用户名: 密码: 验证码:
基于振幅加权的阵列辐射强度分布的理论与数值实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相控阵列的研究可以追溯到二十世纪五十年代。但是,相控阵列技术真正被应用于诸如卫星通信、弹道导弹预警、气象雷达、工业无损检测、医学诊断与治疗等领域却是近二十年来的事。最近几年来,随着人类对能源需求的持续增加和对生态环境的日益重视,声波相控阵列又被用于地下资源勘探、地质评价和测井中。在这些应用中,无论是电磁波还是声波,其波束形成、空间扫描都是对阵元辐射相位进行控制,以达到在空间产生特定的辐射模型或进行空间扫描。这就是人们不断研制高精确度的、结构复杂的相位延迟网络和控制系统的原因。然而,人们不断追求高的辐射频率,增加振元数目,使得相位延迟网络和控制系统的制造变得愈来愈困难。而作为波动的另一个独立可控变量振幅却没有给予充分利用。本文研究发现,对阵元辐射振幅进行恰当控制,可实现特定的辐射模型。无论是从原理上还是工程讲,实现对振幅大小的控制比对相位的控制要简单得多。
     本文首先指出,对阵元辐射振幅控制形成所需的辐射强度分布是可行的。其次,在远场情况下,提出了半波约束条件和波束质量评价标准,用不同的数学方法,导出了远场与近场情况下的振元振幅取值的计算公式。最后通过实例,进行数值分析,证明了所述方法的有效性。本文还指出,如果将振幅加权与线性相位控制联合使用,实现在特定远场辐射振幅分布不变条件下的波束空间电子扫描,这也可以降低阵列相移器和控制器的复杂度与成本。采用振幅加权形成特定的辐射强度分布方法的潜在应用,包括战时通信、医学治疗、特殊形式的无损、非接触探测等。本文的方法可以推广到阵元呈周期性排列的其它阵列结构中。
The concept of phased array was first emerged in the research of directional antenna in the late1950s. Phased array technology has been actually used in the fields of satellite communication, aerial reconnaissance and ballistic missile system, radar systems for meteorology, industry nondestructive testing, as well medical diagnosis and noninvasive treatment in recent in the last two decades. Since demand for energy resources and emphasis on ecological environment are on continuous increase in recent years, acoustic phased array has been applied to prospecting for underground resources, geological evaluation, and well logging. The beam forming and scanning in the applications mentioned above depend on the control over the element radiation phases, so as to construct a spatial radiation pattern. These need the support of a delicate phase shifter network and control system with precise and complex structure. The radiation amplitude, which is another controllable quantity of a wave, is not fully utilized. Our study found that a specific radiation pattern can be formed by only weighting the radiation amplitudes of planar array elements. From engineering accomplishment angle, weighting amplitudes is easier than shifting phases.
     This dissertation first pointed out that is possible to form a specific radiation intensity distribution by controlling the amplitude of radiation emitted by elements. Secondly, half-wave constraint and beam quality evaluation criteria in far field have been put forwarded, and the formula for calculating amplitudes in the case of far-field and near-field have been derived. Finally, a number of instances have been analyzed numerically, and the effectiveness of the method described above has been demonstrated. The potential applications of the method using amplitude-weighted include wartime communication, medical treatment, a special form of non-destructive and non-contact detection etc. This method can be extended to the array in which the element was periodically arranged.
