用户名: 密码: 验证码:
基于接收阵列的时域地震波束形成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在噪声较强或者复杂地区进行地震勘探时,获得的原始地震记录信噪比经常无法满足勘探需求。研究表明,源端波束形成(beam-forming)技术,即相控震源系统(PAVS,Phased Array Vibrator System)通过激发定向地震波,明显改善地震记录信噪比,能够实现高分辨率及远距离的地下信息探测。
     但是, PAVS应用过程中,由于需要多台震源同时工作,搬运困难,工作量大;且由于震源间的非一致性,影响了PAVS的地震波定向精度,针对目标体的信噪比改善难以达到要求;同时,PAVS实验采集到的地震数据仅能提高某一方向的信号质量,对于地下情况未知的勘探区域,需要多次PAVS实验,工作效率低,以上因素制约了PAVS的应用和推广。
     为解决源端地震波束形成技术应用中存在的问题,本文提出接收端地震波束形成方法-基于接收阵列的时域地震波束形成方法(TSBBRA,Time-domainSeismic Beam-forming Based on Receiver Array),提取来自勘探目标的定向地震波数据,达到改善接收数据质量的目的。TSBBRA方法能提取任意方向的地震波,且当方向参数与来自勘探目标的反射波方向一致时,能有效改善反射地震数据质量,以较低的成本,达到等同于源端地震波束形成的应用效果。
     本文围绕理论、方法、数值模拟、观测系统优化设计和野外实验五个方面,展开对TSBBRA方法的研究,主要研究内容如下:
     首先,理论方面,阐述了TSBBRA工作原理。从波束形成原理入手,理论推导了TSBBRA方法的地震波场强分布及方向因子,分析了合成地震波束的主要特性:主波束方向、主波束宽度、波束零点位置及波束副瓣,分析了影响地震波束特性的主要参数:震源数量、震源间距、地震波速度和延时参数,并研究了各参数对形成地震波束的影响。另外,从理论角度对比了源端地震波束形成与TSBBRA方法的异同,并分析了TSBBRA方法的优势。
     然后,方法方面,结合TSBBRA工作原理,提出了适于TSBBRA的数值模拟方法:基于交错网格有限差分的时域地震波束形成数值模拟(NSTSBBSFD,Numerical Simulation of Time-domain Seismic Beam-forming Based on Staggered-mesh Finite Difference)。建立了单震源点的波动方程及其交错网格有限差分格式,给出了其他限定因素,包括稳定条件、边界条件及震源函数。给出了TSBBRA方法地震波场数据合成方程,其中包括TSBBRA方法波场快照数据合成方程,TSBBRA方法单炮记录数据合成方程及TSBBRA方法方向特性数据合成方程。
     其次,数值模拟方面,研究了TSBBRA方法在典型速度模型中的地震响应。根据TSBBRA数值模拟方法,通过对比单个可控源和TSBBRA方法在均匀介质模型中的模拟结果,说明了TSBBRA方法能够实现地震波束定向。针对复杂介质条件下TSBBRA方法波束形态复杂问题,研究了TSBBRA方法在典型介质模型的地震响应,包括水平层介质模型和倾斜模型、背斜模型和向斜模型、高速体模型和低速体模型。结果给出了几种速度模型下TSBBRA方法合成的波场快照、方向特性图及单炮记录,通过与单个可控源对比,理论上证明了TSBBRA在复杂介质条件下应用的有效性,及提高地震记录信噪比的可行性。提出角度域能量分布密度的概念,对地震波场进行角度域分解,分析了地震波场角度域能量分布,探明地震波在不同介质中传播时,反射波主波束的方向变化。另外,对比不同速度模型,根据数值模拟结果,阐述了TSBBRA方法针对不同类型勘探目标的应用方法。
     再次,观测系统优化设计方面,研究了倾斜矿区模型下,针对三个不同深度目标反射层位,实现了TSBBRA方法延时参数优化设计,论证了延时参数优化设计对进一步提高反射波数据质量的有效性。提出接收阵列内能量最强和能量分布密度均衡相结合的最优延时参数设计原则,并给出设计方法。利用单震源点数据合成具有方向性的TSBBRA数据,针对不同反射层位,分析了TSBBRA方法不同延时时间的反射波地震记录,通过绘制接收阵列内反射波能量随延时参数的变化曲线,获得适于不同目标层的最优延时参数。分析了TSBBRA方法最优延时参数时的地震波场,定量计算了针对不同反射层最优延时参数时的反射波主波束方向,并定量分析了延时参数优化设计对反射信号信噪比和分辨率的改善。
     最后,野外实验方面,利用自主研发的电磁驱动式可控震源进行了TSBBRA方法野外实验。结果给出了相同勘探区域的单个可控源、TSBBRA方法不同延时时间的单炮记录和叠加剖面,对比单个可控源发现,合适延时参数下,TSBBRA方法提高了地震记录质量,增加了勘探深度,从实践角度证明了TSBBRA方法的有效性。
     综上所述,论文从理论、数值模拟和实践角度说明了TSBBRA方法在提高地震记录信噪比的重要意义。回顾围绕基于接收阵列的地震波束形成方法所做的研究,取得的主要成果有如下几个方面:
     1)通过理论研究,论证了TSBBRA方法在接收端实现地震波束定向的可行性,研究了地震波主波束特性,分析了影响主波束特性的参数;
     2)阐述了TSBBRA工作方法,并给出TSBBRA方法波场快照、单炮记录及方向特性数据的合成方法;
     3)通过数值模拟,得到从简单到复杂6种典型速度模型TSBBRA方法地震数据,分析了不同模型地震数据的波场快照、单炮记录和方向特性数据,阐述了针对不同类型勘探目标的TSBBRA应用方法;
     4)根据观测系统设计需要,针对倾斜矿区模型不同目标层位,对TSBBRA方法延时参数进行优化设计,研究了延时参数优化后接收阵列内地震波能量分布,及地震波场的角度域能量分布,定量分析了TSBBRA方法对目标层位反射信号信噪比的改善;
     5)完成了TSBBRA方法的野外试验,从实践上证明了TSBBRA方法实现地震波束定向、提高地震记录信噪比的有效性。论文主要创新点:
     1)理论上证明了TSBBRA方法在接收端实现地震波束定向的可行性,分析了地震波束特性及影响因素;
     2)提出TSBBRA数值模拟方法,实现了模拟区域内方向性数据的形成,并阐述了针对不同类型勘探目标的TSBBRA应用方法;
     3)提出利用地震波场方向特性图,分析地震波在不同介质中传播的方向特性;
     4)提出了接收阵列内反射波能量最强与能量密度分布均衡相结合的选取原则,针对不同深度目标层位,进行了TSBBRA方法延时参数优化设计,并定量分析了延时参数优化设计对目标层反射信号信噪比的改善。
When noise is strong or seismic exploration is used in the complex area, SNR ofthe obtained seismic data is usually unable to meet the demand. Research shows thatstimulate directional seismic waves by the phased source system (PAVS, Phased ArrayVibrator System) can significantly improve signal to noise ratio of seismic records,which can form directional seismic beam, was developed.
