用户名: 密码: 验证码:
富油海洋微藻的筛选及营养条件对其生长和油脂积累的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的快速发展,不可再生的石化能源被过度开发,导致世界范围内能源呈现日益短缺的状态。开发可再生、环境友好的生物柴油替代能源已成为目前能源研究的重要课题,受到了各国研究者的广泛关注。
     微藻生长速度快、生长周期短、油脂含量高、环境友好、不占用耕地等诸多优势使其成为开发生物柴油的重要原料来源。由于微藻生产成本居高不下,微藻生物柴油至今尚未实现大规模商业化生产。可见,降低生产成本成为微藻生物柴油生产中亟待解决的重点和难点。而选育生物量产率大、油脂含量高、培养成本低的富油微藻是降低微藻生物柴油生产成本的有效途径之一。
     本文对取自青岛汇泉湾天然海水中的海洋微藻进行了分离纯化和形态鉴定,并分析了其生长和油脂积累特性;对分离出的油脂产率较高的藻与实验室原有藻种进行了生长和油脂积累分析,发现我们分离到的海洋小球藻NJ101的生长速度快,油脂产率高,脂肪酸组成适于生产生物柴油。于是,选择了海洋小球藻进行下一步的实验,探讨了一系列营养元素对其生长和油脂积累的影响。最后,通过营养缺乏增加了海洋微藻的油脂含量。主要研究结果如下:
     (1)分离纯化出两株海洋微藻,经鉴定,一株绿藻为海洋小球藻(Chlorella sp. NJ101),另一株硅藻为小新月菱形藻(Nitzschia closterium f. minutissima NJ112)。通过对分离到的海洋小球藻与其它九种实验室原有海洋微藻的研究,发现海洋小球藻、牟氏角毛藻和杜氏盐藻是生长速度、生物量产率和油脂产率最大的三株海洋微藻(即富油微藻),其中海洋小球藻和牟氏角毛藻的饱和脂肪酸和单不饱和脂肪酸的含量占总脂肪的80%以上,杜氏盐藻的饱和脂肪酸和单不饱和脂肪酸的含量更是高达90%以上。尤其是所分离的海洋小球藻生长最快、生物量产率与油脂产率最高,且其脂肪酸组成符合生物柴油生产的欧洲标准,是生产生物柴油的良好原料。
     (2)在海洋小球藻的培养基中加入NaHCO3、Na2CO3和葡萄糖作为碳源时,降低了海洋小球藻的生物量产率和油脂产率。海洋小球藻以NaNO3为氮源时生物量产率和油脂产率最大,NaNO3比NH4Cl和CO(NH2)2更适合作为海洋小球藻的氮源来生产生物柴油。NaNO3和NaH2PO4对海洋小球藻生物量产率和油脂产率有很大的影响。实验发现:当NaNO3浓度在2.2~8.8×10-3mol·L-1范围内时,对海洋小球藻的油脂产率影响最大;当NaH2PO4浓度在1.8×10-5mol·L-1~1.8×10-4mol·L-1范围内时,对海洋小球藻的油脂产率影响最大。不同的Na2SiO4浓度对海洋小球藻的生物量产率和油脂产率的影响均不显著。MgSO4的添加与否及浓度大小对海洋小球藻的生长和油脂积累的影响均不显著。在海洋小球藻的培养基中加入CaCl时,海洋小球藻的生物量产率不显著的增加,而油脂产率在适当浓度时显著增加。
     (3)培养基中添加FeCl3时,海洋小球藻的油脂产率明显高于无铁培养基中的,但是添加的浓度对海洋小球藻的油脂产率没有显著的影响。在实验设置的梯度范围内,CuSO4、Na2MoO4、ZnSO4、CoCl2和MnCl2的添加与否及浓度大小对海洋小球藻的生长和油脂积累的影响均不显著。
     (4)正交实验获得的使海洋小球藻的油脂产率最大的营养盐浓度为NaNO3-N8.8×10-4mol·L-1; NaH2PO4-P7.2×10-5mol·L-1; FeCl3-Fe0.5×10-5mol·L-1.在所有的实验组中,海洋小球藻的饱和脂肪酸和单不饱和脂肪酸的含量都接近或超过其细胞干重的90%,亚麻酸(C18:3)含量均小于总脂含量的10%,满足生物柴油生产的欧洲标准EN14214。
     (5)全营养缺乏对牟氏角毛藻、杜氏盐藻和海洋小球藻的生物量的降低最多,其次分别是缺氮、缺磷和缺铁。对于牟氏角毛藻和海洋小球藻而言,缺氮是最大的生理压力,其次分别是全营养缺乏、缺磷和缺铁;对于杜氏盐藻而言,全营养缺乏是最大的生理压力,其次分别是缺氮、缺磷和缺铁。缺氮条件下,牟氏角毛藻的油脂含量最高,达到了细胞干重的46%。全营养缺乏条件下,杜氏盐藻和海洋小球藻的油脂含量最高,分别达到细胞干重的54%和64%。即通过营养缺乏提高油脂含量后,我们分离到的海洋小球藻Chlorella sp.NJ101的油脂含量达到了最大。
     总之,本文从天然海水中筛选出一株富油微藻,经鉴定为海洋小球藻;探讨了不同营养条件对海洋小球藻的生长和油脂积累的影响;并利用营养缺乏增加了海洋小球藻的油脂含量。为进一步开发微藻生物能源、提高微藻的油脂含量及早日实现微藻生物柴油的产业化提供了理论依据和实验基础。
With the rapid development of the global economy, non-renewable fossil fuels are overexploited, leading to a worldwide increasingly shortage of energy. Biodiesel is a renewable and ecologically friendly energy resource, and the development of it becomes increasingly important and is attractive to the researchers of the world.
