用户名: 密码: 验证码:
基于声—地震耦合的声波探雷模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球很多地区地雷的剧增致使每年都有成千上万的平民伤亡,并已引起世界范围内人道主义探雷事业的关注。目前,塑料等非金属地雷已在全球范围内得以普遍使用,因它们和土壤之间的电学特性差异较小,使用最为广泛的手持金属探雷器以及探地雷达探测效果较差。相对而言,不管是塑料地雷还是金属地雷,它们与土壤的机械特性差别较大,这使得利用声波探雷显得更为可靠。
     正在研究的声-地震耦合技术已经显示出能探测多种材料地雷的应用前景。然而,由于雷区环境的复杂性、地雷类型的多样性以及系统庞大、成本高等原因,该技术仍处于实验室研究阶段;另外,在国内还很少见到有关声学方法探雷的有关报道。为此,本文在综述已有声波探雷技术成果的基础上,根据国外相关文献以及自己的创造性研究成果初步建立基本的声波探雷理论体系,并设计一个实验系统。本文所完成的工作以及创新点主要体现在以下几个方面:
     (1)简述声学理论基础,分析声-地震耦合现象的基本原理
     声波探雷方法属于声学技术应用范畴,涉及到很多声学概念、术语及声学原理。声-地震耦合现象之所以能用于探雷主要是基于土壤的多孔性,当声波入射到地面时,形成不同成分的地震波,遇到地雷时能与其发生独特的机械作用。
     (2)讨论土壤-地雷系统的共振机理
     用频响传递函数的方法求解土壤-地雷共振系统的物理模型,并用机械振动模态分析理论对频响函数做深入的特征分析,揭示土壤-地雷振动系统的共振、反共振现象。
     (3)构建室内声波探雷实验系统
     构建一个基于音响和地震检波器的实验系统装置,设计基于Labview软件平台的数据采集、分析和处理程序。结果显示地雷存在时能引起地表振动状态的明显变化,与理论分析吻合得较好。
     (4)提出数值模拟技术在声波探雷理论研究中的应用
     声波探雷技术,牵涉到声学、地质学、电磁学等多个学科的知识,硬件系统工作的物理环境也十分复杂。为此,提出用最新的多物理场耦合分析软件,以期灵活处理复杂参数的影响。
     (5)研究平均值曲线拟合算法在声波探雷信号处理中的应用,提出今后声波探雷研究工作的若干建议。
In recent years, the proliferation of landmines in many regions of the globe leads to thousands of civilian casualties every year and has focused worldwide attention on humanitarian landmine detection. Plastic and other nonmetallic mines have been developed, and used on a global scale. Because of the small contrasts in electrical properties between soil and nonmetallic mines, the most widely used handheld metal detectors and ground-penetrating radars are not always effective. In contrast, the mechanical properties of plastic and metal mines vary significantly from those of the soil, which may make acoustic excitation a more reliable mechanism to detect mines.
     Acoustic-to-seismic (A/S) coupling techniques are currently being studied and have shown promise as a method of detecting mines made of different materials buried in a variety of soils. However, some of these approaches are still being investigated under laboratory conditions, due to the complexity of mine field terrain, the diversity of mine style, big bulkiness and high cost of the system. As far as we know, there are few reports published about landmine detection by means of acoustic methods in China. The aim of this thesis is to study acoustic mine detection technologies and develop their fundamental theory on the basis of relevant publications and our own creative achievements. Besides, a lab-scale experimental system has been designed. The main work done and the innovation points of this thesis are as follows.
     (1) The acoustic theory and the basic mechanism of A/S coupling are reviewed and analyzed.
     Acoustic mine detection method belongs to acoustic applications. It relies on many acoustic concepts, terms and principles. It is the porous nature of the ground that plays an important role for A/S coupling to be used successfully in the detection of buried land mines. The penetrating sound waves generate a series of seismic waves within the soil, which may mechanically interact with buried mines.
     (2) The resonance mechanism of soil-mine system is studied.
     Frequency response transfer function is used to solve the soil-mine resonance system model. Furthermore, modal analysis theory is adopted to study the function in depth. It is shown that the soil-mine vibration system may display resonance and anti-resonance mechanisms.