     However, PAVS application process has a new problem in recent years. Becauseof the need for multiple source simultaneously, it is difficulty in handling and highcost. Since the non-uniformity between the source affects the seismic directionalprecision of PAVS,SNR improvement is difficult to meet the requirements for targets;and it requires multiple PAVS experiments to explore the case of unknownunderground area for the low efficiency,because of the seismic experimental datacollected by PAVS only improving the signal quality in one direction Meanwhile.These factors restrict the PAVS application and promotion.
     In order to solve the problems that exist in earthquake beamforming technologyof the source, this paper presents the seismic beamforming method of receiver-Time-domain Seismic Beam-forming Based on Receiver Array(TSBBRA) to extractthe data from the beam directional seismic exploration targets and improve receptionObjective data quality. TSBBRA method can extract any direction of seismic waves,and when the parameters of direction are consistent with the reflected wave directionfrom exploration targets, it can effectively improve the quality of seismic data atlower cost to achieve the same application effect as the seismic source beamforming.
     This paper focuses on the theory, methods, numerical simulation, observationsystem optimization design and field experiments, and expands research contents forTSBBRA methods,the main research work are as follows:
     First, this paper expounds the working principle of TSBBRA. We derivedseismic wave field intensity distribution and the direction factor of TSBBRA methodtheoretically from the Forming principle of beam, and analyze the main characteristicsof synthetic seismic beams: the main beam direction, the main beam width, beam zeroposition and beam sidelobes;also analyze the main parameters affecting of theseismic beam characteristics: source number, source spacing, seismic wave velocityand delay parameters. And we do some research for the effects of various parameterson the formation of the earthquake beam, and propose the similarities anddifferences earthquake beamforming methods of seismic source and TSBBRA from atheoretical point, and analyze the strengths of TSBBRA methods.
     Then, methods, combined with TSBBRA theory we propose (NSTSBBSFD),Numerical Simulation of Time-domain Seismic Beam-forming Based onStaggered-mesh Finite difference), which is applied to numerical simulation ofTSBBRA. We establish the wave equation and staggered-mesh finite differencescheme of single source point, and give the other limited factors, including the stability conditions, boundary conditions and the source function. NSTSBBSFD givesTSBBRA seismic wave field data synthesis equation, including data synthesisequation of TSBBRA wave field synthesis snapshots, TSBBRA shot record datasynthesis equation and TSBBRA direction characteristic data synthesis equation.
     Secondly, we study the TSBBRA seismic response in a typical velocity model atnumerical simulation. According TSBBRA numerical simulation method, illustratethe TSBBRA method can achieve seismic beam orientation by comparing the singlecontrolled source and TSBBRA simulation results in a homogeneous medium models.For the complex problems of TSBBRA beam shape in complex media conditions, westudy TSBBRA seismic response in typical medium model, Including horizontallayer media model, tilt media models anticline,syncline media model,high-speedmodel and low-speed model. In several media model, we give TSBBRA synthesizedwave field snapshots,directional characteristics and shot record. By comparison with asingle controlled source, we demonstrate the effectiveness of TSBBRA conditions incomplex media, and that improve signal to noise ratio of seismic records isfeasibility. We propose the concept of angle domain energy density distribution,conducted a seismic wave field angle domain decomposition, analysis the angledomain energy distribution of seismic wave field, and measure changes of the mainbeam direction of the reflected wave in different media. In addition, compare ofdifferent velocity model, and based on the simulation results, we describe a methodTSBBRA application methods for different types of exploration targets.
     Again, in the observation system optimization design, Achieve optimizationdesign of TSBBRA delay parameter for three different bit depth of the target reflectorlayer in tilt mining model, and demonstrate the effectiveness of the delay parameteroptimization to further improve the quality of the reflected wave data. We proposethe optimal delay parameter design principles based on the strongest energy andenergy density in the receive array,and give the design method. Using single sourcedata Synthesis directivity TSBBRA data, We analyze the reflected wave seismogramsat different TSBBRA delay for different reflective layers,and obtain optimal delayparameter is applied to different target layers by plotting the receiving array reflectedwave energy(Curve Fitting). Analysis the seismic wave field at TSBBRA optimaldelay parameter, quantitatively calculate the main beam direction at optimal delayparameter for different reflective layer, and quantitatively analyze the delay parameteroptimization to improve the signal to noise ratio and resolution of reflected wave.
     Finally, we utilize self-development electromagnetic vibrator in filedexperiments with method of TSBBRA in the aspect of field experiments.The resultsshow that the stacked section of shot record in a signal controlled source and usingdifferent delay time with TABBRA method in the same exploration area. Compared itwith signal controlled source, we find that the TSBBRA method improves the qualityof seismic records, and increase the depth of exploration with appropriate delayparameters. From a practical point of view, we prove the effectiveness of TSBBRAmethod.
     Summary, papers from theory, numerical simulation and practical perspectiveillustrates the importance of TSBBRA method of improving SNR of seismic records. Review of that based on seismic studies around doing the receive array beamformingmethod has the following major achievements in several areas:
     1) Through theoretical research, we prove the feasibility of TSBBRA methodthat the receiving end to realize the seismic beam directed and study the seismic mianbeam characteristics and analyze the parameters that affect the characteristics of themain beam.
     2) We elaborate the working method of TSBBRA, and give a synthetic methodof that snapshot of the wave field TSBBRA method, single recording data anddirectional characteristics of a single shot.