引文
1W.H. Von Aulock. Properties of Phased Arrays [J]. IEEE Proceedings of the IRE,1960,48(10):1715-1727
    2A.J. Fenn, D.H. Temme, W.P. Delaney, et al. The Development of Phased-Array Radar Technology [J].Lincoln Laboratory Journal,2000,12(2):321-340
    3http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=12262&isYear=1996
    4http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=18642&isYear=2000
    5http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=28113&isYear=2003
    6H.E. Karrer, J.F. Dias, J.D. Larson, et al. A Phased Array Acoustic Imaging System for Medical Use [C]. IEEE Ultrasonics Symposium,1980:757-762
    7M. O'Donnell, M.J. Eberle, D.N. Stephens, et al. Synthetic Phased Array Imaging of Coronary Arteries with an Intraluminal Array [J].1995IEEE Ultrasonics Symposium,1251-1254
    8J.L Robert, M. Fink. Green's function estimation in speckle using the decomposition of the time reversal operator:Application to aberration correction in medical imaging [J]. J. Acoust. Soc. Am.2008,866-877
    9S.A.Goss, L.A. Frizzell, J.T. Kouzmanoff, et al. Sparse Random Ultrasound Phased Array for Focal Surgery [J]. Ultrasonics, IEEE Transactions on Ferroelectrics and Frequency Control,1996,43(6):1111-1121
    10G.T. Clement, J. White, K. Hynynen. Investigation of a large-area phased array for focused ultrasound surgery through the skull [J]. Phys. Med. Biol.2000,45:1071-1083
    11J. Kubota, M. Ogihara, Takashi Azuma, et al. Real-time monitoring transcranial sub-megahertz ultrasound thrombolysis with phased array scanner[J].2005IEEE Ultrasonics Symposium.1716-1719
    12R. Ludwig, D. Roberti. A Nondestructive Ultrasonic Imaging System for Detection of Flaws in Metal Blocks [J]. IEEE Transactions on Instrumentation and Measurement,1989,38(1):113-118
    13A. N. Guz', F. G. Makhort. The Physical Fundamentals of the Ultrasonic Nondestructive Stress Analysis of Solids [J]. International Applied Mechanics,2000,36(9):1119-1149
    14K. V. Subramaniam, J. P. Mohsen, C. K. Shaw, et al. Ultrasonic Technique for Monitoring Concrete Strength Gain at Early Age [J]. ACI Materials Journal,2002,99(5):458-462
    15A. Belyaev, O. Polupan, W. Dallas, et al. Crack detection and analyses using resonance ultrasonic vibrations in full-size crystalline silicon wafers [J]. Applied Physics Letters,2006,88(11):111907-1-11907-3
    16A. Mizrach. Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre-and postharvest processes [J]. Postharvest Biology and Technology,2008,48(3):315-330
    17T-H. Yang, S-Y. Wang, C-J. Lin, et al. Evaluation of the mechanical properties of Douglas-fir and Japanese cedar lumber and its structural glulam by nondestructive techniques [J]. Construction and Building Materials.2008,22(4):487-493
    18X-f Wang, Y Fan, W-C Tian, H-J Kwon, S. Kennerly, G. Claydon, A. May. Development of air-coupled ultrasound transducers for nondestructive evaluation [C]. IEEE MEMS2008, 932-935
    19N. C. Athanasopoulos, N. K. Uzunoglu, J. D. Kanellopoulos. Development of a lOGHz Phased Array Cylindrical Antenna System Incorporating IF Phase Processing [J]. Progress In Electromagnetics Research,2006, PIER59:17-38
