士学位研究论文].北京:北京化工大学,2007.
    40.孙志杰,贺天民,孙昕,杜晓波.用于近代物理教学的振动样品磁强计.物理实验,2007,27(4):37-39。
    41.谭天伟,王芳,邓立,徐家立.生物柴油及应用.新材料产业,2004,(2):41-44.
    42.王广欣,颜姝丽,周重文,梁斌.用于生物柴油的钙镁催化剂的制备及其活性评价.中国油脂,2005,30(10):66-69.
    43.王君,张密林,郑崇辉.磁性纳米固体超强酸的制备研究.应用科技,2005,32(1):59-61.
    44.王明华.超细磁性固体超强酸催化合成乳酸乙酯的研究[硕士学位论文].河北工业大学,2005.
    45.王威,宋雅娟,周玮,刘双喜.掺锆磁性纳米固体超强酸SO_4~(2-)/TiO_/Fe_3O_4的制备与表征. 化学通报,2006,69(6):421-424.
    46.王志飞.磁性纳米复合颗粒的合成及其应用研究[博士学位论文].南京:东南大学,2005.
    47.尾崎萃,田丸谦三,田部浩三,西村重夫.催化剂手册.北京:化学工业出版社,1982.
    48.吴玉秀.菜籽油酯交换多相催化过程研究[硕士学位论文].天津:天津大学,2003.
    49.谢何融.纳米磁性固体酸催化剂和生物柴油的制备研究[硕士学位研究论文].南昌大学,2007.
    50.谢文磊.强碱阴离子交换树脂多相催化油脂的酯交换.应用化学,2001,18(10):846-848.
    51.徐圆圆,杜伟,刘德华.非水相脂肪酶催化大豆油脂合成生物柴油的研究.现代化工,2003,23增刊:167-169.
    52.许越,夏海涛,刘振琦等.催化剂设计与制备工艺.北京:化学工业出版社,2003.
    53.杨廷芝.非均相油脂酯交换法制备生物柴油工艺研究.四川理工学院学报(自然科版).2005,18(3):32-34.
    54.杨永辉.磁性微球形氧化铝与催化剂[硕士学位论文].北京:北京化工大学,2006.
    55.杨玉东,于忠淇,潘卫三,梁勇.超顺磁性造影剂的研究进展.现代生物医学进展,2007,7(9):1387-1390.
    56.俞祖勋.一种生物柴油的生产方法.中国,200610049777.2,2006-08-16.
    57.张冠东,官月平,单国彬,安振涛,刘会洲.纳米Fe_3O_4颗粒的表面包覆及其在磁性氧化铝载体制备中的应用.过程工程学报,2002,2(4):319-324.
    58.张家仁.固体碱催化甲醇与菜籽油酯交换合成生物柴油[硕士学位研究论文].武汉:华中科技大学,2006.
    59.张继光.催化剂制备过程技术.北京:中国石化出版社,2006,340-342.
    60.张鑫,李鑫钢,姜斌.四氧化三铁纳米粒子合成及表征.化学工业与工程,2006,23(1):45-48.
    61.中国科学院过程工程研究所.超顺磁性纳米/微米微球及其制备方法.中国,03100891.7,2004-08-11.
    62.中国科学院山西煤炭化学研究所.亚临界甲醇相固体酸碱催化油脂酯交换制生物柴油的方法.中国,200510012660.2,2006-01-11.
    63.中国科学院山西煤炭化学研究所.高酸值油脂同时酯化酯交换制备生物柴油的方法.中国,200510012887.7,2006-04-19.
    64.周千淇,周鼎力.一种采用固定床气相酯化反应合成生物柴油的方法.中国,200610008271.7,2006-08-30.
    65.朱华平,吴宗斌,陈元雄,张萍,煅世杰,刘晓华,毛宗强.固体超强碱氧化钙催化制备生物柴油及其精制工艺.催化学报,2006,27(5):391-396.
    66.朱洪法.粗化剂载体.北京:化学工业出版社,1980,63.
    67.邹涛.磁性纳米固体酸催化剂的制备及催化性能研究[硕士学位论文].北京:北京化工大学,2003.
    68.左佳齐,宁彬.一个新的平台技术的诞生.中国石化,2006,(2):13-16.
    69. A. Jitianu, M. Raileanu, M. Crisan, D. Predoi, M. Jitianu, L. Stanciu, M. Zaharescu. Fe_3O_4-SiO_2 nanocomposites obtained via alkoxide and colloidal route. Journal of Sol-Gel Science and Technology.2006, 40 (2-3) :317~323.
    70. An-Hui Lu, E. L. Salabas, and Ferdi Sch_th. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition. 2007, 46, 1222 ~ 1244.
    71. Aser S R L, Sianl Dante, Nastasi Mario. Process for producing esters from vegetable oils or animal fats using heterogeneous catalyst.WO, WO2006050925. 2006-05-18.
    72. Atoshi Furutaa, Hiromi Matsuhashib, Kazushi Aratab.Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor.Biomass and Bioenergy.2006,30 (10) :870~ 873.
    73. Basu, Hemendra N. Norris, Max E. Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst. United States, 5,525,126, June 11, 1996.
    74. Chawalit Ngamcharussrivichai, Prangsinan Totarat, Kunchana Bunyakiat. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General, 2008,341(1-2):77~85.
    75. Chawalit Ngamcharussrivichai, Wipawee Wiwatnimit, Sarinyarak Wangnoi. Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A:Chemical, 2007,276(1-2):24~33.
    76. Claire S. MacLeod, Adam P. Harvey, Adam F. Lee, Karen Wilson. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal,2008,135(1-2):63~70.
    77. C.R. Beynese, H. Hinnekens, J. Martene, Julien. Esterification process.US: 5,508,457 April 16, 1996.
    78. Dadan Kusdiana, Shiro Saka. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 2004,91(3): 289~295.
    79. D. Royon, M. Daz, G. Ellenrieder, S Locatelli. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 2007,98(3):648~653.
    80. Eiji Minami, Shiro Saka. Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process.Fuel,2006,85(17-18):2479—2483.
    81. Elaine A. Faria, Hugo F. Ramalho, Jessica S. Marques, Paulo A.Z. Suarez, Alexandre G.S. Prado. Tetramethylguanidine covalently bonded onto silica gel surface as an efficient and reusable catalyst for transesterification of vegetable oil. Applied Catalysis A: General,2008,338(1-2):72~78.
    82. Energy Information Administration. Mouthly Energy Review. http://www.eia.doe.gov/emeu/mer/pdf/pages/sec 10_8.pdf,2008,4.
    83. European Biodiesel Board. Ebb Comments to Commission Consultation on the Revision of EU Biodiesels Directive.2006.
    84. European Biodiesel Board. http://www.ebb-eu.org/EBBpress.php.
    