     (3) A lab-scale experimental system for acoustic landmine detection has been built.
     A loudspeaker and geophone based lab-scale experimental system is presented. The software development platform of Labview is used to realize data acquisition, analysis and processing. The experimental data show that the mines can result in distinct changes to the acoustically coupled ground motion, which is consistent with the theory analysis.
     (4) The numerical simulation technology for investigating acoustic mine detection is presented.
     The acoustic landmine detection method relates to a few subjects such as acoustics, geology, electromagnetism and many others. The surroundings around the hardware detection system are very complex. The latest multi-physics modeling technology is brought forward to deal with those complex parameters.
     (5) Average algorithm curve-fitting method is studied to process acoustic mine detection signals. The thesis ends with suggestions for some further work.
引文
[1]国际排雷行动标准,www.mineactionstandards.org
    [2]倪宏伟,房旭民等,地雷探测技术,北京:国防工业出版社,2003
    [3]http://news.xinhuanet.com/mil/2007-03/02/content_5792943.htm
    [4]中国大百科全书(军事卷),北京:中国大百科全书出版社,1989
    [5] http://www.unsv.com/voanews/specialenglish/scripts/2006/09/18/0041
    [6] http://news.zj.com/detail/676804.shtml
    [7] http://news.zj.com/detail/768990.shtml
    [8]日内瓦国际人道主义排雷中心(Geneva International Centre for Humanitarian Demining,GICHD),制定排雷行动法律指南,日内瓦,2006
    [9]Russel Gasser, Technology for humanitarian landmine clearance, PHD thesis, Development technology unit school of Engineering university of Warwick Coventry, UK, 2000
    [10]GICHD, Guidebook on Detection Technologies and Systems for Humanitarian Demining, Geneva International Centre for Humanitarian Demining, Guidebook on Detection Technologies and Systems for Humanitarian Demining, 2006
    [11]GICHD, Metal Detectors and PPE Catalogue 2005, Geneva International Centre for Humanitarian Demining, GICHD, Geneva, 2005
    [12]Gaudin C., Sigrist C., Bruschini C., Metal Detectors for Humanitarian Demining: A Patent Search and Analysis. EUDEM2 , Technology Survey Report, 2003
    [13] Daniels D.J. Ground Penetrating Radar, 2nd Edition, IEE Radar, Sonar, Navigation and Avionics Series, 2004
    [14] Bruschini C., Bruyn K., Sahli H., et al., Study on the State of the Art in the EU related to humanitarian demining technology, products and practice. EUDEM: The EU in Humanitarian Demining - Final Report, 1999
    [15]House J., Pape B., Method and apparatus for acoustic energy identification of objects buried in soil, US Patent No. 5357063, 1994
    [16]Rogers J., Don G., Object detector for detecting buried objects, US Patent No. 5563848, 1996
    [17]Caulfield D., Acoustic detection apparatus, US Patent No. 4922467,1990
    [18]Biot M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid I: Low-frequency range, J. Acoust. Soc. Am., 1956, 28(2):168~178
    [19]Biot M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid II: Higher frequency range, J. Acoust. Soc. Amer., 1956, 28(2): 179~191
    [20]Biot M. A., Mechanics of deformation and acoustic propagation in porous media, J Appl Phys, 1962, 33(4):1482~1498
