用户名: 密码: 验证码:
基于声子晶体的周期结构带隙机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声子晶体是一种具有弹性波带隙的结构和材料,由于通常情况下声子禁带起始频率很高,难以满足噪声控制的需要。正是这方面的原因,导致声子晶体在噪声控制应用上受到了限制。所以本文围绕周期结构的带隙机理,特别是低频带隙机理进行了深入研究,揭示其影响带隙有效衰减特性的关键因素。同时,本文也将解决周期性结构在低频降噪应用方面所面临的瓶颈问题,并把该项目的研究成果应用于汽车的噪声控制,为进一步提高我国汽车的整体综合性能提供技术保障。周期性结构的带隙机理研究具有重要的理论和应用价值。
     本学位论文主要作出了以下几个方面的研究工作:
     研究了人工编织一维二元声子晶体,通过建立人工一维二元声子晶体动力学模型,计算了其弹性波带隙,并且从理论上找到了一种带隙起始频率低且带宽很宽的一维声子晶体理论结构,为实际构建用于噪声控制的周期性结构提供了理论依据。
     首次研究了传统多层结构中的无限周期性多层结构的弹性波带隙,通过建立周期性多层结构的振动模型,计算了其带隙。在此基础上研究了有限周期多层结构的传输特性曲线即频响曲线。实例数值计算结果表明:频响曲线上弹性波衰减较大的频率区间与无限周期结构的弹性波带隙一致,所以通过选择合适的材料,能够得到低频的声子带隙。实验验证了周期性多层结构的带隙存在。
     从二维周期性结构的振动方程出发,建立了二维带隙计算模型,并在此基础上分析了带隙与材料结构特性的关系。实例数值计算结果证明:理论结果与试验仿真计算结果是一致的。
     根据三维有限周期结构的特点,通过对有限周期结构的有限元的划分,得出了三维有限周期结构振动传输特性的微分方程;分析了不同结构形式和基体材料对传输特性的影响。
     要把周期性结构成功应用于车内噪声控制,还必须有效解决车身声传递通道识别与车内噪声测试。而车身是复杂结构腔体,由于其结构和材料的复杂性,所以在声学中求解复杂结构的传递函数及其内部声场是一个极其复杂的问题。为了很好解决复杂结构腔体的声学问题,本文提出了基于“虚拟系统”测量复杂结构“综合传递函数”的方法,并预测复杂结构内部任意点的声场。为利用周期性结构有效进行车内噪声控制提供科学依据。
     最后,基于前面的理论和实验研究结果,本文以模拟车身为实验对象,研究周期性结构在车内噪声控制上的实际应用效果,试验结果验证了理论的正确性。
     总之,本文从车内低频噪声控制的实际需要出发,通过理论分析、数值计算,深入研究了周期性结构的带隙机理,为人工编织周期性结构和材料提供了理论基础。本文的研究成果为振动与噪声控制,特别是低频振动和噪声控制提供了理论依据。该研究具有重要的理论意义和工程实用价值。
Phononic crystals are the periodic elastic materials or structures. As the low-peak of wide frequency band gaps in phononic crystals is higher, it is difficult to be used in the control of vibration and noise. In this dissertation, the band gaps mechanism, especially low frequency band gaps mechanism of periodic structures was studied and the key factor that influences the low frequency band gaps mechanism is found and proved. The problems restricting the application of it in low-frequency vibration/noise are solved. The research results are meaningful for the application in the control of vibration/noise and will offer us new ways inside vehicle vibration and sound control.
     The major innovations of this dissertation are as follows:
     A manual weave one-dimensional two-component phononic crystal was studied. Through establishing the manual weave phononic crystals’dynamics model, the elastic wave band gaps was calculated and concerned with the phononic crystal material characteristic. The study is available for low & high frequency noise and vibration control.
     The vibration model of periodic multiplayer structure is established and the phononic band gaps was calculated. By choosing the proper materials, the low frequency phononic band gaps can be gained. The results provide theory base for applications in control of noise and vibration. And then by analyzing the periodic mass-spring structure model, the elastic wave band gaps of periodic multiplayer structure can be estimated and the wave band gap of periodic multiplayer structure was validated by the experiment and application in vibration and noise control inside automobile was opened up.
     By analyzing the vibration model of two-dimensional (2D), the elastic wave band gaps of 2D was calculated. The mechanism of band gaps was gained and then the results provide theory base for weaving 2D phononic crystals being used noise and vibration control.Finally numerical calculation method was applied to calculate the frequency response of finite periodic structure, and two results match well. The conclusions are well validated by the experiment.