    20D. Dregely, R. Taubert, J. Dorfmuller.3D optical Yagi-Uda nanoantenna array. Nature Communications,5April2011. http://www.nature.com/ncomms/journal/v2/n4/full/ncomms1268.html
    21D. F. Siriani, K. D. Choquette. Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays. Photonics Technology Letters, IEEE,2011, Vol.23, Issue:3,167-169
    22K. David, H. Amir, Z. Yang, et al.1×12Unequally spaced waveguide array for actively tuned optical phased array on a silicon nanomembrane. Applied Physics Letters.2011, Vol.99, Issue:5,051104-051104-3
    23叶征宇,赵思思,王智勇.应用于激光雷达的光学相控阵技术.光电工程.2012,Vol.39,No.2,81-86(93). YE Zheng-yu, ZHAO Si-si, WANG Zhi-yong. Optical-phased-array (OPA) Technology Applied to Laser Radar. Opto-Electronic Engineering.2012, Vol.39, No.2,81-86(93)
    24乔文孝,陈雪莲,杜光升,等.相控声波测井的模拟实验研究,声学学报,2003,28(2):116-122Qiao Wenxiao, Chen XueLan, DuGuangsheng, et al. Laboratory simulation on acoustic well-logging with phased array transmitter, ACTA ACUSTICA,2003,28(2):116-122
    25M.L. Wolfson, D.F. Naar, P. A. Howd, et al. Multibeam Observations of Mine Burial Near Clearwater, FL, Including Comparisons to Predictions of Wave-Induced Burial [J]. IEEE Journal of Oceanic Engineering,,2007,32(1):103-118
    26卢军强,鞠晓东.正交偶极阵列声波测井仪设计技术研究[C],2007首届油气资源国际博士生学术论坛.Lu Jun-qiang, Ju Xiao-dong. Study and Design of Cross-dipole Array Acoustic Logging Tool[C], The First International Forum on Petroleum Sustainable Development for Ph.D. Candidates
    27K.E. Thomenius. Evolution of ultrasound beamformers [J]. IEEE Ultrasonics Symposium,1996,2:1615-1622
    28J. Modelski, Y. Yashchyshyn. Voltage controlled ferroelectric microstrip antenna for phased-arrays [C]. IEEE Antennas and Propagation Society International Symposium,2000,2:506-509
    29A. Tombak, A. Mortazawi. An X-band Low-Cost Phased Array Based on the Extended Resonance Power Dividing Technique [C]. IEEE Antennas and Propagation Society International Symposium,2005,1A:334-337
    30L. Anh Bui, K. Ghorbani, A. Mitchell. Multichannel vector sum phase shifter [J]. Optics Letters,200631(5):577-579
    31Jihong Yan, Zishu He, Chunlin Han, et al. Design and implementation of optical true time delay in optically controlled phased array antennas [C]. CIE'06. International Conference on Radar,2006:1-3
    32G. Gentile, K. Buisman, A. Akhoukh, et al.50GHz Integrated Distributed Phase Shifter based on novel Silicon-on-Glass Varactor Diodes [J]. IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems,2008,199-202
    33M. Fakharzadeh, S. H. Jamali, P. Mousavi, et al. Fast Beamforming for Mobile Satellite Receiver Phased Arrays:Theory and Experiment. Antennas and Propagation, IEEE.2009, Vol.57, Issue:6,1645-1654
    34Jaewook Kim, Tae-Kwang Jang, Young-Gyu Yoon, et al. Analysis and Design of Voltage-Controlled Oscillator Based Analog-to-Digital Converter. Circuits and Systems I, IEEE.2010, Vol.57, Issue:1,18-30
    35P. Goel, K. J. Vinoy. A LOW-COST PHASED ARRAY ANTENNA INTE-GRATED WITH PHASE SHIFTERS COFABRICATED ON THE LAMINATE. Progress In Electromagnetics Research B,2011, Vol.30,255-277
    36Tao Jiang, Zhiyu Wang, Dong Li, et al. Low-DC Voltage-Controlled Steering-Antenna Radome Utilizing Tunable Active Metamaterial. Microwave Theory and Techniques. IEEE.2012, Vol.60, Issue:1,170-178
