用户名: 密码: 验证码:
混合气体浓度检测的弛豫声学方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代社会生活和工业生产中,气体浓度检测有着广泛的需求和应用前景,实时检测混合气体中多种成分的浓度更是被人们广泛研究。传统又年轻的弛豫声学方法混合气体浓度检测,以成本较低、寿命较长、功耗较小、响应速度较快、测量浓度范围不受限、能同时检测出具有不同特性的多种气体浓度等优点,正在被学者们大力研究。混合气体浓度检测的弛豫声学方法是,利用声速、声衰减等声学参量随气体成分浓度的改变而变化的特性,寻找和建立声速、声衰减、声频率、气体成分浓度之间关系的模型,研究如何利用声速、声衰减系数、有效弛豫频率等具体声学参数与气体浓度之间的模型检测混合气体成分浓度的理论和技术,属于数学、物理学、电子学、信号处理等学科的交叉前沿成果。
     本论文根据弛豫声学方法混合气体浓度检测的特点,对经典声速理论、经典声衰减理论、弛豫声衰减理论、分子碰撞能量转移理论等众多气体声学理论进行研究、扩展和创新,分析并解决了弛豫声学方法检测三种成分、四种成分混合气体浓度的关键技术。本论文所开展的研究工作主要有以下内容: 1.在分子碰撞能量转移模型和有效弛豫频率算法方面,本论文证明了有效弛豫频率作为第三个气体声学参数的合理性;通过在气体分子碰撞能量转移概率的计算中忽略近似共振振动模式,重新界定了参与分子碰撞能量转移模型的气体分子振动频率;推导了四种成分混合气体有效弛豫频率的弛豫矩阵算法,从弛豫理论上统一了弛豫矩阵算法和最大声衰减系数算法的结果,使得有效弛豫频率用于弛豫声学方法检测混合气体浓度成为可能。
     2.在四种成分混合气体浓度的弛豫声学检测算法方面,本论文首次将有效弛豫频率引入弛豫声学方法检测混合气体浓度,结合弛豫衰减系数和声速,完成了用三种参数检测四种成分混合气体浓度的弛豫声学算法,同时验证了该算法的精确度,以及不同浓度时该算法对声频率偏移的线性性和健壮性,证明了该算法存在通过多次测量的平均值减少实验误差的可能性,使该算法在实际中可行。
     3.在三种成分混合气体浓度的弛豫声学检测算法方面,本论文确定了声速和经典声衰减理论在声学方法混合气体浓度检测中的相关性,并将经典声衰减从声衰减模型中去掉,分析了弛豫衰减系数和声速与混合气体各成分浓度和声频率之间的依赖关系,分别建立了弛豫衰减系数与声频率的二维模型,以及弛豫衰减系数和声速与气体浓度的三维模型,完成了通过测量弛豫声衰减系数和声速计算三种成份混合气体浓度的算法;通过分析气体分子碰撞能量转移理论,找到了微弱浓度时弛豫衰减系数与混合气体浓度的三维曲面变为崎岖不平的原因,利用信号处理中的滤波思想,使用平滑窗处理弛豫声衰减结果,将三种成分混合气体浓度检测算法扩展到了微弱气体浓度检测,检测浓度达到0.001%;通过仿真实验还发现了三种成分混合气体浓度弛豫声学检测算法的最佳适用声频率范围——小于有效弛豫频率的一个10倍频程,以及该算法具有的线性声频率偏移特性,同样证明了该算法存在通过多次测量的平均值减少实验误差的可能性,使该算法在实际中可行。
     4.在弛豫声衰减理论方面,本论文阐述了气体弛豫声学的基础定义和理论,阐明了气体弛豫声衰减源于气体分子碰撞能量转移的关系,讨论了现有气体分子碰撞和能量转移模型,并详细推导和求解了现有弛豫声衰减理论,利用其他研究者的理论计算结果和实验测量数据验证了本论文建立的弛豫声衰减模型的正确性。
     5.在气体声学实验装置方面,本论文总结和借鉴了国外众多现有气体声学实验装置的结构优点和实现方法,设计并制作了一个气体声学实验装置原型,目前该实验装置原型正在最后完成中,其设计思想和实现方法都具有一定的参考价值。
     本论文的研究成果既是对气体弛豫声衰减理论的扩展和创新,又是对混合气体浓度检测的弛豫声学方法技术的扩展和创新,得到的具体检测算法考虑了将其应用于实验的问题,具有实际可行性。
In the modern world and industrial production, gas concentration detection has widely demands and application prospects. The real-time concentration measurement of multi-component gas mixture has been extensively developed by many researchers. The concentration detection for gas mixtures based on acoustic relaxation theory, which both has solid theoretical background and brightly developing orientation, is being studied vigorously by the researchers, because it has the numerous advantages, such as lower cost, longer service duration, smaller power loss, faster response speed, considerably wide concentration scope for detecting, as well as simultaneously gaining results of multiple gases with different characteristics. The concentration detection for gas mixtures based on acoustic relaxation theory is a novel theory and technology. It utilizes the characteristics of acoustic attenuation and sound speed along with the changes of concentrations of gaseous components, and founds models of acoustic attenuation and sound speed depending on acoustic frequencies and concentrations of gases components. The detection is conducted by using sound speed, acoustic attenuation coefficients, effective relaxation frequency and these models. It is an interdisciplinary study based on mathematics, physics, electronics, signal processing.