     Microalgae are of particular interest as a most promising source of biomass for biodiesel production due to their rapid growth rate, short growth cycle, high lipid content, strong adaptability to environment and easy to cultivation and so on. However, the production of biodiesel from microalgae is still too expensive to meet the market requirements. To solve this problem, it is essential to identify suitable strains of microalgae for mass cultivation and improve the lipid content of them.
     In this study, we isolated and purified marine microalgae from natural seawater and identified them by their morphology. Oil-rich marine microalgea was screened from microalgal species of our laboratory and the marine microalgae we isolated. The lipid productivity of Chlorella sp. NJ101was the highest, so the effects of nutrient conditions on the growth and lipid accumulation of Chlorella sp. were explored. Nutrient deprivation was used to enhance the lipid content of marine microalgae. The main results are as follows:
     (1) Two marine microalgae were isolated and purified form natural seawater. One of them was green alga which was identified as Chlorella sp. NJ101and the other was diatom which was identified as Nitzschia closterium f. minutissima NJ112. Three marine microalgae with faster growth, higher biomass productivity and higher lipid productivity were screened out from the ten strains; they are Chlorella sp. NJ101, Chaetoceros muelleri and Dunqliella salina. The saturated and monounsaturated fatty acids content of Chlorella sp. NJ101and Chaetoceros muelleri were more than80%and that of Dunaliella salina even more than90%. The growth rate of Chlorella sp. NJ101was the faster and the biomass productivity and the lipid productivity of Chlorella sp. NJ101was the highest and the fatty acid composition of Chlorella sp. NJ101meets the requirement of EN14214, so, Chlorella sp. NJ101was a promising biodiesel feedstock.
     (2) When NaHCO3, Na2CO3and glucose were added to the medium as carbon source, the biomass productivity and lipid productivity of Chlorella sp. NJ101was reduced. The highest biomass productivity and lipid productivity of Chlorella sp. NJ101was obtained when NaNO3was used as nitrogen source. So, when Chlorella sp. NJ101was used to produce biodiesel, NaNO3was more suitable to use as the nitrogen source than NH4CI and CO(NH2)2. NaNO3and NaH2PO4have a great influence on the biomass productivity and lipid productivity of Chlorella sp. NJ101. The most significant effect on the lipid productivity of Chlorella sp. NJ101was obtained when the concentrations of NaNO3were between2.2-8.8×10-3mol·L-1or the concentration of NaH2PO4were between1.8×10-5mol·L-1-1.8x10-4mol·L-1. Different concentration of Na2SiO4didn't have significant effect on the biomass productivity and lipid productivity of Chlorella sp. NJ101. None of the addition or the concentration of MgSO4had significant effect on the growth and lipid productivity of Chlorella sp. NJ101. When CaCl was supplemented to the medium of Chlorella sp. NJ101, the biomass productivity was increased though not significant, and the lipid productivity was significantly increased with suitable CaCl concentration.
     (3) The addition of FeCl3significantly increased the lipid productivity of Chlorella sp. NJ101, but the concentration of FeCl3didn't have significant effect on the lipid productivity of Chlorella sp. NJ101. None of the addition or the concentration of CuSO4, Na2Mo04, ZnSO4, CoCl2and MnCl2had significant effect on the growth and lipid productivity of Chlorella sp. NJ101.
     (4) The optimum nutrients concentration with which the lipid productivity of Chlorella sp. NJ101was highest was obtained form the orthogonal experiment:NaNO3-N8.8×10-4mol·L-1; NaH2PO4-P7.2×10-5mol·L-1; FeCl3-Fe0.5×10-5mol·L-1. And the fatty acid composition of Chlorella sp. NJ101in all the trials meets the requirement of EN14214.
     (5) Complete nutrition deprivation resulted in the largest reduction of C. muelleri, D. salina and Chlorella sp. NJ101growth, followed by deprivation of nitrogen, phosphate and iron from the medium. Deprivation of nitrogen gave the greatest physiological stress to C. muelleri and Chlorella sp. NJ101, followed closely by deprivation of complete nutrient, phosphate and iron. Complete nutrition deprivation gave the greatest physiological stress to D. salina, followed closely by deprivation of nitrogen, phosphate and iron. The highest lipid content for C. muelleri was achieved by nitrogen deprivation and the lipid content were46%of dry cell weight. The highest lipid content for D. salina and Chlorella sp. NJ101was achieved by complete nutrient deprivation, and the lipid content were54%and64%of dry cell weight, respectively. It means that Chlorella sp. NJ101isolated form seawater has the highest lipid content when the nutrient deprivation was used.
     In short, one microalge with high lipid productivity was screened form natural seawater; it is Chlorella sp. NJ101. The effects of different nutrient conditions on the growth and lipid accumulation of Chlorella sp. NJ101were studied. Nutrient deprivation was used to enhance the lipid content of marine micoalgae with high lipid productivity. This article provides a theoretical and experimental basis to the further development of microalge biofuel and the enhancement of microalgal lipid content and will speed up the commercialization of microalgae biodiesel.
引文
[1]Netravali A N, Chabba S. Composites get greener[J]. Materials today,2003,6(4):22-29.
    [2]Rodolfi L, Zittelli G C, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor[J]. Biotechnol Bioeng,2009,102(1):100-112.
    [3]Chisti Y. Biodiesel from microalgae[J]. Biotechnol Adv,2007,25(3):294-306.
    [4]Turner J A. A realizable renewable energy future[J]. Science,1999,285(5428):687-689.
    [5]Amigun B, Sigamoney R, Von Blottnitz H. Commercialisation of biofuel industry in Africa:a review[J]. Renewable and Sustainable Energy Reviews,2008,12(3):690-711.
    [6]Song D, Fu J, Shi D. Exploitation of oil-bearing microalgae for biodiesel[J]. Chinese Journal of Biotechnology,2008,24(3):341-348.