    37O. Klinger, Y. Stern, T. Schneider, et al. Long Microwave-Photonic Variable Delay of Linear Frequency Modulated Waveforms. Photonics Technology Letters, IEEE.2002, Vol.24, Issue3,200-202
    38B. Donald, Adams, K. C. Madsen. A Novel Broadband Photonic RF Phase Shifter. Journal of Lightwave Technology,2008, Vol.26, Issue15,2712-2717
    39Wei Li, Ning Hua Zhu, Li Xian Wang, et al. True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light. Optics Express,2011, Vol.19, Issue13,12312-12324
    40T.Tanemura, I. M. Soganci, T.Oyama, et al. Large-Capacity Compact Optical Buffer Based on InP Integrated Phased-Array Switch and Coiled Fiber Delay Lines. Lightwave Technology,2011, Vol.29, Issue4,396-402
    41R. Pant, A. Byrnes, G. Christopher, et al. Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering. OPTICS LETTERS,2012, Vol.37, No.5,969-971
    42E. H. Bernhardi, M. R. H. Khan, C. G. H. Roeloffzen. Photonic generation of stable microwave signals from a dual-wavelength Al2O3:Yb3+distributed-feedback waveguide laser. Optics Letters,2012, Vol.37, Issue2,181-183
    43Ming-Da Tsai.60GHz passive and active RF-path phase shifters in silicon. Radio Frequency Integrated Circuits Symposium, RFIC2009. IEEE,223-226
    44李吉浩,基于SiC三代半导体技术的T/R组件功率放大电路设计.微波学报,2010,S1,564-567. LI Ji-hao, Design of T/R Module Power Amplifier Based on SiC Wide Bandgap Semiconductor. Journal of Microwaves,2010, S1,564-567
    45F. Ellinger, U. Mayer, M. Wickert, etal. Integrated Adjustable Phase Shifters. Microwave Magazine, IEEE,2010, Vol.11, Issue6,97-108
    46M. Tabesh, Jiashu Chen, C. Marcu. A65nm CMOS4-Element Sub-34mW/Element60GHz Phased-Array Transceiver. Solid-State Circuits, IEEE,2011, Vol.46, Issue12,3018-3032
    47A. Natarajan, T. J. Watson Res, Reynolds, etal. A Fully-Integrated16-Element Phased-Array Receiver in SiGe BiCMOS for60-GHz Communications. Solid-State Circuits,2011, Vol.46, Issue5,1059-1075
    4848C. A. D. Morcillo, C. E. Patterson, T. K. Thrivikraman, etal. A lightweight,64-element, organic phased array with integrated transmit-receive SiGe circuitry in the X band. Microwave Symposium Digest (MTT),2011. IEEE MTT-S International
    49J. Y. Zhang, W. J. Xu, J. Carlier, etal. Modelling and simulation of high-frequency (100MHz) ultrasonic linear arrays based on single crystal LiNbO3. Ultrasonics.2012, Vol.52, Issue1,47-53
    50Ansheng Liu, Ling Liao, Doron Rubin, et al. Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide. Semiconductor Science and Technology.2008, Vol.23, No.6,136-141
    51K. V. Acoleyen, W. Bogaerts, J. Jagerska, et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Optics Letters,2009, Vol.34, Issue9,1477-1479
    52S. Donghyup, G. M. Rebeiz. Low-power low-noise0.13μm CMOS X-band phased array receivers. Microwave Symposium Diges,2010,956-959
    53J. K. Doylend, M. J. R. Heck, J. T. Bovington, et al. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Optics Express,2011, Vol.19, Issue22,21595-21604
    54F. Xiao, B. Juswardy, K. Alameh, et al. Opto-VLSI-Based Beamformer for Radio-Frequency Phased-Array Antennas. Photonics Journal, IEEE.2012, Vol.4, Issue3,912-919