     In this thesis, according to the natures of gases relaxation acoustics, we studied the classical acoustic velocity theory, the classical acoustic attenuation theory, the acoustic relaxation attenuation theory, and the gas molecular collision and energy transfer theory. Through researching, expanding and innovating of these theories, we have solved the key technologies of the concentration detection algorithms for three-component and four-component gas mixtures.
     For the gas molecular collision and energy transfer model and the algorithm of effective relaxation frequency, this thesis demonstrated it is reasonable that effective relaxation frequency can be considered as a third gas acoustics parameter. By ignoring the near resonance modes in relaxation energy transitions of gas molecular collision process under normal temperature, we improve the gas molecular collision and energy transfer model. For the first time, we gain the relaxation matrix algorithm to calculate the effective relaxation frequency for four-component gas mixtures. The simulation results verify that two results of the effective relaxation frequency, which come from the relaxation matrix algorithm based on the developed acoustic multi-relaxation attenuation theory and the algorithm based on the maximal dimensionless relaxation attenuation coefficient per wavelength respectively, become consistent basically. Therefore, the effective relaxation frequency can be introduced to the concentration detection algorithms of four-component gas mixtures based on acoustic relaxation theory.
     For the concentration detection algorithms of four-component gas mixtures based on acoustic relaxation theory, in this thesis, the effective relaxation frequency is first applied to acoustic gas concentration detection for four-component gas mixtures. We establish several multidimensional models for the concentrations of the constituents versus the effective relaxation frequency, relaxation attenuation, and acoustic velocity, respectively. Based on these models, we can use the measured parameters: effective relaxation frequency, relaxation attenuation coefficient and acoustic velocity, to predict the concentration of each component in the mixture. Testing the simulation results of sample gas mixtures demonstrates that the algorithm has high accuracy, strong stability and robustness for a wide range of acoustic frequencies.
     In the concentration detection algorithm of three-component gas mixtures discussed here, we boldly remove the classical acoustic attenuation from the total attenuation due to the certain relativity between the classical acoustic velocity and the classical acoustic attenuation. Then we provided dependences between relaxation attenuation coefficients and other acoustic parameters when ultrasound propagates in gas mixtures, such as concentrations of constituents and acoustic frequencies, and established a three dimensional model between concentrations of mixture constituents and relaxation absorption, acoustic velocity, separately. Further more, we gave out the two dimension relationship between relaxation absorption and acoustic frequencies. We propose a simplified algorithm to calculate the carbon monoxide concentration by measuring relaxation absorption and acoustic velocity. By analyzing the models of the energy transfer in molecular collision process and the acoustic relaxation attenuation in gas, we find the reason why ruggedness appears when the gas constituents have weak concentrations. We use the smooth window, a typical method in signal processing, to address acoustic relaxation attenuation data, and develop the algorithm for weak gas concentration detection of three-component gas mixtures. The measuring accuracy of this algorithm achieves 0.001%. Simulation results not only prove the feasibility of this method, but also indicate the appropriate range of acoustic frequencies, which is one 10 octave under the effective relaxation frequency. The reasons of application errors can be reduced through mean tested value, because of linear acoustic frequency displacement characteristic of the algorithm.
     For the acoustic relaxation attenuation theory, in this thesis, we introduced the fundamental definition and theory of gases relaxation acoustics, and the acoustic relaxation attenuation theory resulted from the gas molecular collision and energy transfer theory. Then we completed the foundation and solution of the acoustic relaxation attenuation theory according to the existing gas molecular collision and energy transfer models, and confirmed the correctness of the acoustic relaxation attenuation model by using other researcher's theoretical calculation result and experiment metrical data.