    [21]Sabatier J. M., Bass H. E., Bolen L. N., et al, Acoustically deduced seismic waves, J. Acoust. Soc. Amer., 1986, 80(2): 646~649
    [22]Bass H. E., Bolen L. N., Cress D., et al, Coupling of airborne sound into the earth: Frequency dependence, J. Acoust. Soc. Amer., 1980, 67: 1502~1506
    [23]Sabatier J. M., Bass H. E., Bolen L. N., et al, The interaction of airborne sound with the porous ground: The theoretical formulation, J. Acoust. Soc. Amer., 1986, 79: 1345~1352
    [24]Biot, M.A., Willis, D.G., The elastic coefficients of the theory of consolidation, J. Appl. Mech., 1957, 24: 594~601
    [25]Biot, M.A., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Amer., 1962, 34, 1254~1264
    [26] Plona T., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl . Phys. Lett., 1980, 36:259~261
    [27] Bass H. E., Bolen L. N., Coupling of airborne sound into the earth: Frequency dependence, J.Acoust. Soc. Am., 1980, 67(5): 1502~1506
    [28] Chotiros N. P., Biot model of sound propagation in water-saturated sand, J. Acoust. Soc. Amer., 1995, 97(1): 199~214
    [29] Sabatier J. M., Bass H. E., Bolen L. N. , The interaction of airborne sound with the porous ground: The theoretical formulation, J.Acoust. Soc. Am, 1986, 79(5):1345~1352
    [30] Keith Attenborough, The acoustic transfer function at the surface of a layered poroelastic soil, J. Acoust. Soc. Am., 1986, 79 (5):1353~1358
    [31]乔文孝,王宁,严炽培,声波在两种多孔介质界面上的反射和透射,地球物理学报,1992,35 (2):242~248
    [32]刘克安,刘宏伟,双相介质二维波动方程三参数同时反演的时卷正则迭代法,石油地球物理勘探,1997,32 (5):615 ~ 622
    [33] Hickey C. J., Sabatier J. M., Measurements of two types of dilatational waves in an air-filled unconsolidated sand, J. Acoust. Soc. Amer., 1997, 102:128~136
    [34] Bass H. E. , Sabatier J., Acoustic to Seismic Coupling and Physical Measurements, In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE , 2000, 4038: 604~609
    [35]杨顶辉,张中杰,Biot和喷射流动耦合作用对各向异性弹性波的影响,科学通报,2000,45:1333~1340
    [36]胡恒山,王克协,孔隙介质声学理论中的动态渗透率,地球物理学报,2001,44:135~141
    [37]胡恒山,王克协,刘家琦,孔隙介质中快纵波的衰减特性和动力协调现象,计算物理,2002,19(3):203~207
    [38]Michael L. O., William D. O., Measurement of Attenuation and Speed of Sound in Soils, Soil Sci. Soc. Am. J., 2002, 66:788~796
    [39]张丽琴,於文辉,王家映,Biot耦合模式波的动力学特征,西北地震学报,2004,26( 2):97~107
    [40]崔志文,王克协,曹正良等,多孔介质BISQ模型中的慢纵波,物理学报,2004,53(9):3083~3089
    [41]Boris Gurevich, Radim Ciz, Shear wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers, International Journal of Solids and Structures, 2006, 43: 7673~7683
    [42]Wei-Cheng Lo, Garrison Sposito, Ernest Majer, Low-frequency dilatational wave propagation throughfully-saturated poroelastic media, Advances in Water Resources, 2006, 29:408~416
    [43] Wei Changfu, Muraleetharan Kanthasamy K., Acoustical characterization of fluid-saturated porous media with local heterogeneities: Theory and application, International Journal of Solids and Structures, 2006, 43:982~1008
    [44]杨顶辉,孔隙各向异性介质中基于BISQ模型的弹性波传播理论及有限元方法,博士论文:北京,石油大学地球科学系,1998
    [45]Saenger E. H., Gold N., Shapiro S. A., Modeling the propagation of elastic waves using a modified finite-difference grid, Wave Motion, 2000, 31: 77~92
    [46]杨顶辉,双相各向异性介质中弹性波方程的有限元解法及波场模拟,地球物理学报,2002,45( 4):575~583
    [47]孟庆生,何樵登,朱建伟等,基于BISQ模型双相各向同性介质中地震波数值模拟,吉林大学学报(地球科学版),2003,33(2):217~221