    [7]Vicente G, Martinez M, Aracil J. Integrated biodiesel production:a comparison of different homogeneous catalysts systems[J]. Bioresour Technol,2004,92(3):297-305.
    [8]Cadenas A, Cabezudo S. Biofuels as sustainable technologies:perspectives for less developed countries[J]. Technological Forecasting and Social Change,1998,58(1):83-103.
    [9]Ma F, Hanna M A. Biodiesel production:a review[J]. Bioresour Technol,1999,70(1):1-15.
    [10]Meher L, Vidya Sagar D, Naik S. Technical aspects of biodiesel production by transesterification-a review[J]. Renewable and Sustainable Energy Reviews,2006, 10(3):248-268.
    [11]Gerpen J V. Biodiesel processing and production[J]. Fuel processing technology,2005, 86(10):1097-1107.
    [12]Demirbas A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections[J]. Energy Conversion and Management,2008,49(8):2106-2116.
    [13]刘伟,李茉莉,杨镇,付雪娇,王宝君,陈丽娜,张玉权,崔景双.生物柴油能源作物研发现状[J].杂粮作物,2007,27(3):250-251.
    [14]严伯昌.我国生物柴油的发展状况及产业前景[J].河北农机,2008,(1):25.
    [15]Hoekman S K, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications[J]. Renewable and Sustainable Energy Reviews,2012, 16(1):143-169.
    [16]Van Gerpen J. Business management for biodiesel producers[J]. Report from Iowa State University for the National Renewable Energy Laboratory, NREL/SR-510-36242,2004.
    [17]Huang G, Chen F, Wei D, Zhang X, Chen G. Biodiesel production by microalgal biotechnology[J]. Applied Energy,2010,87(1):38-46.
    [18]Frondel M, Peters J. Biodiesel:a new oildorado[J]. Energy Policy,2007,35(3):1675-1684.
    [19]Scragg A, Illman A, Carden A, Shales S. Growth of microalgae with increased calorific values in a tubular bioreactor[J]. Biomass and Bioenergy,2002,23(1):67-73.
    [20]Demirbas A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods:a survey[J]. Energy Conversion and Management, 2003,44(13):2093-2109.
    [21]Doan T T Y, Sivaloganathan B, Obbard J P. Screening of marine microalgae for biodiesel feedstock[J]. Biomass and Bioenergy,2011,35(7):2534-2544.
    [22]Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. Plant Journal, 2008,54(4):621-639.
    [23]Wu Y H, Yu Y, Hu H Y. Potential biomass yield per phosphorus and lipid accumulation property of seven microalgal species[J]. Bioresour Technol,2013,130:599-602.
    [24]Khan S A, Hussain M Z, Prasad S, Banerjee U. Prospects of biodiesel production from microalgae in India[J]. Renewable and Sustainable Energy Reviews,2009,13(9):2361-2372.
    [25]Um B-H, Kim Y-S. Review:a chance for Korea to advance algal-biodiesel technology[J]. Journal of Industrial and Engineering Chemistry,2009,15(1):1-7.
    [26]Lim S, Teong L K. Recent trends, opportunities and challenges of biodiesel in Malaysia:an overview[J]. Renewable and Sustainable Energy Reviews,2010,14(3):938-954.
    [27]Tan K T, Lee K T. A review on supercritical fluids (SCF) technology in sustainable biodiesel production:Potential and challenges[J]. Renewable and Sustainable Energy Reviews,2011, 15(5):2452-2456.
    [28]于国柱.藻类生物能源的开发与利用[J].石化技术,2010,(004):34-38.
    [29]刘斌,陈大明,游文娟,邢雪荣,于洁,于建荣.微藻生物柴油研发态势分析[J].生命科学,2008,20(6).
    [30]Xu H, Miao X, Wu Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters[J]. J Biotechnol,2006,126(4):499-507.
    [31]Stephens E, Ross I L, King Z, Mussgnug J H, Kruse O, Posten C, Borowitzka M A, Hankamer B. An economic and technical evaluation of microalgal biofuels[J]. Nature biotechnology,2010, 28(2):126-128.
    [32]Harun R, Singh M, Forde G M, Danquah M K. Bioprocess engineering of microalgae to produce a variety of consumer products[J]. Renewable and Sustainable Energy Reviews,2010, 14(3):1037-1047.
    [33]Gouveia L, Oliveira A C. Microalgae as a raw material for biofuels production[J]. J Ind Microbiol Biotechnol,2009,36(2):269-274.
    [34]Shi X-M, Zhang X-W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources[J]. Enzyme and Microbial Technology,2000, 27(3):312-318.
    [35]Shi X M, Chen F. High-Yield Production of Lutein by the Green Microalga Chlorella protothecoidesin Heterotrophic Fed-Batch Culture[J]. Biotechnology progress,2002, 18(4):723-727.
    [36]Wen Z-Y, Jiang Y, Chen F. High cell density culture of the diatom Nitzschialaevis for eicosapentaenoic acid production:fed-batch development[J]. Process Biochemistry,2002, 37(12):1447-1453.
    [37]Acien F, Fernandez J, Magan J, Molina E. Production cost of a real microalgae production plant and strategies to reduce it[J]. Biotechnology advances,2012,30(6):1344-1353.
    [38]Chiu S-Y, Kao C-Y, Tsai M-T, Ong S-C, Chen C-H, Lin C-S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration[J]. Bioresour Technol,2009, 100(2):833-838.
    [39]王明清,迟晓元,秦松,杨官品,姜鹏,逢少军.海洋微藻总脂含量和脂肪酸组成的测定[J].中国油脂,2008,33(11):67-70.
    [40]Oh S H, Han J G, Kim Y, Ha J H, Kim S S, Jeong M H, Jeong H S, Kim N Y, Cho J S, Yoon W B. Lipid production in Porphyridium cruentum grown under different culture conditions[J]. J Biosci Bioeng,2009,108(5):429-434.