     For the gas acoustic experimental equipment, in this thesis, we summarized the structure merits and design proposals of overseas gas acoustic experimentation equipments, then designed and manufactured a prototype of gas acoustic experimentation equipment independently. Although the equipment is not finished, we still believe it has a high probability to be actualized. The design concepts of the prototype can be used for reference for other researchers.
     The achievements of the research work in this thesis are expansion and the innovation not only to theory of gas acoustic relaxation attenuation, but also to technologies of the concentration detection for gas mixtures based on acoustic relaxation theory. The algorithm of the concentration detection for gas mixtures based on acoustic relaxation theory had been considered to be applied in experiment, and it has a strong feasibility.
引文
[1]张贵银,张连水,韩晓峰.大气污染物SO2的光声探测.光电子-激光, 2005, 16(7): 830-833
    [2]张贵银,张连水,韩晓峰.大气污染物NO2的光声探测.华北电力大学学报, 2005, 32(4): 79-100
    [3]熊伟,方勇华,黄烨,兰天鸽,董大明,李大成.基于亮温光谱法的大气污染气体探测.光电工程, 2006, 33(4): 27-30
    [4] Horiuchi Tsutomu, Ueno Yuko, Camou Serge, Haga Tsuneyuki, Tate Akiyuki. Portable aromatic VOC gas sensor for onsite continuous air monitoring with 10-ppb benzene detection capability. NTT Technical Review, 2006, 4(1): 30-37
    [5]尚琳琳,程世庆,张海清,殷炳毅.生物质与煤混合热解时硫化氢的析出特性.煤炭学报, 2007, 32(10): 1079-1083
    [6] Oka Kazue, Kimura Tomoko, Otsuka Masato, Ohmori Shinji. Specific determination of threonine in biological samples by gas chromatography with electron capture detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 830(1): 173-177
    [7] Su Guofeng, Chen Tao , Yuan Hongyong. New Model for a Photoacoustic Fire Detection System. Fire Sarety Science, 2004, 13(4): 219-223
    [8] Chen Shin-Juh, Hovde David C, Peterson Kristen A, Marshall Andre W. Fire detection using smoke and gas sensors. Fire Safety Journal, 2007, 42(8): 507-515
    [9]刘志娟,郭斌.肼类火箭推进剂气体检测技术.低温与特气, 2007, 25(2): 37-42
    [10] Andi Petculescu, Richard M. Lueptow. Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus, 2007, 186(11): 413-419
    [11] Huebler J E, Blazek C F. Evaluation of sensors for NGV and fueling station applications. Chicago, IL, United States: Gas Research Institute, 1996
    [12] O Renault, A V Tadeev, G Delabouglise, M Labeau. Integrated solid-state gas sensors based on SnO2(Pd)/for CO detection. Sensors and Actuators B, 1999, 59: 260-264
    [13] V E Sakharov , S A Kuznetsov , B D Zaitsev, I E Kuznetsova , S G Joshi.Liquid levelsensor using ultrasonic Lamb waves. Ultrasonics, 2003, 41: 319-322
    [14] A V Tadeev, G Delabouglise, M Labeau. Sensor properties of Pt doped SnO2 thin films for detecting CO. Thin Solid Films, 1999, 337: 163-165
    [15] Phillip John McKerrow, Shao-Min Zhu, Stephen New. Simulating Ultrasonic Sensing with the Lattice Gas Model. IEEE Transaxtions on Robotics and Automation, 2001, 17(2): 202-208
    [16] Shuh-Haw Sheen, Hual-Te Chien, Apostolos C Raptis. Ultrasonic techniques for detecting helium leaks. Sensors and Actuators B, 2000, 71: 197-202
    [17] K Bhattacharjee. Plate and Gap Acoustic Waves for Highly Sensitive Gas and Liquid Sensors. IEEE Ultrasonics Symposium, 2004:1553-1556
    [18]杜功焕,朱哲民,龚秀芬.声学基础(第2版).南京:南京大学出版社, 2001
    [19]马大猷.现代声学理论基础.北京:科学出版社, 2004
    [20]张海澜.理论声学.北京:高等教育出版社, 2007
    [21]沈建国.应用声学基础.天津:天津大学出版社, 2004
    [22]应崇福.超声学.北京:科学出版社, 1990
    [23] Bond, J W.气体动力学原子理论.北京:北京科学出版社, 1986