    [48]裴正林,三维各向异性介质中弹性波方程交错网格高阶有限差分法模拟,石油大学学报(自然科学版),2004,28 (5) :23~29
    [49]Saenger, E. H., Finite-difference modeling of viscoelasticand anisotropic wave propagation using the rotated staggered grid, Geophysics, 2004, 69: 583~591
    [50]Albers B., Wilmanski K., On modeling acoustic waves in saturated poroelastic media, J. Eng. Mech. ASCE, 2005, 131(9):974~985
    [51]裴正林,王尚旭,任意倾斜各向异性介质中弹性波波场交错网格高阶有限差分法模拟,地震学报,2005,27(4):441~451
    [52]张新明,刘克安,刘家琦,流体饱和多孔隙介质二维弹性波方程正演模拟的小波有限元法,地球物理学报,2005,48 (5):1156~1166
    [53]於文辉,离散介质中地震波理论及慢纵波,博士学位论文,武汉:中国地质大学,2002
    [54]裴正林,三维双相各向异性介质弹性波方程交错网格高阶有限差分法模拟,中国石油大学学报(自然科学版),2006,30(2):16~20
    [55]Peter, Goransson, Acoustic and vibrational damping in porous solids, Phil. Trans. R. Soc. A , 2006, 364: 89~1089
    [56]Radim Ciz, Erik H. Saenger, Boris Gurevich, Pore scale numerical modeling of elastic wave dispersion and attenuation in periodic systems of alternating solid and viscous fluid layers, J. Acoust. Soc. Am., 2006, 120(2): 642~648
    [57]Wilmanski K., A few remarks on Biot’s model and linear acoustics of poroelastic saturated materials, Soil Dynamics and Earthquake Engineering, 2006, 26:509~536
    [58]Donskoy D. M. , Nonlinear vibro-acoustic technique for landmine detection,Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike TargetsⅢ, 1998, 3392: 211~217
    [59]Donskoy D. M. , Nonlinear Siesmo-Acoustic Technique for Land Mine Detection and discrimination, in Detection of Abandoned Land Mines, IEE Conference Publication, 1998, 458: 244~248
    [60]Donskoy D. M. , Detection and discrimination of nonmetallic land mines,Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets IV, 1999, 3710: 239~246
    [61]Donskoy D., Sedunov N., Ekimov A., et al. Optimization of seismo-acoustic land mine detection using dynamic mechanical impedances of mines and soil, Detection and Remediation Technologies for Mines and Minelike Targets VI, Proceedings of SPIE, 2001, 4394:575~582
    [62]Donskoy D., Ekimov A., Sedunov N., et al., Nonlinear seismo-acoustic land mine detection and discrimination, J. Acoust. Soc. Am., 2002, 111 (6):2705~2714
    [63]Donskoy D., Ekimov A., Sedunov N., et al., Nonlinear seismo-acoustic land mine detection: field test, Detection and Remediation Technologies for Mines and Minelike Targets VII, Proceedings of SPIE, 2002, 4742 :685~695
    [64]Korman M. S., Sabatier J. M., Nonlinear acoustic techniques for landmine detection: Experiments and theory. J. Acoust. Soc. Am., 2002, 111(5): 2420
    [65]Donskoy D., Reznik A., Zagrai A.,et al., Nonlinear Vibrations of Buried Land Mines, J. Acoust. Soc. Am. 2005, 117 (2), 690~700
    [66]Sabatier J. M., Korman M. S., Nonlinear tuning curve vibration response of a buried land mine, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE, 2003, 5089:476~486
    [67]Korman M. S., Sabatier J. M., Nonlinear acoustic techniques for landmine detection, J. Acoust. Soc. Am., 2004,116 (6): 3354~3369
    [68] Zagrai A., Donskoy D., Ekimov A., Resonance Vibrations of Buried Landmines, Detection and Remediation Technologies for Mines and Minelike Targets IX, Proceedings of SPIE , 2004, 5415:21~29
    [69]Zagrai, A. N., Donskoy D. M., Ekimov, A., Structural vibrations of buried land mines, J. Acoust. Soc. Am., 2005: 118 (6), 3619~3628.