    85. Frederique R. Abreua, Melquizedeque B. Alvesa, Caio C.S. Mac^edo, LF Zara, Paulo A.Z.Suarez. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterificaton reaction. Journal of Molecular Catalysis A: Chemical, 2005,227(1-2): 263-267.
    
    86. Galen J. Suppes, Mohanprasad A. Dasari, Eric J. Doskocil, Pratik J.Mankidy, Michael J.Goff. Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General, 2004,257(2): 213-223.
    
    87. G. Arzamendi, I. Campo, E. Arguifiarena, M. Sanchez, M. Montes, L.M. Gandia. Synthesis of biodiesel with heterogeneous NaOH/alumina catalysts: Comparison with homogeneous NaOH. Chemical Engineering Journal,2007,134( 1 -3): 123 ~ 130.
    
    88. G.H. Du, Z.L. Liu, X. Xia, Q. Chu, S.M. Zhang. Characterization and application of Fe_3O_4/SiO_2 nanocomposites. Journal of Sol-Gel Science and Technology, 2006, 39:285~291.
    
    89. Hengwen Han, Weiliang Cao, Jingchang Zhang. Preparation of biodiesel from soybean oil using supercritical methanol and CO_2 as co-solvent. Process Biochemistry,2005,40(9):3148~ 3151.
    
    90. Huayang He, Tao Wang and Shenlin Zhu. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel, 2007,86(3):442~447.
    
    91. Iowa State University Research Foundation (Ames, IA). Use of functionalized mesoporous silicates to esterify fatty acids and transesterify oils. U.S.A.: 7, 122, 688, 2004-09-20.
    