    [24] D R Raichel. Sound Propaflation in Voiflt Fluid. J. Acoust. Soc. Am. 1972, 52(1): 385-398
    [25] Jordi Salazar , Antoni Turo, Juan A Chavez, Miguel J Garcia. Ultrasonic inspection of batters for on-line process monitoring. Ultrasonics, 2004, 42: 155–159
    [26] Hauptmann P, Hoppe N, Püttmer A. Application of ultrasonic sensors in the process industry. Meas. Sci. Technol., 2002, 13: R73–R83
    [27]薛丽芳,汪卉,颜文俊.基于超声波的距离测量.自动化与仪表, 2007, (5):17-20
    [28]胡昱.超声波传感器污水流量计的设计.沈阳大学学报, 2001, 13(4): 38-40
    [29]李顺华,胡绳荪.超声波传感器在焊缝跟踪的应用.焊接设备与材料, 2000, 29(5): 33-34
    [30]张弸,罗代升,周雪莲.一种新的超声波心动图像分割算法.成都信息工程学院学报. 2007, 22(3): 297-300
    [31]林书玉.超声换能器的原理及设计.北京:科学出版社, 2004
    [32] Carr H, Wykes C. Diagnostic measurements in capacitive transducers. Ultrasonics,1993, 31: 13-20
    [33] AndersonM J, Hill J A, Fortunko C M, Dogan N S, Moore R D. Broadband electrostatic transducers: modeling and experiments. J. Acoust. Soc. Am. 1995, 97: 262-72
    [34] Schindel D W, Hutchins D A, Zou L, Sayer M. The design and characterization of micromachined air-coupled capacitance transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1995, 42: 42-50
    [35] GrandiaW A, Fortunko C M. NDE applications of air-coupled ultrasonic transducers. Proc. IEEE Ultrason. Symp. 1995: 697–709
    [36] Schindel D W. Air-coupled ultrasonic measurements of adhesively bonded multi-layer structures. Ultrasonics, 1999, 37: 185-200
    [37] Schindel D W, Forsyth D S, Hutchins D A, Fahr A. Air-coupled ultrasonic NDE of bonded aluminum lap joints. Ultrasonics, 1997, 35: 1-6
    [38] WrightW M D, Hutchins D A. Air-coupled ultrasonic testing of metals using broadband pulses in through-transmission. Ultrasonics, 1999, 37: 19-22
    [39] Gan T H, Hutchins D A, Billson D R, Schindel D W, The use of broadband acoustic transducers and pulse–compression techniques for air-coupled ultrasonic imaging. Ultrasonics, 2001, 39: 181-94
    [40] Schindel D W. Ultrasonic imaging of solid surface using a focused air-coupled capacitance transducer, Ultrasonics, 1998, 35: 587-94
    [41] Hutchins D A, Schindel D W, Bashford A G, WrightW M D. Advances in ultrasonic electrostatic transduction. Ultrasonics, 1998 36: 1-6
    [42]张庆,李卓凡,王小怀,声速测定中声强的综合衰减系数的测定.大学物理实验. 2005, 18(1): 25-27
    [43] F D Shields, K P Lee, W J Wiley. Numerical Solution for Sound Velocity and Absorption in Cylindrical Tubes. J. Acoust. Soc. Am. 1965, 37(4): 724-729
    [44] F D Shields. Sound Absorption and Velocity in and CO2/H2S Mixtures. J. Acoust. Soc. Am. 1969, 45(2): 481-484
    [45] F D Shields. Sound Absorption and Velocity in Water Vapor. J. Acoust. Soc. Am. 1964, 4: 1593-1594水蒸气
    [46] F D Shields. Sound Absorption and Velocity Measurements in Oxygen. J. Acoust. Soc. Am. 1962, 1: 251-252
    [47] F D Shields. On Obtaining Transition Rates from Sound Absorption and Dispersion Curves. J. Acoust. Soc. Am. 1970, 47(5): 1262-1268
    [48] S Phillips, Y Dain, R M Lueptow. Theory for a gas composition sensor based on acoustic properties. Measurement Science and Technology. 2003, 40: 70-75
    [49] Tinge J T, Mencke K, Bosgra L, Drinkenburg A A H. Ultrasonic gas analyser for high resolution determination of binary-gas composition. J. Phys. E: Sci. Instrum. 1986, 19: 953-956
    [50] Polturak E, Garrett S L, Lipson S G. Precision acoustic gas analyzer for binary mixtures. Rev. Sci. Instrum. 1986, 57: 2837-2841
    [51] Hallewell G, Crawford G, McShurly D, Oxoby G, Reif R. A sonar-based technique for the ratiometric determination of binary gas mixtures. Nucl. Instrum. Methods Phys. Res. 1988, A 264: 219-234