     3) Through numerical simulation, we get6typical methods of seismic datawhich from simple to complex velocity models of TSBBRA. Analysis of the wavefield snapshot of different models of seismic data, shot records and directionalcharacteristics of the data.We elaborated the TSBBRA application methods fordifferent types of exploration.
     4) According the needs of the observation system design, we aim at tilt miningmodel for different target horizons, we optimize the design of methods for TSSBBRAdelay parameters.We study the the energy distribution of receiving array seismic afteroptimized delay parameters, and the angle domain of seismic wave field.We alsoquantily analysis of the TSBBRA ways to improve SNR of the reflected signal intarget horizon.
     5) Completed a field test using the method of TSBBRA, the method ofTSBBRA proves the effectiveness that the realization of the seism from thedirectional beam and improve the SNR of seismic records.
     The main innovtion of the paper:
     1) Theoretically prove the feasibility of TSBBRA method at receiving end torealize the orientation of seismic beam, and analysis of the seismic beamcharacteristics and influencing factors.
     2) We propose a method of numerical simulation, and realize the forming ofdirectional data in a simulation region.And elaborate the TSBBRA applicationmethods for different types of exploration.
     3) We propose that using the directional characteristics of seismic wave fielddiagram,and anlaysis the directional characteristics of seismic wave propagation indifferent media.
     4) We propose a selecting principle that using the combination of the strongestreflected wave energy density of receving array and the blance of energy density.Forthe target layers at different depths, we optimize the delay parameter of TSBBRAmethod. And we also quantily analysis of the TSBBRA ways to improve SNR ofthe reflected signal in target horizon.
引文
[1]俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社,1993.Yu S M. High resolution seismic exploration[M].Beijing: Petroleum industry press,1993.
    [2]张智,刘财,邵志刚.地震勘探中的炸药震源药量理论与实验分析.地球物理学进展,2003,18(4):724~728.Zhang Z, Liu C, Shao Z G. Theory and experimentation of the charge sizes in seismic-sourcesfor seismic exploration seismic-sources for seismic exploration. Progress in Geophysics,2003,18(4):724~728.
    [3]林君.电磁驱动可控震源地震勘探原理及应用.北京:科学出版社,2004.Lin, J. Seismic exploration and application of vibrator driven by electromagnetic. Beijing:Science Press,2004
    [4] Arnold, M. E.. Beam forming with vibrator arrays. Geophysics,1977,42(7):1321~1338.
    [5]姜弢,林君,陈祖斌等.相控震源对水平层状地下介质的高信噪比检测.仪器仪表学报,2006,27(11):1396~1372.Jiang, T, J Lin, Z B Chen, et al. The high signal-to-noise ratio detection of phased-arrayvibroseis for horizontal layer underground medium. Chinese Journal of Scientific Instrument(inChinese),2006,27(11):1369~1372.
    [6] Berkhout, A.J.,1992, Areal shot record technology, Journal of Seismic Exploration,1,251~265.
    [7] Du, L., T. Yardibi, J. Li, P. Stoica,2009, Review of user parameter-free robust adaptivebeam-forming algorithms: Digital Signal Processing,19(4):567~582.
    [8] Berkhout, A. J. Seismic migration: Imaging of acoustic energy by wave field extrapolation. NewYork:Elsevier Scientific Pub. Co.,1980.
    [9] Rietveld, W. E. A., and Berkhout, A. J., Determination of macro models for prestack migration:Part1, Estimation of multiple reflections:64th Ann. Internat. Mtg. Soc. Expl. Geophys.,Expanded Abstracts,1994,1493~1496.
    [10] Rietveld, W. E. A., and Berkhout, A. J., Determination of macro models for prestack migration:Part2, Estimation of macro boundaries:64th Ann. Internat. Mtg. Soc. Expl. Geophys.,Expanded Abstracts,1994,1334~1337.
    [11] Mao, J., R. S. Wu, and J. H. Gao,2010, Directional illumination analysis using the localexponential frame: Geophysics,75(4): S163~S174.
    [12]冯伟,吴如山,马在田.小束源照明和偏移.SEG2004国际地球物理会议,2004,3.
    [13] Chen L. and Wu R.S.. Target-oriented prestaek beamlet hagration using Gabor-Daubechiesframes, Expanded abstracts. SEG72nd Annual Meeting,2002,1356~1359.
    [14] Wu R.S. and Chen L.. Beamlet migration using Gabor-Daubechies frame propator, ExtendAbstracts, EAGE63rd Annual Meeting,2001:074.
    [15] Wu R.S. and Chen L.. MaPPing directional illumination and acquisition aperture efficaey bybeamlet propagators Expanded abstraets. SEG72nd Annual Meeting,2002:1352~1355.
    [16] Wu R.S., Chen L. and Wang Y.. Sthethetic beam-sources and plane-sources for prestackbeamlet migration. Expanded abstracts, SEG72nd Annual Meeting,2002:1336~1339.
    [17] Wu R.S., Wang Y.and Gao, J.. Beamlet migration based on local perturbation theory. Expandedabstracts, SEG70th Annual Meeting,2002:1008~1011.
    [18]张叔伦,孙沛勇.基于平面波合成的傅里叶有限差分叠前深度偏移.石油地球物理勘探,1999,34(1):1~7.
    [19] Wu, R. S., L. Chen. Directional illumination analysis using beamlet decomposition, andpropagation: Geophysics,2006,71(4):S147~S159.
    [20] Shen W W. A constrained minimum power adaptive beam former with time-varying adaptationrate. Geophysics,1979,44(6):1088~1096.
    [21] Selby, N. D.. Improved teleseismic signal detection at small-aperture arrays: Bulletin of theSeismological Society of America,2011,101(4):1563~157
    [22] Brooks, L. A., J. Townend, P. Gerstoft, S. Bannister, and L. Carter,2009, Fundamental, andhigher-mode Rayleigh wave characteristics of ambient seismic noise in New Zealand:Geophysical Research Letters,36, L23303.
    [23] Zhang, J., P. Gerstoft, and P. D. Bromirski,2010, Pelagic, and coastal sources of P-wavemicroseisms: Generation under tropical cyclones: Geophysical Research Letters,37, L15301.
    [24] Ridder, S. D., and J Dellinger,2011, Ambient seismic noise eikonal tomography fornear-surface imaging at Valhall: The Leading Edge,5,506~512.