    92. Japan for Sustainability. Japan to More Than Double Biodiesel Fuel Production in 4 Years. http://www.japanfs.org/db/database, 2006.
    
    93. J. Lee, T. Isobe, M. Senna. Prpearation of Ultrafine Fe_3O_4 Particles by Precipitation in the Presence of PVA at High pH Journal of Colloid and Interface Science, 1996, 177 (2):490~494.
    
    94. J.M.N. van Kasteren, A.P. Nisworo, A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resources, Conservation and Recycling, 2007,50(4):442~458.
    
    95. J. Wan, G.Tang, Y. Qian. Room temperature synthesis of single-crystal Fe_3O_4 nanoparticles with superparamagnetic property. Applied Physics A, 2007, 86:261-264.
    
    96. J. Wan, Y. Yao, G. tang. Controlled-synthesis, characterization, and magnetic properties of Fe_3O_4 nanostructures. Applied Physics A,2007, 89(2) :529~532.
    
    97. Jing Zeng, Wei Du , Xinyi Liu Dehua Liu, Lingmei Dai. Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. Journal of Molecular Catalysis B: Enzymatic,2006, 43(1-4):15~ 18.
    
    98. J. Link Shumaker, Czarena Crofcheck, S. Adam Tackett, Eduardo Santillan-Jimenez, Tonya Morgan, Yaying Ji, Mark Crocker, Todd J. Toops. Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental, In Press, Corrected Proof, Available online 20 January 2008.
    99. J.M. Marchetti, V.U. Miguel, A.F. Errazu. Heterogeneous esterification of oil with high amount of free fatty acids. Fuel,2007,86(5-6):906~910.
    100. K. Narasimharao, D.R. Brown, A.F. Lee, A.D. Newman, P.F. Siril, S.J. Tavener, K. Wilson. Structure-activity relations in Cs-doped heteropolyacid catalysts for biodiesel production. Journal of Catalysis, 2007,248(2):226~234.
    101. Kim Hak-joo, Kang Bo-seung, Kim Min-ju, Park Young Moo, Kim Deog-Keun, Lee Jin-Suk, Lee Kwan-Young. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today, 2004, 93-95(1): 315—320.
    102. Lurgi to Build Biodiesel Plant in Germany. Chemical Week,2003, 5: 15.
    103. M. Di Serio, M. Cozzolino, R. Tesser, P. Patrono, F. Pinzari, B. Bonelli, E. Santacesaria. Vanadyl phosphate catalysts in biodiesel production. Applied Catalysis A: General,2007,320(1-7):1~7.
    104. Michael A. Jackson Isa K. Mbaraka and Brent H. Shanks. Esterification of oleic acid in supercritical carbon dioxide catalyzed by functionalized mesoporous silica and an immobilized lipase. Applied Catalysis A:General,2006,310:48-53.
    105. Monica C.G. Albuquerque, Inmaculada Jimenez-Urbistondo, Jose Santamaria-Gonzalez, Josefa M. Merida-Robles, Ramon Moreno-Tost, Enrique Rodriguez-Castellon, Antonio Jimenez-Lopez, Diana C.S. Azevedo, Celio L. Cavalcante Jr., Pedro Maireles-Torres. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Applied Catalysis A: General,2008, 334(1-2): 35-43.
    106. Naomi Shibasaki-Kitakawa , Hiroki Honda , Homare Kuribayashi, Takuji Toda, Takuya Fukumura, Toshikuni Yonemoto . Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresource Technology,2007, 98(2): 416—421
    107. Peterson GR, Scarrach WP. Rapeseed oil transesterification by heterogeneous catalysis. Journal of the American Oil Chemists' Society 1984,61(10): 1593—7.
    108. Qing Shu, Bolun Yang, Hong Yuan, Song Qing, Gangli Zhu. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La~(3+). Catalysis Communications,2007,8(12):2159—2165.
    109. Revo International Inc. (Kyoto, JP). Processes for producing alkyl ester of fatty acid. U.S.A., 6,960,672, 2002-9-17.
    110. Satoshi Furuta, Hiromi Matsuhashi, Kazushi Arata . Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications, 2004,5:721—723.