    [52] Joos M, Muller H, Lindner G. An ultrasonic sensor for the analysis of binary gas mixtures. Sensors Actuators B. 1993 15/16: 413-19
    [53] Lueptow R M, Phillips S. Acoustic sensor for determining combustion properties of natural gas. Meas. Sci. Technol. 1994, 5: 1375–81
    [54] Wan J K S, Loffe M S and Depew M C. A novel acoustic sensing system for on-line hydrogenmeasurements. Sensors Actuators B, 1996, 32: 233-7
    [55] Shen S, Chien H, Raptis A C. Ultrasonic techniques for detecting helium leaks. Sensors Actuators B, 2000 71: 197-202
    [56] J E Carlsont, J van Deventert, A Scolant, C Carlanded. Frequency and Temperature Dependence of Acoustic Properties of Polymers Used in Pulse-Echo Systems. Ultrasonics Symposium, 2003:885-888
    [57] WilburnW S, Gould C R, Haase D G, Hoffenberg R S, Mioduszewski S, Roberson N R. Determination of the concentration of SF6 in an accelerator gas mixture by measuring the velocity of sound. Nucl. Instrum. Methods Phys. Res. A, 1995, 355: 195-8
    [58] Smorenburg H E, Crevecoeur R M, de Schepper I M. Fast sound in a dense helium argon gas mixture. Phys. Lett. A, 1996, 211: 118-24
    [59] Vacek V, Hallewell G and Lindsay S. Velocity of sound measurements in gaseous perfluorocarbons and their mixtures. Fluid Phase Equilib. 2001, 185: 305-14
    [60] Petculescu A, Lueptow R M. Synthesizing primary molecular relaxation processes in excitable gases using a two-frequency reconstructive algorithm. Phys. Rev. Lett. 2005, 94: 238301
    [61] Lueptow R M, Phillips S, Oczkowski M. Acousticnatural gas fuel quality sensor. SAE. 1995, Paper 950529
    [62] Knudsen V O. The absorption of sound in gases. J. Acoust. Soc. Am. 1933, 5: 112-121
    [63] Leonard R W. The absorption of sound in carbon dioxide. J. Acoust. Soc. Am. 1940, 12: 241-244
    [64] Peilemeier W H. Observed classical sound absorption in air. J. Acoust. Soc. Am. 1945, 17: 24-7
    [65] K F Herzfeld, T H Litovitz. Absorption and Dispersion of Ultrasonic Waves. New York: Academic, 1959
    [66] A B Bhatia. Ultrasonic Absorption. New York: Dover, 1984
    [67] Lars Hoff. Acoustic properties of ultrasonic contrast agents. Ultrasonics, 1996, 34: 591-593
    [68] Sergey Titov , Roman Maev , Alexey Bogachenkov. Measurements of velocity and attenuation of leaky waves using an ultrasonic array.Ultrasonics, 2006 44:182-187
    [69] G Herzberg. Infrared and Raman Spectra of Polyatomic Molecules. New York: VanNostrand, 1945
    [70] G M Burnett, A M North. Transfer and Storage of Energy by Molecules. Bristol: J. W. Arrowsmith Ltd., 1969(Vol. 2)
    [71] M. V. Cabanas, G. Delabouglise, M. Labeau, M. Vallet-Reg?. Application of a Modified Ultrasonic Aerosol Device to the Synthesis of SnO2 and Pt/SnO2 for Gas Sensors. Journal of Solid State Chemistry, 1999, 144: 86-90
    [72]苏明旭,蔡小舒,徐峰,张金磊,赵志军.超声衰减法测量悬浊液中颗粒粒度和浓度.声学学报, 2004, 29(5):440-444
    [73] Wilke C R. A viscosity equation for equation mixtures. J. Chem. Phys. 1950, 18: 517-519
    [74] L B Evans, H E Bass, T G Winter. Precautions with Classical Absorption. J. Acoust. Soc. Am. 1970, 48(3): 771-772
    [75] Physical Property Data Service (PPDS2) forWindows National Engineering Laboratory, Glasgow, or Technical Database Services, Inc., New York City, 1998
    [76] G T Hageseth. Multiple Relaxation in Gaseous Dibromomethane. J. Acoust. Soc. Am. 1967, 42(4): 844-847