    [41]Converti A, Casazza A A, Ortiz E Y, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production[J]. Chemical Engineering and Processing:Process Intensification,2009, 48(6):1146-1151.
    [42]Cooper M S, Hardin W R, Petersen T W, Cattolico R A. Visualizing "green oil" in live algal cells[J]. J Biosci Bioeng,2010,109(2):198-201.
    [43]Elsey D, Jameson D, Raleigh B, Cooney M J. Fluorescent measurement of microalgal neutral lipids[J]. J Microbiol Methods,2007,68(3):639-42.
    [44]Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production[J]. Bioresour Technol, 2011,102(1):57-70.
    [45]Cooperation A P E, Consulting H E. Establishment of the Guidelines for the Development of Biodiesel Standards in the APEC Region. April; 2009.
    [46]石娟,潘克厚.不同培养条件对微藻总脂含量和脂肪酸组成的影响[J].海洋水产研究,2004,6.
    [47]Papanikolaou S, Komaitis M, Aggelis G. Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media[J]. Bioresour Technol,2004,95(3):287-291.
    [48]Ohlrogge J B, Kuhn D N, Stumpf P. Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea[J]. Proceedings of the National Academy of Sciences,1979, 76(3):1194-1198.
    [49]Ward O P, Singh A. Omega-3/6 fatty acids:alternative sources of production[J]. Process Biochemistry,2005,40(12):3627-3652.
    [50]Lv J M, Cheng L H, Xu X H, Zhang L, Chen H L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions[J]. Bioresour Technol,2010,101(17):6797-804.
    [51]Livne A, Sukenik A. Lipid synthesis and abundance of acetyl CoA carboxylase in Isochrysis galbana (Prymnesiophyceae) following nitrogen starvation[J]. Plant and cell physiology,1992, 33(8):1175-1181.
    [52]Bozbas K. Biodiesel as an alternative motor fuel:Production and policies in the European Union[J]. Renewable and Sustainable Energy Reviews,2008,12(2):542-552.
    [53]Demirbas A. Production of biodiesel from algae oils[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2008,31(2):163-168.
    [54]黄雄超,牛荣丽.利用海洋微藻制备生物柴油的研究进展[J].海洋科学,2012,36(1):108-116.
    [55]Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms[J]. Renewable Energy,2009,34(1):1-5.
    [56]Knothe G, Van Gerpen J H, Krahl J. The biodiesel handbook[M]:AOCS press Champaign, IL, 2005.
    [57]胡章喜,安时,段舜山,徐宁,孙凯,刘晓娟,李爱芬,张成武.不同氮原对布朗葡萄藻生长,总脂和[J].生态学报,2009,29(6).
    [58]王顺昌,王陶,赵世光,吴跃进,余增亮.不同氮源对蛋白核小球藻生长,色素和中性脂肪积累的影响[J].激光生物学报,2008,17(2):197-201.
    [59]魏东,张学成,隋正红,徐怀恕.氮源和N/P对眼点拟微球藻的生长,总脂含量和脂肪酸组成的影响[J].海洋科学,2000,24(7):46-51.
    [60]吴长斌,张佳峰,翟兴文.氮源对雨生红球藻和扁藻生长的影响[J].河北渔业,2003,2:24-27.
    [61]刘梅芳,王海英.氮源及其浓度对三角褐指藻生长及其脂肪酸组成的影响[J].中南民族大学学报(自然科学版),2008,2:011.
    [62]Illman A M, Scragg A H, Shales S W. Increase in Chlorella strains calorific values when grown in low nitrogen medium[J]. Enzyme and Microbial Technology,2000,27(8):631-635.
    [63]Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation[J]. Bioresour Technol,2009,100(17):3921-6.
    [64]de la Jara A, Mendoza H, Martel A, Molina C, Nordstron L, de la Rosa V, Diaz R. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii[J]. Journal of Applied Phycology,2003,15(5):433-438.
    [65]Shifrin N S, Chisholm S W. Phytoplankton lipids:interspecific differences and effects of nitrate, silicate and light-dark cycles[J]. Journal of Phycology,1981,17(4):374-384.
    [66]Guschina I A, Harwood J L. Lipids and lipid metabolism in eukaryotic algae[J]. Progress in Lipid Research,2006,45(2):160-186.
    [67]Widjaja A, Chien C-C, Ju Y-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris[J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(1):13-20.
    [68]Piorreck M, Baasch K-H, Pohl P. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes[J]. Phytochemistry,1984,23(2):207-216.
    [69]梁英,麦康森,孙世春.硝酸钠浓度对2株三角褐指藻生长及脂肪酸组成的影响[J].黄渤海海洋,2001,19(4):56-62.
    [70]Behrens P, Hoeksema S, Arnett K, Cole M, Heubner T, Rutten J, Kyle D. Eicosapentaenoic acid from microalgae[J]. Novel Microbial Products for Medicine and Agriculture. Elsevier Science Publishers, Amsterdam,1989:253-259.
    [71]EVANS C T, RATLEDGE C. Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14[J]. Journal of general microbiology,1984,130(7):1705-1710.
    [72]黄冠华,陈峰,魏东.两步培养法提高蛋白核小球藻的油脂含量术[J].华南理工大学学报(自然科学版),2008,36(12).
    [73]Harrison P, Thompson P, Calderwood G. Effects of nutrient and light limitation on the biochemical composition of phytoplankton[J]. Journal of Applied Phycology,1990,2(1):45-56.
    [74]Muradyan E, Klyachko-Gurvich G, Tsoglin L, Sergeyenko T, Pronina N. Changes in lipid metabolism during adaptation of the Dunaliella salina photosynthetic apparatus to high CO2 concentration[J]. Russian Journal of Plant Physiology,2004,51(1):53-62.