    55D. Engstrom, M. J. O'Callaghan, C. Walker, et al. Fast beam steering with a ferroelectric-liquid-crystal optical phased array. Optical Society of America,2009, Vol.48, No.9,1721-1726
    56J-C. S. Chieh, A-V Pham, T. W. Dalrymple. A light weight8-element broadband phased array receiver on Liquid Crystal Polymer. Microwave Symposium Digest,2010,1024-1027
    57Y. Xiaoke, T. X. H. Huang, R. A. Minasian. Photonic Beamforming Based on Programmable Phase Shifters With Amplitude and Phase Contro. Photonics Technology Letters, IEEE,2011, Vol.23, Issue18,1286-1288
    58S. Valyukh, V. Chigrinov. P-136:Optimization of Liquid-Crystal Phased Arrays. SID Symposium Digest of Technical Papers,2011, Vol.42, Issue1,1619-1622
    59Y. Garbovskiy, V. Zagorodnii, P. Krivosik, et al. Liquid crystal phase shifters at millimeter wave frequencies. Journal of Applied Physics.2012, Vol.111, Issue5,054504-054504-4
    60毛仁麟,孙宪章校.机载相控阵列L波段收发组件.现代雷达,1979,No.3,22-29. M.E.Davis, J. K.Smith and C.E.Grove, L-Band T/R Module for Airborne Phased Array, Microwave Journal, Feb,1977, Vol.20, No.2,54-60
    61孙茂友,密度加权设计方法—相关法与综合法.现代雷达,No.3,36-49.The density weighted design methods-the relevant law and the law, Modern Radar. No.3,36-49
    62蒋危平,王务同.超声波探伤仪发展简史.无损检测,Vol.19,No.1,24-25.Jiang Weiping, Wang wutong. History of Ultrasonic Testing Instrument, Non-destructive Testing. Vol.19, No.1,24-25
    63施可仁,无损检测新技术,清华大学出版社,2007,北京
    64杨金红,高玉春,程明虎.等.相控阵技术在大气探测中的应用及面临的挑战.地球科学进展.2008,Vol.23, No.2,142-150. YANG Jinhong, GAOYuchun, CHENG Minghu, Application of Phased Array Technology Detecting Atmosphere and Coming Challenges, ADVANCES IN EARTH SCIENCE,2008, Vol.23, No.2,142-150
    65庄龙,多输入多输出(MIMO)雷达波束优化处理研究,上海交通大学,博士论文,2009.Zhuanglong, STUDY ON THE BEAMPATTERN OPTIMIZATION FOR MULTIPLE-INPUT MULTIPLE-OUTPUT RADAR. Shanghai Jiaotong University. PhD thesis.2009
    66吕晖,冯大政,和洁,等.机载多输入多输出雷达局域化降维杂波抑制方法.西安电子科技大学,2011,Vol.38, No.2,88-92. Lv Hui, FENG Dazheng, HE Jie, etal. Localized reduced-dimension clutter suppression method for the airborne MIMO radar, JOURNAL OF XIDIAN UNIVERSITY,2011, Vol.38, No.2,88-92
    67邹林,汪学刚.宽带数字阵列雷达波束形成的优化实现方法.电子科技大学学报.2012,Vol.41, No.3,368-372. ZOU Lin, WANG Xue-gang. Optimized Beamforming Method of Wideband Digital Array Radar Based on Time Delay. Journal of University of Electronic Science and Technology of China.2012, Vol.41, No.3,368-372
    68高伟,黄建国,徐振华,等.基于二阶锥优化方法的MIMO阵列发射方向图设计.电子与信息学报.2012,Vol.34,No.5,1126-1130. Gao Wei, Huang Jian-guo, Xu Zhen-hua, etal. Transmit Beampattern Synthesis for MIMO Radar with Collocated Antennas Based on Second-order Cone Programs. Journal of Electronics&Information Technology.2012, Vol.34,No.5,1126-1130
    69《数学手册》编写组,数学手册[M],高等教育出版社,1979,北京,540
    70D. Parker, D.C. Zimmermann. Phased Arrays—Part I:Theory and Architectures [J], IEEE Transactions on Microwave Theory and Techniques,2002,50(3):678-687
    71Jaideva C. Goswami, Andrew K. Chan. Fundamentals of Wavelets:Theory, Algorithms, and Applications [M].1999, John Wiley&Sons, Inc.许天周,黄春光译,2007.2,国防工业出版社,北京pp.27-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700