    [77] J C Gravitt, C N Whetstone, R T Lagemann. Thermal relaxation absorption of sound in the deuterated methanes at 26°C. J. Chem. Phys. 1966, 44: 70-72
    [78] F D Shields. Thermal Relaxation in Fluorine. J. Acoust. Soc. Am. 1962, 34(3): 271-274
    [79] F D Shields. Measurements of Thermal Relaxation in CO2 Extended to 300℃. J. Acoust. Soc. Am. 1958, 10: 248-249
    [80] F D Shields. Thermal Relaxation in Carbon Dioxide as a Function of Temperature. Thermal Relaxation in Carbon Dioxide as a Function of Temperature. J. Acoust. Soc. Am. 1957, 29(4): 450-454
    [81] F D Shields. Sound Absorption in the Halogen Gases. J. Acoust. Soc. Am. 1960, 43(2): 180-185
    [82] F D Shields. Sound-tube measurements of the relaxation frequency of moist nitrogen. J.Acoust. Soc. Am. 1977, 62(3): 577-581
    [83] Jeffrey R Hill, Dana D Dlott. Vibrational Dynamics of Carbon Monoxide at the Active Sites of Mutant Heme Proteins. The Journal of Chemical Physics. 1996, 100(29):12100-12107
    [84] Bass H E, Shields F D. Vibrational relaxation and sound absorption in O2/H2Omixture. J. Acoust. Soc. Am. 1974, 56: 856-857
    [85] W Tempest, H D Parbrook, The absorption of sound in argon, nitrogen and oxygen, Acustica 1957 7: 354-362
    [86] L B Evans. Vibrational relaxation in moist nitrogen. J. Acoust. Soc.Am. 1972, 5: 409-411
    [87] M C Henderson. Vibrational relaxation in nitrogen and other gases. J.Acoust. Soc. Am. 1962, 34: 349-350
    [88] Roger C Millikan. Carbon Monoxide Vibrational Relaxation in Mixtures with Helium, Neon and Krypton. The Journal of Chemical Physics. 1964, 40(9): 2594-2596
    [89] F D Shields, H E Bass. Vibrational relaxation rates in N2-CO2 mixtures as determined from low-frequency sound absorption measurements. J.Acoust. Soc. Am. 1980, 68(4): 1210-1211
    [90] Lewis J W L, Shields F D. Vibrational Relaxation in Carbon Dioxide/Helium Mixtures. J. Acoust. Soc. Am. 1967, 10(1): 100-102
    [91] F D Shields, G P Carney. Sound Absorption in Pure D2S and CO2 D2S Mixtures. J. Acoust. Soc. Am. 1970, 47(5): 1269-1273
    [92] Bauer H J, Schotter R. Collision transfer of vibrational energy fromnitrogen and methane to the carbon dioxide molecule. J. Chem. Phys. 1969, 51: 3261-3270
    [93] J. D. Lambert Vibrational and Rotational Relaxation in Gases. Oxford: Clarendon, 1977
    [91] C Zener. Interchange of translational, rotational and vibrational energy in molecular collisions. Phys. Rev. 1931,37: 556-569
    [92] L Landau. Zur theorie der energieubertragung bei stoessen. Phys. Z. Sowjetunion. 1932, 1(a): 88-98
    [93] L Landau. Zur theorie der energieubertragung II. Phys. Z. Sowjetunion 1932, 2(b): 46-51
    [94] L Landau, E Teller. Zur theorie der Schalldispersion. Phys. Z. Sowjetunion. 1936, 10: 34-43
    [95] Schwartz R N, Slawsky Z I, Herzfeld K F. Calculation of Vibrational Relaxtion Times in Gases. J. Chem. Phys. 1952, 20(10): 1591-1600
    [96] F Tanzcos. Calculation of vibrational relaxation times of the chloromethanes. J. Chem. Phys. 1956, 25: 439-447
    [97] L W Townsend, W E Meador. Vibrational relaxation and sound absorption and dispersion in binary mixtures of gases. Journal of the Acoustical Society of America,Am. 1996, 99: 920-925
    [98] A J Zuckerwar,W A Griffin. Vibrational-rotational energy transfer in mixtures of nitrogen and water vapor. Journal of the Acoustical Society of America,Am. 1981, 69:150-154
    [99] A J Zuckerwar, K W Miller. Vibrational–vibrational coupling in air at low humidities. J. Acoust. Soc. Am. 1988, 84: 970-977