    [25] Wang, J., F. Tilmann, R. S. White, and P. Bordoni,2009, Application of frequency dependentmultichannel Wiener filters to detect events in2D three-component seismometer arrays:Geophysics,74(6), V133~V141.
    [26] Liang, C. T., M. P. Thornton, P. Morton, B. J. Hulsey, A. Hill, and P. Rawlins,2009, Improvingsignal-to-noise ratio of passive seismic data with an adaptive FK filter: SEG HoustonInternational Exposition, and Annual Meeting,1702~1707.
    [27] Baig, A., T. Urbancic,2010, Microseismic moment tensors: A path to understanding fracgrowth: The Leading Edge,29,320~324.
    [28] Wu, R. S., L. Chen,2006, Directional illumination analysis using beamlet decomposition, andpropagation: Geophysics,71(4): S147~S159.
    [29]冯伟,吴如山,马在田.单向传播子的局部平面波分解以及在定向照明分析和目标特征成像中的应用.地球物理学进展,2007,22(1):171~178.Feng W,Wu R S,Ma Z T. An application in Progress in local plane wave decomposition of theone-way propagator in the directional illumination analysis and imaging in target.Geophysics.2007,22(1),171~178.
    [30]孙伟家,符力耘,碗学检.基于相位编码的地震照明度分析.石油地球物理勘探,2007,42(5):539~543.Sun W J,Fu L G,Wan X J. Analysis of the seismic illumination based on phase encoding.OGP,2007,42(5):539~543.
    [31]胡锦银,贾晓峰.复杂介质中基于射线的照明研究.中国地球物理学会第二十七届年会论文集,2011,10,72.Hu J Y,Jia X F. Ray-based Illumination Analysis in Complex Media. China GeophysicalSociety twenty-seventh annual meeting proceedings,2011,10,72
    [32] Mao, W. J., D. Gubbins. Simultaneous determination of time delays and stacking weights inseismic array beam forming: Geophysics,1995,60(2):491~502.
    [33] Eaton, D. W., F. Forouhideh. Solid angles, and the impact of receiver-array geometry onmicroseismic moment-tensor inversion: Geophysics,2011,76(6):77~85.
    [34] Raz S. Ream stacking: generalized preprocessing technique. Geophysics,1987,52(9):1199~1210.
    [35] Hu, T., and R.E. White. Robust multiple suppression using adaptive beam forming:Geophysical Prospecting,1998,46(3):227~248.
    [36] Shen, W. W..A constrained minimum power adaptive beam former with time-varyingadaptation rate: Geophysics,1979,44(6):1088~1096.
    [37] zbek, A.. Adaptive beam-forming with generalized linear constraints: International Meeting,SEG, Wenwu Expanded Abstracts,2000,70:2081~2084.
    [38] R.Ghose, Vincent Nijhof, Jan Brouwer, Yoshikazu Matsubara, Yasuhiro Kaida, and ToruTakahashi. Shallow to Very Shallow, High-Resolution Reflection Seismic Using a PortableVibrator System. Geophysics,1998,63(4):1295~1309.
    [39]姜弢,林君,陈祖斌等.相控震源地震波定向技术[J].吉林大学学报(信息科学版),2004,22(3):181~184.Jiang T,Lin J,Chen Z B etal. Seismic beam-forming in phased array of vibroseis[J]. Journal ofJilinUniversity(InformationScienceEdition),2004,22(3):181~184.
    [40]王忠仁,林君,冯声涯.地震勘探中相控阵震源的方向特性研究.地球物理学报,2006,49(7):1191~1197.Wang Z R,Lin J,Feng S Y. Directivity of phase array vibrators in seismic exploration.ChineseJ.Geophys.(in Chinese),2006,49(4):1191~1197.
    [41]徐峰,刘福烈,梁向豪.基于相控理论的炮点组合设计技术.石油地球物理勘探,2011,46(2):170~175.Xu F,Liu F L,Liang X H. The shot point combination design technology based on ControlTheory. OGP,2011,46(2):170~175.
    [42]朱多林,白超英.基于波动方程理论的地震波场数值模拟方法综述.地球物理学进展,2011,26(5):1588~1599.Zhu D L,Bai C Y.Review on the seismic wavefield forward modeling. Progress in Geophys.(inChinese),2011,26(5):1588~1599.
    [43] Saval P, Vasconcelos I.Extended imaging conditions for wave ectuation migration[J].Geophysical Prospecting,2011,59(1):35~55.
    [44]赵志新,徐纪人.盆地构造地震地面运动速度和加速度分布特征的数值模拟[J].地球物理学报,2005,48(5):1085~1091.Zhao Z R. Xu J R. Velocity and acceleratiun characteristics of seismic ground motionsrelated to basin structure [J]. Chinese J. Geophys.(in Chinese),2005,2005,48(5):1085~1091.
    [45] Hok S, Fukuyama E. A new BIEM for rupture dynamica in half-space and its application to the2008Iwate-Miyagi Nairiku earthquake[J]. Geophys. J. Int,2011,184(1):301~324.
    [46] Sears J T,Barton J P,Singh S C.Elastic full waveform inversion of multi-component cean-bottomcable seismic data: Application to Alba field,U.K.North Sea[J].Geophysics,2010,75(6):R109~R119.
    [47] Cerveny V., Molotkov I.A. Psencik. Ray Method in Seismology[M]. Charles Univ. Press,Prague,1977
    [48]黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟.地球物理学报,2009,52(1):176~186.Huang C,Dong L G. High-order finite-difference method in seismic wave simulation withvariable grids and local time-steps. Chinese J. Geophys.(in Chinese),2009,52(1):176~186
    [49] Phongthanapanich, S, P. Dechaumphai. An explicit finite volume element method for solvingcharacteristic level set equation on triangular grids. Acta Mechanica Sinica,2011,27(6):911~921
    [50] René, M.. An efficient finite element time-domain formulation for the elastic second-orderwave equation: Anon-split complex frequency shifted convolutional PML. IInt. J. Numer.Meth. Engng2011;88:951~973
    [51] Kahkomen, S., R. Glowinski, T. Rossi, et al. Solution of Time-Periodic wave equation usingmixed finite elements and controllability techniques. Journal of Computational Acoustics,2011,19(4):335~352.