    [75]刘晓娟,段舜山,李爱芬.有机碳源对三角褐指藻生长、胞内物质和脂肪酸组分的影响[J]. 生物工程学报,2008,24(1):147-152.
    [76]Sato N, Tsuzuki M, Kawaguchi A. Glycerolipid synthesis in Chlorella kessleri 1th:I. Existence of a eukaryotic pathway[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids,2003,1633(l):27-34.
    [77]Riebesell U, Revill A T, Holdsworth D G, Volkman J K. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi[J]. Geochimica et Cosmochimica Acta,2000,64(24):4179-4192.
    [78]Reitan K I, Rainuzzo J R, Olsen Y. Effect of Nutrient Limitation on Fatty-Acid and Lipid-Content of Marine Microalgae[J]. Journal of Phycology,1994,30(6):972-979.
    [79]Whichien Y, P. W O. Omega-3 fatty acids:alternative sources of production[J]. Process Biochemistry,1989,24(4):117-125.
    [80]Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus[J]. Phytochemistry,2006, 67(7):696-701.
    [81]Elsheek M, Rady A. Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green-algae chlorella kessleri[C].1995. FERDINAND BERGER SOEHNE WIENER STRASSE 21-23, A-3580 HORN, AUSTRIA, p 139-151.
    [82]林学政,李光友.环境因子对微藻脂类的影响[J].黄渤海海洋,1999,17(4):54-59.
    [83]Roessler P G. Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica[J]. Journal of Phycology,1988,24(3):394-400.
    [84]Roessler P G. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency[J]. Archives of biochemistry and biophysics,1988,267(2):521-528.
    [85]Roessler P G. Purification and characterization of acetyl-CoA carboxylase from the diatom Cyclotella cryptica[J]. Plant Physiology,1990,92(1):73-78.
    [86]Liu Z Y, Wang G C, Zhou B C. Effect of iron on growth and lipid accumulation in Chlorella vulgaris[J]. Bioresour Technol,2008,99(11):4717-4722.
    [87]Stewart W D P. Algal physiology and biochemistry [M]:University of California Pr,1974.
    [88]王菊芳,梁世中,陈峰.几种无机盐对隐甲藻生长和DHA产量的影响[J].湛江海洋大学学报,2001,21(4):18-21.
    [89]邱昌恩,毕永红,胡征宇.Zn2+胁迫对绿球藻生长,生理特性及细胞结构的影响[J].水生生物学报,2007,31(4):503-508.
    [90]张铁明,杜桂森,杨忠山,武佃卫,华振玲.锌对2种淡水浮游藻类增殖的影响[J].西北植 物学报,2006,26(8):1722-1726.
    [91]Miao X, Wu Q. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides[J]. J Biotechnol,2004,110(l):85-93.
    [92]Sato N, Murata N. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis:The central role of diacylmonogalactosylglycerol in thermo-adaptation[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1980,619(2):353-366.
    [93]Patterson G W. Effect of culture temperature on fatty acid composition of Chlorella sorokiniana[J]. Lipids,1970,5(7):597-600.
    [94]Opute F. Studies on fat accumulation in Nitzschia palea Kutz[J]. Annals of Botany,1974, 38(4):889-902.
    [95]Aaronson S. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica[J]. Journal of Phycology,1973,9(1):111-113.
    [96]Mortensen S H, Bersheim K Y, Rainuzzo J, Knutsen G. Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schiitt. Effects of silicate deprivation, temperature and light intensity[J]. Journal of Experimental Marine Biology and Ecology,1988,122(2):173-185.
    [97]Thompson P A, Guo M x, Harrison P J, Whyte J N. Effects of variation in temperature. Ⅱ. on the biochemical composition of species of marine phytoplankton.[J]. Journal of Phycology,1992, 28(4):488-497.
    [98]Sushchik N, Kalacheva G, Zhila N, Gladyshev M, Volova T. A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium[J]. Russian Journal of Plant Physiology,2003,50(3):374-380.
    [99]Zhu C, Lee Y, Chao T. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1[J]. Journal of Applied Phycology,1997,9(5):451-457.
    [100]De Oliveira M, Monteiro M, Robbs P, Leite S. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures[J]. Aquaculture international, 1999,7(4):261-275.
    [101]Richmond A E, Soeder C J. Microalgaculture[J]. Critical reviews in Biotechnology,1986, 4(4):369-438.
    [102]Singh A, Ward O P. Microbial production of docosahexaenoic acid (DHA, C22:6)[J]. Advances in applied microbiology,1997,45:271-312.
    [103]Ohta S, Chang T, Aozasa O, Ikegami N, Miyata H. Alterations in fatty acid composition of marine red alga Porphyridium purpureum by environmental factors[J]. Botanica marina,1993, 36(2):103-108.
    [104]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响[J].中国水产科学,2004,11(2):121-128.
    [105]李荷芳,周汉秋.光照强度对海洋微藻脂肪含量及脂肪酸组成影响的研究[J].海洋科学集刊,2001,43(00):178-183.
    [106]Orcutt D M, Patterson G W. Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis)[J]. Lipids,1974,9(12):1000-1003.
    [107]Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp.1[J]. Journal of Phycology,1989,25(4):686-692.
    [108]Kitano M, Matsukawa R, Karube I. Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions[J]. Journal of Applied Phycology,1997,9(6):559-563.
    [109]Nichols B. Light induced changes in the lipids of Chlorella vulgaris[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism,1965,106(2):274-279.
    [110]Ferrell J, Sarisky-Reed V, Fishman D, Majumdar R, Morello J, Pate R, Yang J. National Algal Biofuels Technology Roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy[J]. Biomass Program,2010.
    [111]Mata T M, Martins A A, Caetano N S. Microalgae for biodiesel production and other applications: a review[J]. Renewable and Sustainable Energy Reviews,2010,14(l):217-232.
    [112]Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y. Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. [J]. Journal of Phycology,1996,32(4):598-601.