     The finite periodic structure of three-dimensional is very complex. The finite difference time domain method was appied to calculate the the frequency response of 3D finite periodic structure and then the frequency responses of difference structures and difference materials were gained. The results were validate by experiment.
     In order to solve the applications of the periodic structure, transfer channels of vehicle body must be measured. The vehicle body is complex structure. Complex structure is composed of multiple materials and its shape is also irregular. It is very difficult to gain complex structure transfer function and inner sound field. In order to measure complex structure transfer function and calculate inner sound field, transfer function of integration is mentioned. By establishing virtual system, transfer function of integration can be measured and the inner sound field can also be calculated. In the experiment, automobile body transfer function of integration is measured and experimental method of establishing virtual system is very valid.
     Finally, the wave band gap of periodic multiplayer structure was validated by the experiment and application in vibration and noise control inside automobile was opened up.
引文
[1] 常振臣,王登峰,周淑辉等. 车内噪声控制技术研究现状及展望.吉林大学学报(工学版),2002,32(4),86-90
    [2] S K Jha. Characteristics Sources of Noise and Vibration and Their Control in Motor Car. J.Sound Vib. 1976, 34(12):543~546
    [3] L BERANEK. Noise and Vibration Control. McGraw Hill. 1976, 22(7): 347~352
    [4] Keiji Sumitani, Toyoki, Shinohara. Research on Aerodynamic Noise around Automobiles. JSAE. 1994, 26(10): 234~240
    [5] Tsunehia Nagayoshi, Masaru Koiko. The Influence of Body Shapes upon Vehicle Aerodynamic Noise. JSAE. 1995, 46(4): 781~786
    [6] Yasuhiko Nishimura, Mikio Noba. Analysis of Acoustic Radiation Characteristics of Engine Compartment and Application to Reduction of Pass-by Noise. JSAE.1996, 43(12): 652~657
    [7] Hiroshi Okamura: Study of Low Noise Structures about Transmission and Clutch Components on the Dive Line of Commercial Vehicle. JSAE.1996, 37(9): 412~418
    [8] Kenji Nakazono, Shinichi Maruyama etc. A Study of the Acoustic Characteristics of the Vehicle Body for Reduction of Booming Noise. JSAE.1996, 36(13):1012~1018
    [9] Seiji Matsumoto, Kenji Sumi etc. Analysis of Radiated Noise from Cylinder Block and Oil-pan. JSAE. 1996, 38(20); 987~991
    [10] Satoshi. Evaluate Method of Tire Road Noise in Accelerating Conditions. JSAE. 1996, 45(5): 783~789
    [11] Tesuo Mikami, Yasuo Oshino. Tire/Road Noise under the Effect of Driving Force—Investigation of Measurement Method in the Far Field. JSAE.1996, 51(2): 675~678
    [12] Takayuki Asakura, etc.A Study on the Vehicle Interior Noise (Engine Noise). JSAE.1996, 52(6):453~459
    [13] Keijiro Iwao, Ichiro Yamazak. A Study on the Mechanism of Tire/Road Noise. JSAE.1996, 41(3): 1267~1271
    [14] Keijiro Iwao, Ichiro Yamazak. Identification of Airborne Component of Tyre-induced Vehicle Interior Noise. Applied Acoustics, 1997, 51(2): 901~906