    [52]徐艳杰,牟海磊,张楚汉等.汶川地震中宝珠寺重力坝地震响应的三维有限元模拟.地球物理学报,2012,55(1):293~303Xu Y J, Mu H L, Zhang C H, et al.3D finite element modeling of seismic responses ofBaozhusi gravity dam in MS8.0Wenchuan Earthquake. Chinese J. Geophys.(in Chinese),2012,55(1):293~303
    [53] Mohanty, R. K., G. Venu. High accuracy cubic spline finite difference approximation for thesolution of one-space dimensional non-linear wave equations. Applied Mathematics andComputation, Volume218, Issue8,15December2011, Pages4234~4244.
    [54] Liu, Y, K. S. Mrinal. Numerical modeling of wave equation by a truncated high-orderfinite-difference method. Earthq Sci,2009,22:205~213.
    [55] Hrenikoff A. Solution of problems of elasticity by the framework method [J]. Journal ofApplied Mechanics,1941A8(1):169~175.
    [56] Drake L. A. Rayleigh waves at a continental boundary by the finite element method[J]. Bull.Seismol. Soc. Ann.,1972,62(5):1259~1268.
    [57] Dmith W. D.. The Application of Finite-element Analysis to body wave propagationproblems[J]. Geophysics. Roy. Astr. Soc.,1975,42:747-768.
    [58]张美根,王妙月,李小凡等.各向异性弹性波场的有限元数值模拟[J].地球物理学进展,2002,17(3):384~389.Zhang M G, Wang M Y, Li X F, etal. Finite element forward modeling of anisotropic elasticwaves[J]. Progress in Geophysics(inChinese),2002,17(3):384~389.
    [59]邵秀民,蓝志凌.流体饱和多孔介质波动方程的有限元解法[J].地球物理学报,2000,43(2):264~278.Shao X M, Lan Z L. Finite element methods for the equations of waves in fluid-saturetedporous media[J]. Chinese J. Geophys (inChinese),2000,43(2):264~278.
    [60] TianY C, Ma J W, Yang H Z. Wavefield simulation in porous media saturated with twoimmiscible fluids[J]. Applied Geophysics,2010,7(1):57~65.
    [61]张怀,周元泽,吴忠起等.福州盆地强地面运动特征的有限元数值模拟[J].地球物理学报,2009,52(5):1270~1279.Zhang H, Zhou Y Z, Wu Z I, et a1. Finiteelem entanalysis of seismic wave propagationcharacteristics in Fuzhou basin [J].Chinese J. Geophys(in Chinese),2009,52(5):1270~1279.
    [62] FujiwaraH.Windowed fk spectra of a three dimensional wavefield excited by a point source ina two-dimensional muhilayered elastic medium [J].Geophys.J.Int.,1997,128(3):57I~584.
    [63] Ma S,Archuleta R J,Liu P C.Hybrid Modeling of Elaslic PSV Wave Motion:A combinedfinite-elenlenl and slaggered grid finite-difference approach [J]. Bul1. Seisnm1.Soc.Am.,2004,94(4):1557~I563.
    [64] Ichimura T, Hori M, KuwanloIo H. Earthquake simulation with multiscale finite elementalmlysis on hyhrid grid [J].Bull.Seismol.Sot:.Am.,2007,97(4):1133~l143.
    [65]黄自萍,张铭,吴文青等.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094~1100.Huang Z P, Zhang M, Wu W Q,etal. A domain decomposition method for numericalsinmlation of the elastiewave propagation[J].Chinese J.Geophys.(in Chinese),2004,47(6):1094~1100.
    [66]薛东川,王尚旭,焦淑静.起伏地表复杂介质波动方程有限元数值模拟方法[J].地球物理学进展,2007,22(2):522~529.Xue D C,Wang S X,Jiao S J.Wave equalion finite-elementmodeling including ruggedtopography and complicated medium [J].Progress in Geophysics(in Chinese),2007,22(2):522~529.
    [67]王月英.地震波有限元集中质量矩阵及并行算法模拟研究[博士论文].山东:中国石油大学,2007.Wang YY. Study of finite-element’scentred mass matrix and parallel algorithm on simulationof seismic wave(in Chinese)[Doctor’s thesis].Shan Dong: China University ofPetroleum,2007.
    [68]汤井田,任政勇,化希瑞.任意地球物理模型的三角形和四面体有限单元剖分[J].地球物理学进展,2006,21(4):1272~1280.Tang J T,Ren Z Y,Hua X R.Triangle and tetrahedral finite-element meshing from arbitrarygeophysical model data [J].Progress in Geophysics (in Chinese),2006,21(4):1272~1280.
    [69]陈少林,廖振鹏,陈进.两相介质近场波动模拟的一种解耦有限元方法[J].地球物理学报,2005,48(4):909~917.Chen S L,Liao Z P, Chen J. A deeoupling FEM forsimulating near-field wave motions intwo-phase media [J].Chinese J.Geophys.(in Chinese),2005,48(4):909~917.
    [70]李伟华,刘清华,赵成刚.饱和多孔介质三维时域黏弹性人工边界与动力反应分析的显式有限元法[J].地球物理学报,2010,53(10):2460~2469.Li W H.Liu Q H,Zhao C G. Three-dimensional viscous-spring boundaries in time domain anddynamic analysis using explicit finite element method of saturated porous medium[J].ChineseJ.Geophys.(in Chinese),2010,53(10):2460~2469.
    [71]赵志新,徐纪人,堀内茂木.错格实数傅里叶变换微分算子及其在非均匀介质波动传播研究中的应用[J].地球物理学报,2003,46(2):234~240.Zhao Z X,Xu J R,Shigeki H.Staggered grid real value FFT differentiation operator and itsapplication on wavepropagation simulation in the heterogeneous medium [J].ChineseJ.Geophys.(in Chinese),2003,46(2):234~240.
    [72]李展辉,黄清华,王彦宾.三维错格时域伪谱法在频散介质井中雷达模拟中的应用[J].地球物理学报,2009,52(7):1915~1922.Li Z H,Huang Q H,WangY B.A3-D staggered gridPSTD method for borehole radar sim-ulations in dispersive media[J].Chinese J.Geophys.(in Chinese),2009,52(7):1915~1922.
    [73]程冰洁,李小凡,徐天吉.含流体裂缝介质中地震波场数值模拟[J].地球物理学进展,2007,22(5):1370~1374.Cheng B J, Li X F,Xu T J. Numerical modeling of theseismic wave-field in cracked mediawith liquid [J].Progressin Geophysics(in Chinese),2009,52(7):1915~1922.