    [70]Donskoy D., Zagrai A., Fenneman D., et al., High frequency modulation approach for the nonlinear seismo-acoustic detection of buried landmines, Proc. SPIE, Detection and Remediation Technologies for Mines and Minelike Targets XI., 2006, 6217
    [71]Donskoy D., Nonlinear seismo-acoustic landmine detection, J. Acoust. Soc. Am., 2008, 123(5): 3042~3043
    [72] Xiang Ning, Sabatier James, Fast M-sequence Transform for Laser-Doppler Based Mine Detection, Part of the SPIE Conference on Siqnal Processinq Sensor Fusion, and Target Recognition,1999,3720: 390~396
    [73]Sabatier J. M., Xiang N., Laser Doppler Based Acoustic-to-Seismic Detection of Buried Mines Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike Targets IV, 1999,215~222
    [74]Sabatier J.M., Xiang N, Acoustic to Seismic Coupling and Detection of Landmines, Geoscience and Remote Sensing Symposium Proceedings, 2000, 4: 1646~1648
    [75]Xiang N., Sabatier J. M., Land mine detection measurements using acoustic-to-seismic coupling, In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE, 2000, 4038:645~655
    [76]Sabatier J.M., Acoustic Technology for Land Mine Detection - Past Tests, Present Requirements, and Future Concepts, In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE 2000, 4038: 781~789
    [77]Cot1ey R. D., Valeau V., Xiang N., Continuous scanning laser doppler vibrometer for mine detection, In Detection and Remediation Technologies for Mines and Minelike Targets V, 2000, 4038: 711~718
    [78]Sabatier J. M., Gilbert K. E., Method for detecting buried objects by measuring seismic vibrations induced by acoustical coupling with a remote source of sound, US Patent No. 6081481, 2000
    [79]Rosena E. M., Sherbondy K. D., Sabatier J. M., Performance Assessment of a Blind Test Using the University of Mississippi's Acoustic/Seismic Laser Doppler Vibrometer (LDV) Mine Detection Apparatus at Fort A. P. Hill, In Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE, 2000, 4038 :656~666
    [80]Goggans P., Smith C. R., Xiang N., Increasing speckle noise immunity in LDV-based acoustic mine detection, in Proc. SPIE Conf. Detection and Remediation Technologies for Mines and Minelike Targets V, 2000: 719~724
    [81]Sabatier J. M., Xiang N., An Investigation of Acoustic-to-Seismic Coupling to Detect Buried Antitank Landmines, IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1146~1154
    [82]Sabatier J.M., Xiang N., Laser Doppler Vibrometer-based anti-personnel mine detection, IEEE Geoscience and Remote Sensing Symposium, 2001, 7:3093~3095
    [83]Sabatier J. M., Korman M. S., Xiang N., Linear and non-linear acoustic velocity profiles over buried land mines, Detection and Remediation Technologies for Mines and Minelike Targets VII, Proceedings of SPIE , 2002, 4742:695~700
    [84]Heuvel J. C, Klein V., Lutzmann P., et al., Sound wave and laser excitation for acousto-optical landmine detection, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE , 2003, 5089:569~578
    [85]Xiang N., Sabatier J. M., An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling, J. Acoust. Soc. Am., 2003, 113 (3):1333~1341
    [86] Yu S. H., Thomas R. W., Raman K. M., Acoustic-Seismic Mine Detection based on Spatial-Spectral Distribution of Poles, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE, 2003, 5089:606~613
    [87]Xiang N, Sabatier J. M., Acoustic-to-Seismic Landmine Detection Using a Continuously Scanning Laser Doppler Vibrometer, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE , 2003, 5089:591~595
    [88]Fenneman D., Slick C., Velea D., Comparison of measured vs. predicted buried mine resonant behavior, Detection and Remediation Technologies for Mines and Minelike Targets VIII, Proceedings of SPIE. 2003, 5089:495~504