    [113]张丽君,杨汝德,肖恒.小球藻的异养生长及培养条件优化[J].广西植物,2001,21(4):353-357.
    [114]黄冠华,陈峰.环境因子对异养小球藻脂肪酸组分含量和脂肪总酸产量的影响[J].可再生能源,2009,27(3):65-69.
    [115]Ota M, Kato Y, Watanabe H, Watanabe M, Sato Y, Smith R L, Jr., Inomata H. Fatty acid production from a highly CO2 tolerant alga, Chlorocuccum littorale, in the presence of inorganic carbon and nitrate[J]. Bioresour Technol,2009,100(21):5237-42.
    [116]蒋霞敏,柳敏海,邢晨光.不同生态条件对绿色巴夫藻生长与脂肪酸组成的影响[J].水生生物学报,2007,31(1):88-93.
    [117]Miao X, Wu Q. Biodiesel production from heterotrophic microalgal oil[J]. Bioresour Technol, 2006,97(6):841-846.
    [118]Borowitzka M. Large-scale algal culture systems:the next generation[J]. Australasian biotechnology,1994,4(4):212.
    [119]桂林,史贤明,李琳,胡松青,刘国琴.蛋白核小球藻不同培养方式的比较[J].河南工业大学学报(自然科学版),2005,26(5):52-55.
    [120]Hatate H, Ohgai M, Murase N, Miyake N, Suzuki N. Accumulation of fatty acids in Chaetoceros gracilis (Bacillariophyceae) during stationary growth phase[J]. Fisheries Science,1998,64.
    [121]王清池,廖启斌,陈清花,张元标,李文权.超声波对三角褐指藻脂肪酸组成的效应研究[J].厦门大学学报(自然科学版),2000,39(1):32-35.
    [122]张元标,李文权,陈清花.超声辐射提高亚心形扁藻脂肪酸不饱和度研究[J].台湾海峡,2001,20(z1).
    [123]李文权,王宪,陈清花,张元标,翁蓁洲.超声波对湛江等鞭金藻生长和脂肪酸组成的影响[J].海洋学报,2002,24(3):94-100.
    [124]Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae[J]. J Biosci Bioeng,2006,101(2):87-96.
    [125]Metting F B. Biodiversity and application of microalgae[J]. J Ind Microbiol Biotechnol,1996, 17(5-6):477-489.
    [126]Abou-Shanab R A, Hwang J-H, Cho Y, Min B, Jeon B-H. Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production[J]. Applied Energy, 2011,88(10):3300-3306.
    [127]贺国强,邓志平,陶丽,陈三凤.高油脂产率微藻的筛选及发酵条件的优化[J].农业生物技术学报,2010,18(6):1046-1053.
    [128]Guillard R L. Culture of Phytoplankton for Feeding Marine Invertebrates [M]//Smith W, Chanley M. Culture of Marine Invertebrate Animals[M]:Springer US,1975:29-60.
    [129]Guillard R R L, Ryther J H. Studies of marine planktonic diatoms:I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran.[J]. Canadian Journal of Microbiology,1962,8(2):11.
    [130]Francisco E C, Neves D B, Jacob-Lopes E, Franco T T. Microalgae as feedstock for biodiesel production:carbon dioxide sequestration, lipid production and biofuel quality[J]. Journal of Chemical Technology and Biotechnology,2010,85(3):395-403.
    [131]Saraf S, Thomas B. Influence of feedstock and process chemistry on biodiesel quality[J]. Process Safety and Environmental Protection,2007,85(5):360-364.
    [132]Molina Grima E, Belarbi E-H, Acien Fernandez F, Robles Medina A, Chisti Y. Recovery of microalgal biomass and metabolites:process options and economics[J]. Biotechnol Adv,2003, 20(7):491-515.
    [133]郑洪立,张齐,马小琛,纪晓俊,金平,黄和.产生物柴油微藻培养研究进展[J].中国生物工程杂志,2009,29(3):110-116.
    [134]刘圣臣,邹宁,吴电云,孙杰,孙东红.小球藻海藻油提取中不同破壁方法的研究[J][J].中国食品添加剂,2009,5:017.
    [135]Parrish C, Wells J, Yang Z, Dabinett P. Growth and lipid composition of scallop juveniles, Placopecten magellanicus, fed the flagellate Isochrysis galbana with varying lipid composition and the diatom Chaetoceros muelleri[J]. Marine biology,1999,133(3):461-471.
    [136]Lourenco S O, Barbarino E, Mancini-Filho J, Schinke K P, Aidar E. Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture:an evaluation for aquaculture[J]. Phycologia,2002,41(2):158-168.
    [137]Raja R, Hemaiswarya S, Rengasamy R. Exploitation of Dunaliella for β-carotene production[J]. Applied Microbiology and Biotechnology,2007,74(3):517-523.
    [138]王雪青,苗惠,翟燕.微藻细胞破碎方法的研究[J].天津科技大学学报,2007,22(1):21-25.
    [139]姚领,胡萍,胡蓓娟,李楠,许晗.两种溶剂提取法提取三角褐指藻中不饱和脂肪酸的比较[J].食品工业科技,2006,27(12):114-116.
    [140]蒋剑春.生物质能源转化技术与应用(Ⅰ)[J].生物质化学工程,2007,41(3):59-65.
    [141]Rashid U, Anwar F, Moser B R, Knothe G. Moringa oleifera oil:A possible source of biodiesel[J]. Bioresour Technol,2008,99(17):8175-8179.
    [142]Stournas S, Lois E, Serdari A. Effects of fatty acid derivatives on the ignition quality and cold flow of diesel fuel[J]. Journal of the American Oil Chemists'Society,1995,72(4):433-437.
    [143]Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters[J]. Fuel processing technology,2005,86(10):1059-1070.