    [74] Kosloff D D,Baysal E. Forward modeling by a Fouriermethod [J]. Geophysics,1982,47(10):1402~1412.
    [75] Reshef M,Kosloff D,Edwards M,et a1.Three dimensional elastic modeling by the Fouriermethod [J].Geophysics,1988,53(9):l184~1193.
    [76] Takenaka H,Wang Y B,Furumura T.An efficient approach of the pseudospectral method formodelling of geometrically symmetric seismic wavefield [J].Earth Planets Space,1999,51(2):73~79.
    [77] Patera A T. A spectral element method for fluid dynamics:Laminar flow in a channelexpansion[J].J.Comput.Phys.,1984,54(3):468~488.
    [78] Seriani G, Priolo E. Spectral element method for acoustict wave simulation in heterogeneousmedia [J].Finite Elem.Ana1.Des.,1994,16(34):337~348.
    [79] Komatitsch D,Tromp J.Introduction to the spectral element method for three-dimensionalseismic wave propagation [J].Geophys.J.Int.,1999,139(3):806~822.
    [80] Komatitsch D,Martin R,Tromp J,et a1.Wave propagation in2-D elastic media using a spectralelement method with triangles and quadrangles [J].J.Comput.Acoust.,2001,99(2):703~718.
    [81] Madec R,Komatitseh D,Diaz J.Energy-conserving local time stepping based on high-orderfinite elements for seismic wave propagation across a fluid-solid interface [J].ComputerModeling in Engineering and Sciences,2009,49(2):163~189.
    [82] Komatitsch D,Erlebacher G,Goddeke D., et a1. High-order finite-element seismic wavepropagation modeling with MPI on a large GPU cluster [J].Journal of ComputationalPhysics,2010,229(20):7992~7714.
    [83] Komatitsch D,Goddeke D,Erlebacher G,et a1.Modeling the propagation of elastic waves usingspectral elements on a cluster of192GPUs [J].Computer Science-Research andDevelopment.2010,25(1-2):75~82.
    [84]林伟军,王秀明,张海澜.用于弹性波方程模拟的基于逐元技术的谱元法[J].自然科学进展,2005,15(9):1048~1057.Lin W J,Wang X M,Zhang H L.An element by element spectral element method for elasticwave modeling [J].Progress in Natural Science(in Chinese),2005,15(9):1048~1057.
    [85]王童奎,李瑞华,李小凡等.横向各向同性介质中地震波场谱元法数值模拟[J].地球物理学进展,2007,22(3):778~784.Wang T K, Li R H, Li X F, et al. Numerical spectral element modeling for seismic wavepropagation intransversely isotropic medium [J].Progress in Geophysics (in Chinese),2007,22(3):778~784.
    [86]王秀明,Seriani G,林伟军.利用谱元法汁算弹性波场的若干理论问题[J].中国科学(G辑),2007,37(1):4l~59.Wang X M,Seriani G,Lin W J.Some theoretical aspects of elastic wave modeling with arecently developed spectral element method [J]. Science in China (Series G)(inChinese),2007.37(1):41~59.
    [87] K0nlatitseh D, Tsuboi S,Tromp J. The speetral element method in seismology [J]. GeophysicalMonograph,2005,15f:205~227.
    [88]于更新,李东平,符力耘等.复杂地质构造的边界元一体积元波动方程数值模拟[J].石油地球物理勘探,2009,44(1):107~111.Yu G X,Li D P,Fu L Y,et a1.Numeric simulation of boundary element-volume element waveequation in complex geologic structure [J]. Oil Geophysical Prospecting (in Chinese),2009,44(1):107~111.
    [89]胡善政,符力耘,裴正林.流体饱和多孔隙介质弹性波方程边界元解法研究[J].球物理学报,2009,52(9):2364~2369.Hu S Z,Fu L Y,Pei Z L. A boundary element method for the2-D wave equation influid-saturated porous media[J].Chinese J.Geophys.(in Chinese),2009,52(9):2364~2369.
    [90] Honda R.Stochastic BEM with spectral approach in elastostatic and elastodynamic problemswith geometrical uncertainty[J].Eng.Ana1.Bound.Elem.,2005,29(5):415~427.
    [91]符力耘,牟永光.弹性波边界元法正演模[J].地球物理学报,1994,37(4):521~529.Fu L Y, M ou Y G.Boundary element method for elasticwave forward modeling [J]. ChineseJ.Geophys.(Acta Geophysica Sinica)(in Chinese)·1994,37(4):521~529.
    [92] Ge Z X,Chen X F.An efficient approach for simulating wave propagation with the boundaryelement method in multilayered media with irregular interfaces [J]. Bull. Seismol.Soc.Am.,2008,98(6):3007~3016.
    [93] Ge Z X,Chen X F.Wave propagation in irregularly layered elastic models:a boundary elementapproach with a global reflection/transmission matrix propagator [J]. Bull. Seismol.Soc.Am.,2007,97(3):1025~1031.
    [94] Ge Z X,Chen X F. Erratum to wave propagation in irregularly layered elastic models:a boundaryelement approach with a global reflection/transmission matrix propagator[J].Bull.Seismol.Soc.Am.,2007,97(6):2218.
    [95] Alterman Z. and Karak F.C.. Propagation of elastic wave in layered media by finite-differencemethods[J]. Bull., Seism. Soc. Am,1968,58:367-398
    [96] Boore D. M.. Finite-difference methods for seismic wave propagation in heterogeneous materialsin methods in computation physics[N].11: B. A. Bolt,ed., Academic Press, inc.
    [97] Alford R. M., Kelly K.R. and Boore D.M.. Accuracy of finite-difference methods modeling ofthe acoustic wave equation [J]. Geophysics,1974,39:834-842.
    [98] Kelly K. R. et al. Synthetic seismograms: A finite-difference approach[J]. Geophysics,1976,41:2-27.
    [99] Mdariga R.. Dynamics of an expanding circular fault [J].1976, Bull., Seism. Soc. Am.,65:163~182.
    [100] Virieux J. P-SH wave propagation in heterogeneous media: velocity-stress finite-differencemethod [J]. Geophysics,1984,49(1):1933~1957.