    [89]Sabatier J.M., Burgett R., Aranchuk V., High Frequency A/S Coupling for AP Buried Landmine Detection Using Laser Doppler Vibrometers, Detection and Remediation Technologies for Mines and Minelike Targets IX, Proceedings of SPIE 2004, 5415 :35~41
    [90]Xiang N., Sabatier J. M., Laser Doppler Vibrometer-Based Acoustic Landmine Detection Using the Fast M-Sequence Transform, IEEE Transactions on Geoscience and Remote Sensing, 2004,1(4): 292~294
    [91]Velea D., Waxler R., Sabatier J. M., An effective fluid model for landmine detection using acoustic to seismic coupling, J. Acoust. Soc. Am., 2004, 115 (5):1993~2002
    [92]Zagrai A., Donskoy D., Ekimov A., Structural vibrations of buried land mines, J. Acoust. Soc. Am., 2005, 118(6): 3619~3628
    [93]Alberts W.C., Sabatier J. M., Waxler R., Resonance frequency shift saturation in land mine burial simulation experiments, J. Acoust. Soc. Am., 2006, 120 (4): 1881~1886
    [94]Attenborough K, Qin Q., Jefferis J., et al., Accelerometer measurements of acoustic-to-seismic coupling above buried objects, J. Acoust. Soc. Am., 2007, 122(6): 3230~3241
    [95]Yu S. H., Avinash G., Thomas R. W., et al., Physically based method for automatic mine detection using acoustic data ----a transmission zero approach, In Proceedings of SPIE, Detection and Remediation Technologies for Mines and Minelike Targets VII, 2002, 4742:701~708
    [96]Scott W. R., Martin J. S., Experimental Investigation of the Acousto Electromagnetic Sensor for Locating Land Mines, Proceedings of the SPIE: 1999, 3710:204~214
    [97]Scott W. R., Simultaneous Use of Elastic and Electromagnetic Waves for the Detection of Buried Land Mines, Proceedings of SPIE, 2000, 4038:1~12
    [98]Scott, W. R., Jr., Schroeder, C., et al., An Acousto-Electromagnetic Sensor for Locating Land Mines, SPIE, Aero Sense, Detection and Remediation Technologies for Mines and Minelike Targets III, 1998: 176~186
    [99]Scott, W. R., Jr., Martin J. S., An Experimental Model of an Acousto-Electromagnetic Sensor for Detecting Land Mines, Proceedings of the 1998 IEEE Antennas and Propagation Symposium, 1998, 978~983
    [100]Behboodian, A., Scott, W. R., Jr. et al., Signal Processing of Elastic Surface Waves for Localizing Buried Land Mines, Proceedings of the 33rd Assilomar Conference on Signals, Systems, and Computers, 1999, 827~830
    [101]Schr?der C. T., Scott W. R., A Finite-Difference Model to Study the Elastic-Wave Interactions with Buried Land Mines, IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4): 1505~1512
    [102]Scott W. R., Jr., Martin J. S., et al. Experimental Model for a Seismic Landmine Detection System, IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1155~1164
    [103]Scott W. R., Jr., Lee S., et al. Use of High-Frequency Seismic Waves for the Detection of Buried Land Mines, Detection and Remediation Technologies for Mines and Minelike Targets VI, Proceedings of SPIE, 2001, 4394:543~552
    [104]Schr?der C. T., Scott W. R., Jr., et al, Elastic Waves Interacting with Buried Land Mines: A Study Using the FDTD Method, IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6) :1405~1415
    [105]Lee S., Scott W. R., Jr., et al., Technical Issues Associated with the Detection of Buried Land Mines with High-Frequency Seismic Waves, Detection and Remediation Technologies for Mines and Minelike Targets VII, Proceedings of SPIE, 2002, 4742:617~628
    [106]Martin J. S., Larson G. D., Scott W. R., et al., Surface-Contacting Vibrometers for Seismic Landmine Detection, Detection and Remediation Technologies for Mines and Minelike Targets X, Proc. of SPIE , 2005, 5794:590~600