    [100] M C Henderson, K F Herzfeld. Effect of Water Vapor on the Napier Frequency of Oxygen and Air. J. Acoust. Soc. Am. 1965, 37: 986-988
    [101] L B Evens, H E Bass, L C Sutherland. Atmospheric Absorption of Sound: Theoretical Predictions. J. Acoust. Soc. Am. 1972, 51(5): 1565-1575
    [102] H E Bass, L C Sutherland. On the rotational collison number for air at elevated temperatures. J. Acoust. Soc. Am. 1976, 59(6): 1317-1318
    [103] H E Bass, F D Shields. Absorption of sound in air High-frequency measurements. J. Acoust. Soc. Am. 1977, 59(6): 1317-1318
    [104] J E Piercy, T F W Embleton, L C Sutherland. Review of noise propagation in the atmosphere. J. Acoust. Soc. Am. 1977, 61(6): 1403-1418
    [105] H E Bass. L C Sutherland. Influence of atmospheric absorption on the propagation of bands of noise. J. Acoust. Soc. Am. 1979, 66(3): 885-894
    [106] H E Bass, L C Sutherland, J Piercy, L Evans. Absorption of sound by the atmosphere. Physical Acoustics, edited by W. P. Mason (Academic, Orlando, 1984), XVII: 145-232
    [107] H E Bass, L C Sutherland, Zuckerwar A J. Atmospheric absorption of sound: Update. J. Acoust. Soc. Am. 1990, 88(4): 2019-2021
    [108] H E Bass, L C Sutherland. Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am. 1995, 97(1): 680-683
    [109] M C Henderson, K F Herzfeld, J Bry, R Coakley, G arriere. Thermal Relaxation in Nitrogen with Wet Carbon Dioxide as Impurity. J. Acoust. Soc. Am. 1969, 45: 109-114
    [110] R Fantoni , M Giorgi, L De Dominicis, D N Kozlov. Collisional relaxation and internal energy redistribution in NO2 investigated by means of laser-induced thermal grating technique. Chemical Physics Letters, 2000, 332: 375-380
    [111] Jean-Marcel Colmont, Bilal Bakri, Francois Rohart, Georges Wlodarczak. Experimental determination of pressure-broadening parameters of millimeter-wave transitions of HNO3 perturbed by N2 and O2, and of their temperature dependences. Journal of Molecular Spectroscopy, 2003, 220: 52-57
    [112] F.J. Aoiz etc.Gas phase molecular relaxation at very low temperatures-Acomparative study of N2 and its mixtures with He and Ne. Vacuum, 2002, 64: 417–423
    [113] I G Calasso, I Delgadillo, M W Sigrist. Modelling and analysis of experimental photothermal beam deflection signals in gases. Chemical Physics, 1998, 229: 181-191
    [114] Selamet A, Ji Z L. Acoustic Attenuation Performance of Expansion Chambers with Two End-Inlets/one Side-Outlet. Journal of Sound and Vibration, 2000, 231(4): 1159-1167
    [115] Kenneth D Frampton, Shawn E Martin, Keith Minor. The scaling of acoustic streaming for application in micro-fluidic devices. Applied Acoustics, 2003, 64: 681–692
    [116] Par-Erik Martinsson, Jerker Delsing. Ultrasonic Measurements of Molecular Relaxation in Ethane and Carbon Monoxide. IEEE Ultrasonics Symposium, 2002,511-516
    [117]J E Carlson, P E Martinsson. Ultrasonic Measurement of Molar Fractions in Gas Mixtures by Orthogonal Signal Correction. IEEE Ultrasonics Symposium, 2004: 821-825
    [118] Y Dain, R M Lueptow. Acoustic attenuation in three-component gas mixtures-Theory. J. Acoust. Soc. 2001, 109(5): 1955-1964 D-L
    [119] Y Dain, R M Lueptow. Acoustic attenuation in a three-gas mixture: Results. J. Acoust. Soc. Am. 2001, 110(6): 2974-2979
    [120] S G Ejakov, S Phillips,Y Dain etc. Acoustic attenuation in gas mixtures with nitrogen-Experimental data and calculations. J. Acoust. Soc. Am. 2003, 113(4): 1871-1879
    [121] Y Dain, R M Lueptow. Diffraction and attenuation of a tone burst in mono-relaxing media. J. Acoust. Soc. Am. 2003, 114(3): 1416- 1423