    [144]Badger M R, Price G D. The role of carbonic anhydrase in photosynthesis[J]. Annual Review of Plant Biology,1994,45(1):369-392.
    [145]Rafiqul I, Jalal K, Alam M. Environmental factors for optimization of Spirulina biomass in laboratory culrure[J]. Biotechnology,2005,4(1):19-22.
    [146]Gosselin M, Legendre L, Therriault J C, Demers S. Light and nutrient limitation of sea-ice microalgae(Hudson bay, Canadian arctic)[J]. Journal of Phycology,1990,26(2):220-232.
    [147]Lang D S, Brown E J. Phosphorus-limited growth of a green alga and a blue-green alga[J]. Applied and Environmental Microbiology,1981,42(6):1002-1009.
    [148]Droop M. The nutrient status of algal cells in continuous culrure[J]. Journal of the Marine Biological Association of the United Kingdom,1974,54(04):825-855.
    [149]Turpin D H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism[J]. Journal of Phycology,1991,27(1):14-20.
    [150]Johnson M W, Heck Jr K L, Fourqurean J W. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico:evidence of phosphorus and nitrogen limitation[J]. Aquatic Botany, 2006,85(2):103-111.
    [151]Shimoda K, Aramaki Y, Nasuda J, Yokoyama H, Ishihi Y, Tamaki A. Food sources for three species of Nihonotrypaea (Decapoda:Thalassinidea:Callianassidae) from western Kyushu, Japan, as determined by carbon and nitrogen stable isotope analysis[J]. Journal of Experimental Marine Biology and Ecology,2007,342(2):292-312.
    [152]Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton:Induction of proteases in response to nitrogen or light limitation[J]. Limnology and Oceanography,1998, 43(1):129-135.
    [153]Theodorou M E, Elrifi I R, Turpin D H, Plaxton W C. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum[J]. Plant Physiology,1991, 95(4):1089-1095.
    [154]Barclay W, Meager K, Abril J. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms[J]. Journal of Applied Phycology,1994, 6(2):123-129.
    [155]Wen Z-Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae[J]. Biotechnol Adv,2003,21(4):273-294.
    [156]Tan C K, Johns M R. Fatty acid production by heterotrophic Chlorella saccharophila[J]. Hydrobiologia,1991,215(1):13-19.
    [157]李定梅.我国微藻产业的发展概况和前景(一)[J].粮食与饲料工业,2001,5:26-27.
    [158]王长海,欧阳藩.紫球藻的生物活性物质[J].海洋通报,1999,18(3):25-29.
    [159]孙利芹,王长海,滕立.培养条件对紫球藻45藻红蛋白含量的影响[J].2007.
    [160]孙颖颖.环境因子对球等鞭金藻生长的影响[D]:大连理工大学2007.
    [161]Feng D, Chen Z, Xue S, Zhang W. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement[J]. Bioresour Technol,2011, 102(12):6710-6.
    [162]Wu P-s. Acetate Modulation of Fatty Acid and Triacylglycerol Synthesis-related Gene Expression in Chlamydomonas reinhardtii for Nitrogen Starvation Induced Lipid Accumulation[J].2010.
    [163]Takagi M, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J]. J Biosci Bioeng,2006,101(3):223-226.
    [164]刘志媛,王广策.铁促进海水小球藻油脂积累的动态过程[J].海洋科学,2008,32(11):56-59.
    [165]Li Y, Han D, Sommerfeld M, Hu Q. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions[J]. Bioresour Technol,2011,102(1):123-9.
    [166]孙漫.海南岛近海海域富油微藻的筛选与鉴定[D]:海南大学2012.
    [167]刘晓娟,段舜山,李爱芬.不同营养因子对微藻3种培养方式生产EPA的影响[J].食品研究与开发,2006,27(8):185-188.
    [168]林广凤.盐生杜氏藻的生物学特性及其开发利用[J].齐鲁渔业,2006,23(11):7-9.
    [169]王波,梁伟,孔垂雨.不同营养盐对小球藻(Chlorella vulgaris Beij.)培养的影响[J].现代渔业信息,2006,21(5):11-12.
    [170]范代娣.细胞培养与蛋白质工程[M]:化学工业出版社,2000.
    [171]Briat J-F, Curie C, Gaymard F. Iron utilization and metabolism in plants[J]. Current opinion in plant biology,2007,10(3):276-282.
    [172]Greene R M, Geider R J, Kolber Z, Falkowski P G. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae[J]. Plant Physiology,1992, 100(2):565-575.
    [173]Ivanov A, Park Y-I, Miskiewicz E, Raven J, Huner N, Oquist G. Iron stress restricts photosynthetic intersystem electron transport in Synechococcus sp. PCC 7942[J]. FEBS Lett,2000, 485(2):173-177.
    [174]Andaluz S, Lopez-Millan A-F, De las Rivas J, Aro E-M, Abadia J, Abadia A. Proteomic profiles of thylakoid membranes and changes in response to iron deficiency [J]. Photosynthesis Research, 2006,89(2-3):141-155.
    [175]Vigani G, Maffi D, Zocchi G. Iron availability affects the function of mitochondria in cucumber roots[J]. New Phytologist,2009,182(1):127-136.
    [176]Terauchi A M, Peers G, Kobayashi M C, Niyogi K K, Merchant S S. Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis[J]. Photosynthesis Research,2010,105(1):39-49.
    [177]Paz Y, Shimoni E, Weiss M, Pick U. Effects of iron deficiency on iron binding and internalization into acidic vacuoles in Dunaliella salina[J]. Plant Physiology,2007,144(3):1407-1415.
    [178]Behrenfeld M J, Worthington K, Sherrell R M, Chavez F P, Strutton P, McPhaden M, Shea D M. Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics[J]. Nature,2006,442(7106):1025-1028.