    [15] Christian Peric, Simon Watkins, etc. Wind Turbulence Effects on Aerodynamic Noise with Relevance to Road Vehicle Interior Noise. Journal of Wind Engineering and Industrial Aerodynamic. 1997, 53(7): 347~351
    [16] Shinchi Marayama, Akihiko Hasegawa, etc. Low-Frequency Road Noise Analysis Based on Acoustic Excitation Tests. JSAE.1997, 23(4):231~239
    [17] Masato Abe, Nobuhiko Narita. Engine Room Enclosure with Sound Absorbing Materials. JSAE.1997, 25(8):556-553
    [18] Hideki Murata, Atsuhiro Matsuda. Prediction of Sound Absorption and Insulation Material Properties for Reducing Interior Noise of Truck. JSAE.1997, 33(3):756-753
    [19] Akira Togo, Murakami, Tai Uruzi. Study to Improve Sound Absorbing Characteristics of Headliner for Trucks. JSAE.1997, 47(7): 681~689
    [20] Shinchi Murakami, Toshimitsu Shinohara, etc. Improvement in the Noise and Vibration Performance for the New 1996 Model V6 Engine. JSAE. 1998, 48(9): 1002~1009
    [21] Keijiro Iwao, Yuji Shimpo, etc. Application of a sound insulation panel with ventilation holes to the engine under-cover. JSAE,1998,23(8):536-543
    [22] Keiji Ono, Ryutaro Himeno, Tatsuya Fukushima. Prediction of wind noise radiated from passenger cars and its evaluation based on auralization. Journal of Wind Engineering and Industrial Aerodynamic, 1999, 47(9): 671-679
    [23] Hiroshi Akama. Development of the braided wire damper for exhaust radiation noise reduction. JSAE,2001,20(6):367-382
    [24] Keqiang Li、Takeharu Tanaka. Development of an adaptive control simulation system for vehicle exhaust noise reduction JSAE, 2001, 19 (4):270-280
    [25] M.Bettella、M.F.Harrison and R.S.Sharp. Investigation of Automotive CreepGroan Noise with a Distributed-Source Excitation Technique. JSV,2002,20(4):365-402
    [26] D.H.Koo, JC.Kim. An experimental study of the effect of low-noise wheels in reducing noise and vibration. Transportation Research Part D T,2002,12(6):102-110
    [27] Mohan D.Rao. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. JSV,2003,18(6):560-572
    [28] Muriel Barthod、Michel Gizard. Study of the rattle noise in automotive gear boxes. Mecanique & Industries,2003,18(4):97-105
    [29] R.Golebiewski、R.Makarewicz. Traffic noise reduction due to the porous road surface. Applied Acoustics,2003,16(8):234-251
    [30] 张立军,余卓平,靳晓雄等. 发动机振动引起的车内噪声控制研究.振动、测试与诊断,2001,21(1):59-63
    [31] 牟向东,叶志刚. 中型客车车内噪声及其降噪技术的探讨. 湖北汽车工业学院学报,2000,14(1):20-24
    [32] 彭辉 , 靳晓雄 ,叶武平 . 悬架系统对轿车车内噪声的影响预测 . 汽车工程,2000,22(1):42-47
    [33] 王登峰 ,李俊明 ,陆小军 .路面激励引起车内噪声的模拟和试验 . 汽车工程,2000,22(2):93-142
    [34] 郭 建 新 , 左 言 言 , 宫 镇 等 . 小 客 车 车 内 噪 声 控 制 的 研 究 . 噪 声 与 振 动 控制,1999,4:16-20
    [35] 郭建新,左言言,宫镇等. 厢式汽车车内噪声的试验研究. 江苏理工大学学报(自然科学版),1999,20(4), 28-32
    [36] 左 言 言 , 曾 发 林 , 郭 建 新 等 . 轻 型 客 车 车 内 噪 声 的 试 验 研 究 . 汽 车 工程,2000,22(3):204-209
    [37] 丁渭平 . 车辆乘坐室内低频噪声声源识别研究 .中国机械工程 ,2003,14(3):262-270
    [38] 韩秀苓,沈山豪. 有源噪声控制技术分析.应用声学,1994(7):7~13
    [39] 徐 永 成 , 温 熙 森 , 陈 循 , 等 有 源 消 声 技 术 与 应 用 述 评 . 国 防 科 技 大 学 学报,2001,23(2):119~124
    [40] Berge T. Active noise cancellation of low frequency sound inside vehicle cabs. Proceeding of Inter Noise,1983, 21(9):457~460