    111. S. B. Cho, J. S. Noh, S.J. Park AE, D. Y. Lim, S. H. Choi. Morphological control of Fe_3O_4 particles via glycothermal process. Journal of Materials Science, 2007, 42(13): 4877—4886.
    112. S. Franger, P. Berthet, O. Dragos, R. Baddour-Hadjean, P. Bonville, J. Berthon. Large influence of the synthesis conditions on the physico-chemical properties of nanastructured Fe_3O_4. Journal of Nanoparticle Research, 2007, 9(3): 389—402.
    113. S. Gryglewicz. Rapeseed oil methyl esters preparation using heterogeneous catalysts Bioresource Technology, 1999,70(3): 249—253.
    114. Shinji Hama,Sriappareddy Tamalampudi,Takahiro Fukumizu, Kazunori Miura, Hideki Yanaji, Akihiko Kondo, Hideki Fukuda. Lipase Localization in hizopus oryzae Cells Immobilized within Biomass Support Particles for Use as Whole-Cell Biocatalysts in Biodiesel-Fuel Production. Journal of Bioscience and Bioengineering, 2006, 101(4): 328—333.
    115. Shweta Shah, Aparna Sharma, Munishwar N. Gupta. Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Analytical Biochemistry, 2006, 351(2):207~213.
    116. Peter Siegfried K.F., Ganswindt Ruth, Neuner Hans-Peter, Weidner Eckhard. Alcoholysis of triacylglycerols by heterogeneous catalysis. European Journal of Lipid Science and Technology, 2002, 104(6):324~330.
    117.Tanguy F. Dossin, Marie-Franc,oise Reyniers, Rob J. Berger, Guy B.Marin. Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Applied Catalysis B: Environmental 2006,67(1-2): 136—148.
    118. United Soybean Board, The Soy Products Catalog. http://www.unitedsoybean.com.
    119. Wenlei Xie, Haitao Li. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil Journal of Molecular Catalysis A: Chemical, 2006, 255(1-2): 1-9.
    120. Wenlei Xie, Xiaoming Huang, Haitao Li. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology, 2007,98(4) :936~939.
    121. Wenlei Xie, Hong Peng, Ligong Chen. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 2006, 300(1):67~74.
    122. Wikipedia. Biodieslel Around the World. http://en.wikipedia.org/wiki/Biodiesel_around_the_world#Australia, 2007.
    123. X. HUANG, Z. CHEN. Nickel ferrite on silica nanocomposites prepared by the sol-gel method. Jounal of Magnetism and Magnetic Materials, 2004,280(1 ):37—43.
    124. Xu Li, Guanzhong Lu, Yanglong Guo, Yun Guo, Yanqin Wang, Zhigang Zhang, Xiaohui Liu, Yunsong Wang. A novel solid superbase of Eu_2O_3/Al_2O_3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catalysis Communications,2007,8(12):1969— 1972.
    125. Xuejun Liu, Xianglan Piao, Yujun Wang, Shenlin Zhu, Huayang He. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel, 2008,87(7): 1076—1082.
    126. X. Zhang, R. Zhou, W. Rao, Y. Cheng, B. G. Ekoko. Influence of precipitator agents NaOH and NH_4OH on the preparation of Fe_3O_4 nano-particles synthesized by electron beam irradiation. Journal of Radioanalytical and Nuclear Chemistry, 2006, 270(2): 285~289.
    127. Yijun Liu, Edgar Lotero, James G. Goodwin Jr., Xunhua Mo. Transesterification of poultry fat with methanol using Mg-Al hydrotalcite derived catalysts.Applied Catalysis A: General,2007, 331:138-148.
    128. Yuichiro Warabi, Dadan Kusdiana, Shiro Saka. Reactivity of triglycerides and fatty acids of rapeseed oilin supercritical alcohols. Bioresource Technology 2004,91(3): 283~287.
    129. Zhenqiang Yang, Wenlei Xie. Soybean oil transesterification over zinc oxide modified with alkali earth metals. Fuel Processing Technology,2007,88(6):631 -638.
    130. Z. Z. Xu, C. C. Wan W. L. Yang, S. K. Fu. Synthesis of superparamagnetic Fe_3O_4/SiO_2 composite particles via sol-gel process based on inverse miniemulsion. Jounal of Materials Science, 2005,40(17):4667-4669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700