    [179]Xu N, Zhang X, Fan X, Han L, Zeng C. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp.(Eustigmatophyta)[J]. Journal of Applied Phycology,2001,13(6):463-469.
    [180]徐雷,于连生.赤潮藻的显微图形测量方法研究[J].海洋技术,2003,22(3):43-46.
    [181]夏金兰,万民熙,王润民,刘鹏,李丽,黄斌,邱冠周.微藻生物柴油的现状与进展[J].seed, 2009,572(8524):57.2.
    [182]Michel K P, Pistorius E K. Adaptation of the photosynthetic electron transport chain in cyanobacteria to iron deficiency:the function of IdiA and IsiA[J]. Physiologia plantarum,2004, 120(1):36-50.
    [183]Thelen J J, Ohlrogge J B. The multisubunit acetyl-CoA carboxylase is strongly associated with the chloroplast envelope through non-ionic interactions to the carboxyltransferase subunits[J]. Archives of biochemistry and biophysics,2002,400(2):245-257.
    [184]王伏林,吴关庭,郎春秀,陈锦清.植物中的乙酰辅酶A羧化酶(AACASE)[J].植物生理学通讯,2006,42(1):10-14.
    [185]李丽.铁离子对三株典型微藻生长和脂质积累及相关基因表达的影响研究[D]:中南大学2010.
    [186]郭金耀,杨晓玲.铝对盐藻生长与物质积累的调控作用[J].盐业与化工,2007.
    [187]王俊彩.富油微藻的筛选及其培养条件的优化研究[D]:中国海洋大学2012.
    [188]张玮玮,王家官.微量元素钴对脆杆藻和斜生栅藻增殖的影响[J].山西农业科学,2012,40(3):207-211.
    [189]王海明,王宁,王晓蓉,李玉成,金相灿.不同浓度Mn2+对铜绿微囊藻的生长及其生物可利用性的影响[J].环境污染与防治,2008,30(1):13-16.
    [190]张铁明.微量元素锌、铁、锰对淡水浮游藻类增殖的影响[D]:首都师范大学2006.
    [191]蒋瑶,谭晓风.植物乙酰辅酶A羧化酶基因的分子生物学研究进展[J].经济林研究,2009,27(2):111-117.
    [192]Sasaki Y, Kozaki A, Hatano M. Link between light and fatty acid synthesis:thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase[J]. Proceedings of the National Academy of Sciences,1997,94(20):11096-11101.
    [193]袁有宪,曲克明.海水中痕量金属元素对海洋生物作用研究的进展[J].水产学报,1995,19(3):250-257.
    [194]李云雁,胡传荣.试验设计与数据处理[M]:化学工业出版社,2008.
    [195]郑少华,姜奉华.试验设计与数据处理[M]:中国建材工业出版社,2004.
    [196]Roleda M Y, Slocombe S P, Leakey R J, Day J G, Bell E M, Stanley M S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy[J]. Bioresour Technol,2013,129:439-49.
    [197]Bondioli P, Delia Bella L, Rivolta G, Chini Zittelli G, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici M R. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33[J]. Bioresour Technol,2012,114:567-72.
    [198]Juneau P, Green B R, Harrison P J. Simulation of Pulse-Amplitude-Modulated (PAM) fluorescence:Limitations of some PAM-parameters in studying environmental stress effects[J]. Photosynthetica,2005,43(1):75-83.
    [199]Baker N R. Chlorophyll fluorescence:A probe of photosynthesis in vivo[J]. Annual Review of Plant Biology,2008,59:89-113.
    [200]White S, Anandraj A, Bux F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids[J]. Bioresour Technol,2011,102(2):1675-82.
    [201]Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae[J]. Plant Physiol Biochem, 2012,54:70-7.
    [202]Dean A P, Sigee D C, Estrada B, Pittman J K. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae[J]. Bioresour Technol,2010,101(12):4499-507.
    [203]Lv X, Zou L, Sun B, Wang J, Sun M-Y. Variations in lipid yields and compositions of marine microalgae during cell growth and respiration, and within intracellular structures[J]. Journal of Experimental Marine Biology and Ecology,2010,391(1-2):73-83.
    [204]Ralph P J, Gademann R. Rapid light curves:A powerful tool to assess photosynthetic activity[J]. Aquatic Botany,2005,82(3):222-237.
    [205]Chen M, Tang H, Ma H, Holland T C, Ng K Y, Salley S O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta[J]. Bioresour Technol,2011, 102(2):1649-55.
    [206]Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B. Second Generation Biofuels:High-Efficiency Microalgae for Biodiesel Production[J]. BioEnergy Research,2008, 1(1):20-43.
    [207]San Pedro A, Gonzalez-Lopez C V, Acien F G, Molina-Grima E. Marine microalgae selection and culture conditions optimization for biodiesel production[J]. Bioresour Technol,2013,134:353-61.
    [208]Masojidek J, Torzillo G, Kopecky J, Koblizek M, Nidiaci L, Komenda J, Lukavska A, Sacchi A. Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp. grown under nitrogen deficiency and salinity stress[J]. Journal of Applied Phycology,2000,12(3-5):417-426.
    [209]James G O, Hocart C H, Hillier W, Chen H, Kordbacheh F, Price G D, Djordjevic M A. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation[J]. Bioresour Technol,2011, 102(3):3343-51.
    [210]Praveenkumar R, Shameera K, Mahalakshmi G, Akbarsha M A, Thajuddin N. Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008:Evaluation for biodiesel production[J]. Biomass and Bioenergy,2012,37:60-66.
    [211]Quigg A, Beardall J. Protein turnover in relation to maintenance metabolism at low photon flux in two marine microalgae[J]. Plant, Cell & Environment,2003,26(5):693-703.
    [212]Lamers P P, Janssen M, De Vos R C, Bino R J, Wijffels R H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microaIga[J]. J Biotechnol, 2012,162(1):21-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700