    [107]Martin J. S., Larson G. D., Scott W. R., An investigation of surface-contacting sensors for the seismic detection of buried landmines, J. Acoust. Soc. Am., 2006, 120(5): 2676~2685
    [108]Larson G. D., Martin J. S., Scott W. R., Investigation of microphones as near-ground sensors for seismic detection of buried landmines, J. Acoust. Soc. Am., 2007, 122 (1): 253~258
    [109] McKnight S. W., DiMarzio C., Li,W. , et al., Laser-induced acoustic detection of buried objects, Part of the SPIE Conference on Detection and Remediation Technologies for Mines and Minelike TargetsⅢ, 1998, 3392: 841~847
    [110]Smith E., Wilson P. S., Bacon F. W., et al. Measurement and localization of interface wave reflections from a buried target, J. Acoust. Soc. Am., 1998, 103 (5):2333~2343
    [111] Rosen E. M., Sherbondy K. D., Performance Assessment of Mine Detection Systems, Detection and Remediation Technologies for Mines and Minelike Targets V, Proceedings of SPIE, 2000, 4038 :1225~1236
    [112]Lawrence D. E., Sarabandi K., Acoustic and Electromagnetic Wave Interaction: Analytical Formulation for Acousto-Electromagnetic Scattering Behavior of a Dielectric Cylinder, IEEE Transactions on Geoscience and Remote Sensing, 2001, 49(10): 1382~1392
    [113]Zeng Y. Q., Liu Q. H., Acoustic Detection of Buried Objects in 3-D Fluid Saturated Porous Media: Numerical Modeling, IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(6):1165~1173
    [114]Haupt R. W., Rolt K. D., Standoff Acoustic Laser Technique to Locate Buried Land Mines, Lincol Laboratory Journal, 2005,15(1):3~22
    [115]Bradley M. R.; Sabatier J. M.; Witten T.R., et al., Fusion of Acoustic/Seismic and Ground Penetrating radar sensors for antitank mine detection, Detection and Remediation Technologies for Mines and Minelike Targets VI, Proc. SPIE, 2001, 4394:979~990
    [116]Zeng Y. Q., Liu Q. H., Acoustic landmine detection: a 3D poroelastic model, Detection and Remediation Technologies for Mines and Minelike Targets VI, Proc. SPIE, 2001, 4394:583~594
    [117]Borgioli G., Bulletti A., Calzolai M., et al., Theoretical and experimental analysis of an equivalent circuit model for the investigation of shallow landmines with acoustic methods, Proc. of SPIE, 2007, 6739:1~9
    [118]张海澜,理论声学,北京:高等教育出版社,2007
    [119]何琳,朱海潮,邱小军等,声学理论与工程应用,北京:科学出版社,2006
    [120]曹树谦,振动结构模态分析,天津:天津大学出版社,2001
    [121]傅志方,模态分析理论与应用,上海:上海交通大学出版社,2000
    [122]胡少伟,结构振动理论及其应用,北京:中国建筑工业出版社,2005
    [123]屈维德,唐恒龄,机械振动手册,北京:机械工业出版社,2000
    [124] Cyril M. Harris, Allan G. Piersol著,刘树林,王金东,李凤明等译,冲击与振动手册,北京:中国石化出版社,2008
    [125]Sun Y. F., Core-Log-Seismic Integration in Hemipelagic Marine Sediments on the Eastern Flank of the Juan de Fuca Ridge, Proc. Ocean Drilling Program, Scientific Results 168, 2000, 21~35.
    [126]Robert W. H, Kenneth D. R., Standoff Acoustic Laser Technique to Locate Buried Land Mines, Lincoln laboratory Journal, 2005, 15(1): 3~22
    [127]何樵登,地震波理论,长春:吉林大学出版社,2005
    [128] Amos Nur著,许云译,双相介质中波的传播,北京:石油工业出版社,1986
    [129]牟永光,裴正林,三维复杂介质地震数值模拟,北京:石油工业出版社, 2005
    [130]姚姚编,地震波场与地震勘探,北京:地质出版社,2006
    [131]周学松,地下目标无损探测技术,北京:国防工业出版社,2005
    [132] AFG3000系列任意波形/函数发生器用户手册,Tektronix,2004
    [133]张维国,高保真视听器材选购指南,北京:国防工业出版社,2005,26~121
    [134]Mixing console MG8/2FX使用说明书,Yamaha,2004
    [135]PA系列舞台功放操作说明书,杭州声博电子科技有限公司,2007
    [136]JB系列专业音箱用户使用手册,音王集团有限公司,2007
    [137]北京铀矿地质研究所浅层地震组,浅层地震探测方法与技术,北京:原子能出版社,1982,41-57
    [138]唱鹤鸣,地震勘探仪器基本原理,北京:地质出版社,1985,53~60
    [139]刘仲一,地震勘探仪器,北京:石油工业出版社,1986,18~34
    [140]Computer-Based Instruments NI5112 User Manual,National instruments,2001
    [141]PSJ-2C普通声级计使用说明书,上海希克电子电器厂,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700