    [122] A G Petculescu, R M Lueptow. Fine-tuning molecular acoustic models: sensitivity of the predicted attenuation to the Lennard-Jones parameters. J. Acoust. Soc. Am. 2005, 117(1): 175-184
    [123] Lorenz R D. Speed of sound in outer planet atmospheres. Planet. Space Sci. 1999, 47: 67-77
    [124] Bass H E, Chambers J P. Absorption of sound in the martian atmosphere. J. Acoust. Soc. Am. 2001 109: 3069-3071
    [125] Louis C Sutherland, Henry E Bass. Atmospheric absorption in the atmosphere up to 160 km. J. Acoust. Soc. Am. 2004, 115(3): 1012-1032 160
    [126] Attenborough K. Sound propagation close to the ground. Annu. Rev. Fluid Mech. 2002, 34: 51-82
    [127] Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O, Collins M, Lewis S. R, Read P L, Huot J P. Improved general circulation models of the martian atmosphere from the surface to above 80 km. J. Geophys. Res. 1999, 104: 24155-24176
    [128] Lewis S R, Collins M, Read P L, Forget F, Hourdin F, Fournier R, Hourdin C, Talagrand O, Huot J P. A climate database for Mars. J. Geophys. Res. 1999, 104: 24177-24194
    [129] Williams J P. Acoustic environment of the martian surface. J. Geophys. Res. 2001, 106: 5033-5041
    [130] Rannou P, Lebonnois S, Hourdin F, Luz D. Titan atmosphere database. Adv. Space Res. 2005, 36: 2194-2198
    [131]熊吟涛,气体热扩散理论的弛豫近似,大学物理, 1994, 13(10): 5-7
    [132]丁家强,陈致英.高压气体振动弛豫过程的微观研究,原子与分子物理学报, 1995, 12(1): 6-10
    [133]曾繁华,杨传路,杨向东. Xe-O2混合气体中O2碰撞弛豫截面的量子力学计算.四川大学学报(自然科学版), 1997 34(3): 380-382
    [134]张清,张志萍,戴静华,刘世林,超声射流中CS2分子转动弛豫的研究,化学物理学报,1999,12(3): 265-268
    [135]郑绍宽,陈忠,陈志伟,廖新丽.一种同时测量分子间多量子相干横向弛豫时间和自扩散系数的快速方法.厦门大学学报(自然科学版), 2001, 40(6): 1207-1211
    [136]郝绿原,胡水明,谭创. AsH3分子的振动平动能量弛豫.中国激光, 2005, 32(4): 492-496
    [137] H E Bass, F D Shields. Effect of Four-Quantum Vibrational-Vibrational Coupling on Sound Absorption and Dispersion Curves. J. Acoust. Soc. Am. 1971, 50(1): 382-383
    [138] F D Shields. Tube Corrections in the Study of Sound Absorption. J. Acoust. Soc. Am.1957, 29(4): 470-475
    [139] [13] Winter T G, Hill G L. High-temperature ultrasonic measurementsof rotational relaxation in hydrogen, deuterium, nitrogen and oxygen. J.Acoust. Soc. Am. 1967, 42: 848-858
    [140] J P Holman. Thermodynamics. New York: McGraw-Hill, 1988: 684
    [141] Andi Petculescu, Brian Hall, Robert Fraenzle, Scott Phillips, Richard M. Lueptow. A prototype acoustic gas sensor based on attenuation. J. Acoust. Soc. Am. 2006, 120(4): 1779-1782
    [142] Seki H, Granato A, Truell R. Diffraction effects in the ultrasonic field of a piston source and their importance in the accurate measurement of attenuation. J. Acoust. Soc. Am. 1956, 28: 230-8
    [143] Papadakis E P. Correction for diffraction losses in the ultrasonic field of a piston source. J. Acoust. Soc. Am. 1959, 31: 150-2
    [144] Bass R. Diffraction effects in the ultrasonic field of a piston source. J. Acoust. Soc. Am. 1958, 30: 602-95
    [145] Williams A O Jr. The piston source at high frequencies. J. Acoust. Soc. Am. 1951, 23: 1-6
    [146] Aurelien Cottet, Yedidia Neumeier, David Scarborough, Oleksandr Bibik, Tim Lieuwen. Acoustic absorption measurements for characterization of gas mixing. J. Acoust. Soc. Am. 2004, 116 (4): 2081-2088
    [147] D W Choi, D A Hutchins. Ultrasonic Propagation in Various Gases at Elevated Pressures. Measurement Science and Technology. 2003, 14(6): 822-830

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700