    [101] Dablain M. A.. The application of high-differencing to the scalar wave equation [J]. Geophysics,1986,51(1):54~66.
    [102]董国良,马在田等.一阶弹性波方程交错网格高阶差分解法稳定性问题[J].地球物理学报,2000,43(6):856~864.Dong L G,Ma Z T etal. The problem of decomposition stabilty One order elastic wavestaggered grid high-order[J]. Chinese J.Geophys.(in Chinese),2000,43(6):856~864.
    [103]裴正林.任意起伏地表弹性波方程交错网格高阶有限差分法数值模拟[J].石油地球物理勘探,2004,39(6):629~634.Pei Z L. Arbitrary relief surface elastic wave staggered grid high-order finite differencenumerical simulation[J]. Oil Geophysical Prospecting (inChinese),2004,39(6):629~634.
    [104]姜弢,林君,李桐林等.相控震源对地震信号信噪比的改善研究.地球物理学报,2006,49(6):1819~1825.Jiang T,Lin J,Li T L,Chen Z B,Zhang L H.Boosting signal to noise ratio of seismic signalsusing phase&array vibrator system. Chinese J. Geophys.(in Chinese),2006,49(6):1819~1825.
    [105]姜弢,林君,陈祖斌.延时参数对地震信号信噪比的改善.地球物理学报,2009,52(6):1651~1656.Jiang T,Lin J,Li T L,Chen Z B. SNR improvement of seismic signals with different timedelays. Chinese J. Geophys.(in Chinese),2009,52(6):1651~1656.
    [106]徐峰,刘福烈,梁向豪等.基于相控理论的炮点组合设计技术.石油地球物理勘探,2011,46(2):170~175.Xu F, Liu F L, Liang X H,et al. A method for source array design based on the phased-arraytheory. OGP,2011,46(2):170~175.
    [107] Schneider,W.A.,and Winbow,G.A.. Efficient and accurate modeling of3-D seismic illumination:69thAnn. Internat. Mtg., Soc. Expl.Geophys., Expanded Abstracts.1999,633~636.
    [108] Bear G., Lu C., Lu R. et al. The construction of subsurface illumination and amplitude maps viaray tracing. The Leading Edge,2000,19,726~728.
    [109] Muerder,D.,and D.Ratcliff. Understanding subsalt illumination through ray-trace modeling, PartI: Simple2-D salt models. The Leading Edge,2001a,20:578~594.
    [110] Muerdter, D., and Ratcliff, D.. Understanding subsalt illumination through ray-tracing modeling,Part II: Dipping salt bodies, salt peaks, and non reciprocity of subsalt amplitude response, TheLeading Edge,2001b,20(7):688~697.
    [111] Muerder,D.,and D.Ratcliff. Understanding subsalt illumination throughray-trace modeling, PartIII: Salt ridges and furrows, and the impact ofacquisition orientation:The LeadingEdge.,2001c,20,803~816.
    [112] Berkhout, A. J., L. Ongkiehongz, A. W. F. Volker, and G. Blacqui`ere,2001, Comprehensiveassessment of seismic acquisition geometries by focal beams-Part I: Theoreticalconsiderations: Geophysics,66(3):911~917.
    [113]蒋先艺.基于二维与三维复杂结构模型正演的地震数据采集设计方法研究[D].成都:成都理工大学地球科学学院,2004.Jiang X Y.The study of seismic acquisition method based on modeling of2Dand3D complexgeologic structure.ChengDu: College of Earth Sciences, Chengdu University of Technology,2004.
    [114] Wu,R,S., Chen L.. Mapping directional illumination and acquisition-aperture effiency bybeamlet propagators:72nd Annual International Meeting, SEG,Expanded Abstracts.2002a,1352~1355.
    [115] Wu,R.S.,Chen,L.,and Wang,Y.. Synthetic beamsources and plane-sources for prestack beamletmigration:72nd Ann. Internat. Mtg., Soc. Expl.Geophys.,Expanded Abstracts.2002b,1336~1339.
    [116]陈秀梅,王华忠,马在田.多地质目标地表控制照明叠前深度偏移.石油地球物理勘探,2003,38(5):507~511.Chen X M,Wang H Z,Ma Z T. Many geological target surface controlled illuminationprestack depth migration. OGP,2003,38(5):507~511.
    [117] Luo, M.,J.Cao,X.B.Xie,and R.S.Wu. Comparison of illumination analysis using one-way andfull-wave propagators:74thAnnual Internat. Mtg., SEG, Expanded Abstracts,2004,67~70.
    [118]裴正林.波动方程地震定向照明分析.石油地球物理勘探,2008,43(6):645~652.Pei Z L. Analysis of wave equation in seismic directional illumination.OGP,2008,43(6):645~652.
    [119] Panea, I., G. Drijkoningen. The spatial data-adaptive minimum-variance distortion less-response beamformer on seismic single-sensor data: Geophysics,2008,73(5):Q29~Q42.
    [120]李万万.基于波动方程模拟的地震采集参数论证方法及应用研究[D].北京,中国地质大学(北京),2008.Li W W. The Study of Wave Equation Based Analysis of Seismic Acquisition Parameters andApplication[D].BeiJing, China University of Geosciences(BeiJing),2008.
    [121]朱金平.基于地震照明、面向勘探目标的三维观测系统优化设计.中国石油学会,2011.Zhe J P. Based on seismic illumination, the exploration target optimization of3-D observationsystem. China Petroleum Institute,2011.
    [122]温书亮,尹成,李绪宣等.地震照明分析技术在深海地震数据采集设计中的应用.石油地球物理勘探,2011,46(4):506~512.Wen S L,Yin C,Li X X,Fan S L,Wang J H. An application in seismic illumination analysis andthe design of deep seismic data acquisition.OGP,2011,46(4),506~512.
    [123] Veen, B. D. V.,1991, Minimum variance beam-forming with soft response constraints: IEEETransactions on Signal Processing,39(9):1964~1972.
    [124] Veen, B. D. V., K. M. Buckley,1988, Beam-forming: A versatile approach to spatial filtering:IEEE ASSP,5:4~24.
    [125]陆基孟,王永刚.地震勘探原理.中国石油大学出版社,2011.LU J M,Wang Y G. The principle of seismic exploration, China University of Petroleumpress,2011.
    [126]朱崇灿.天线.武汉:武汉大学出版社,1996.Zhu, C C. Antenna. Wuhan: Wuhan University Press,1996.
    [127]乔文孝,车小花,鞠晓东等.声波测井相控圆弧阵及其辐射指向性.地球物理学报,2008,51(3):939~946.Qiao, W X, X H Che, X D Ju, et al. Acoustic logging phased arc array and tis radiationdirectivity. Chinese J. Geophys.(in Chinese),2008,51(3):939~946.
    [128] Che, X H, W X Qiao. Numerical simulation of an acoustic field generated by a phased arc arrayin a fluid-filled borehole. Petroleum Science,2009,6(3):225~229.
    [129]乔文孝,杜光升,陈雪莲.相控线阵声波辐射器在声波测井中应用的可行性分析.地球物理学报,2002,45(5):714~722.Qiao, W X, G S Du, X L Chen. Feasibility of application of phased array in acousticwell-logging. Chinese J. Geophys.(in Chinese),2002,V45(05):714~722.
    [130]姜弢.基于相控震源的地震波定向方法研究[博士论文].吉林:吉林大学仪器科学与电气工程学院,2006.Jiang, T. Study on seismic beam-forming method based on phased-array vibrator system. Jilin:College of Instrumentation Electrical Engineering,2006.
    [131]武英婷.交错网格高阶有限差分法的弹性波波场数值模.西安理工大学,2010.Wu Y T.Elastic Wave Field Numerical Simulation Based on Staggered Grid Finite Difference.Xi'an University of Technology,2010.
    [132]李信富,李小凡,张美根.地震波数值模拟方法研究综述.防灾减灾工程学报,27(2),2007.Li X F,Li X F,Zhang M G. Review of seismic wave numerical modeling methods.Journal ofDisaster Prevention and Mitigation Engineering,27(2),2007.
    [133]杨莹.二维地震波场有限差分法数值模拟研究[硕士].北京:中国地质大学,2009.Yang, Y. The research on Two-dimensional Finite-difference seismic wave field numericalsimulation. Beijing: China University of Geosciences,2009.
    [134]裴正林,牟永光.非均匀介质地震波传播交错网格高阶有限差分法模拟.石油大学学报(自然科学版),2003,27(6):17~21.Pei Z L,Mu Y G. A staggered-grid high order difference method for modeling seismic wavepropagation in homogeneous media.Siyou Daxue Xuebao,2003,27(6):17~21.
    [135]黄超,董良国.可变网格与局部时间步长的高阶差分地震波数值模拟.地球物理学报,2009,52(1):176~186.Huang, C, L G Dong. High-order finite-difference method in seismic wave simulation withvariable grids and local time-steps. Chinese J. Geophys.(in Chinese),2009,52(1):176~186.
    [136] Mohanty, R. K., G. Venu. High accuracy cubic spline finite difference approximation for thesolution of one-space dimensional non-linear wave equations. Applied Mathematics andComputation, Volume218, Issue8,15December2011, Pages4234~4244.
    [137] Liu, Y, K. S. Mrinal. Numerical modeling of wave equation by a truncated high-order finite-difference method. Earthq Sci,2009,22:205~213.
    [138] Phongthanapanich, S, P. Dechaumphai. An explicit finite volume element method for solvingcharacteristic level set equation on triangular grids. Acta Mechanica Sinica,2011,27(6):911~921.
    [139]严红永,刘洋.黏弹TTI介质中旋转交错网格高阶有限差分数值模拟.地球物理学报,55(4),2012.Yan H Y,Liu Y. Rotated staggered grid high-order finite-difference numerical modeling forwave propagation in viscoelastic TTI media. Chinese J. Geophys.(in Chinese),55(4),2012.
    [140] Robin P. F, Johan O. A. R..Time-varying boundary conditions in simulation of seismic wavepropagation.. Geophysics,2011,76(1): P. A1~A6.
    [141] Cerjan et al,1985;Ko sloff.R&Ko sloff. D,1986; Sochacki,1987.
    [142] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. Journalof Computational Geophys.1994,114(2):185~200.
    [143] Collino F, Tsogka C. Application of the PML absorbing layer model to the linear elastodynamicproblem in anisotropic heterogeneous media. Geophysics,2001,66:294—307.
    [144] Sheen D H, Tuncay K, Baag C E, et al. Wave propagation in porous media: A velocity-stressstaggered-grid finite difference method with perfectly matched layers.73th Annual InternatMtg,Dallas, TX,2003.
    [145] Zeng Y Q, He J Q, Liu Q H. The application of the perfectly matched layer in numericalmodeling of wave propagation in poroelastic media. Geophysics,2001,66:1258~1266.
    [146] Chew W C, Liu Q H. Perfectly matched layers for elastodynamics:A new absorbing boundarycondition. J Comput Acoust,1996,4:72~79.
    [147] Wang T, Tang X M. Finite-difference modeling of elastic wave propagation: A nonsplittingperfectly matched layer approach. Geophysics,2003,68:1749~1755.
    [148] Festa G, Nielsen S. PML absorbing boundaries. Bull Seism SocAm,2003,93:891~90.
    [149]林君.电磁驱动可控震源地震勘探原理及应用.北京:科学出版社,2004.Lin, J. Seismic exploration and application of vibrator driven by electromagnetic. Beijing:Science Press,2004.
    [150]姜弢,林君,陈祖斌等.可控震源相控地震的相关检测技术.仪器仪表学报,2005,26(4):336~339.Jiang, T, J Lin, Z B Chen,et al. The correlation detection method of signals in phased array ofvibroseis system. Chinese Journal of Scientific Instrument(in Chinese),2005,26(4):336~339.
    [151]姜弢,林君,李桐林.相控震源对地震信号信噪比的改善研究.地球物理学报,2006,49(6):1819~1825.Jiang, T, J Lin, T L Li, et al. Boosting signal to noise ratio of seismic signals using thephased-array vibrator system. Chinese J. Geophys.(in Chinese),2006,49(6):1819~1825.
    [152]王永莉.松辽盆地南部上白垩统油页岩特征及成矿规律[硕士论文].长春:吉林大学,2006.Wang Y L.Characteristics and Depositional Regularities of Oil Shale in Upper Cretaceous ofSouthern Songliao Bsain[Master’s thesis].ChangChun:Jilin University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700