    [41] Nelson P A. The active minimization of harmonics enclosed sound fields.JSV,1987,117(2):158~163
    [42] Elliott S J, Nelson P A, Stothers I M, et al. In-flight experimentals on the active control of propeller induced cabin noise. JSV,140(2):219-238
    [43] 马大猷. 混响声场的有源控制. 声学学报,1991,16(5):321-329
    [44] 马大猷. 室内有源噪声控制的潜力. 声学学报,1993,18(3):178-185
    [45] 温 熙 、 森 陈 循 基 于 智 能 模 糊 控 制 策 略 的 有 源 消 声 . 振 动 工 程 学报,1997,17(6): 345-351
    [46] 邓艳、王礼信、张远峰等.空间声场的自适应有源噪声控制.北京轻工业学院学报,1998,9(6):76—84
    [47] 张奇.一维噪声有源控制.北京机械工业学院学报,2000, 4(6): 35-41
    [48] 陈克安.低频噪声有源吸收理论研究.振动与冲击,2000,21(16): 213-219
    [49] 周雅丽 ,贾永乐 .DSP 在有源噪声控制中的应用 .电声技术 ,2001,23(17): 314-320
    [50] 周 雅 丽 , 关 碧 华 . 有 源 噪 声 控 制 的 前 馈 与 反 馈 混 合 算 法 . 电 声 技术,2002,27(21): 423-429
    [51] F. Wu, Z. Liu, Y. Liu, Phys. Rev. E 66 (2002):046628
    [52] 齐共金 杨盛良等.基于平面波算法的二维声子晶体带结构的研究. 物理学报.2003,52(3):668-671
    [53] 陆延青 冯一军. 离子型声子晶体的光学性质.物理.2000,29(4):193-195
    [54] 赵 宏 刚 韩 小 云 等 . 新 型 声 学 功 能 材 料 - 声 子 晶 体 . 材 料 科 学 与 工程.2003,21(1):153-156
    [55] Zhang Xin,Liu Youyan, Wu Fugen,Liu, Zhengyou. Large two-dimensional band gaps in three-component phononic crystals. Physics Letters A, 2003, 317(1-2): 144-149
    [56] Wu, Fugen; Hou, Zhilin; Liu, Zhengyou; Liu, Youyan. Point defect states in two-dimensional phononic crystals. Physics Letters A, 2001, 292 (3): 198-202
    [57] Zhang, Xin; Liu, Zhengyou; Liu, Youyan; Wu, Fugen. Elastic wave band gaps for three-dimensional phononic crystals with two structural units. Physics Letters A, 2003, 313(5-6): 455-460
    [58] 郑 锡 涛 ,叶 天 麒 .三 维 编 织 复 合 材 料 细 观 结 构 分 析 .结 构 强 度 研 究 , 2003,1:8~23
    [59] 万振凯.声发射技术在三维编织复合材料测试中的应用研究. 无损检测, 2003,25(2): 72~75
    [60] 彭常贤,谭红梅.三维编织复合材料在脉冲电子束辐射下的喷射冲量特性.材料工程, 2002,20(4):198~202
    [61] 杨朝坤. 三维编织复合材料力学性能的实验研究 . 材料工程 ,2002(7): 33~35
    [62] 彭常贤 冯志海 等. 三维编织复合材料的热激波传播衰减特性. 材料科学与工程, 2002, 20(2):187 ~191
    [63] Lu Y Q, Zhu Y Y, Chen Y F, et.al. Science,1999,284:1822
    [64] F.Cervera,L.Sanchis,Sanchez-Prez,Martnez-Sala,C.Rubio,F.Mesegure. Refractive Acoustic Devices for Airborne Sound [J]. Phys. Rev. Lett.,2002,88(2):023902
    [65] Diez A, kakarantzas G, Birks T A. [J]. Applied physics letter 2000,76(23):3481
    [66] 齐共金、杨盛良、白书欣赵恂. 二维正方点阵液态声子晶体的带隙计算. 国防科技大学学报, 2003,1:21~25
    [67] 王刚、赵宏刚、温激鸿、韩小云.二维周期钢管阵列带隙特性计算中的时域有限差分算法. 国防科技大学学报.2004,4:112~121
    [68] 温激鸿、刘耀宗、郁殿龙、王刚、赵宏刚. 基于散射单元的声子晶体振动带隙研究.人工晶体学报.2004,3:78~85
    [69] Mohan D.Rao.Recent Applications of Viscoelastic Damping for Noise Control in Automobiles and Commercial Airpianes. Journal of Sound and Vibration.2003, 54(7); 965~972
    [70] G.H. Koopman, H. Benner, Method for computing the sound power of machines based on the Helmholtz integral,J. Acoust. Soc. Am, 1982, 71 (1): 77~89
    [71] A.F. Seybert, B. Soenarko, F.J. Rizzo, D.J. Shippy, Application of the BIE method to sound radiation problems using an isoparametric element, J. Vib. Acoust. Stress Reliab. Des.1984, 106: 414~419
    [72] Z. Liu, X. Zhang, Y. Mao, et al. Locally resonant sonic materials. Science, 2000, 289: 1734
    [73] Z. Liu, X. Zhang, Y. Mao, et al. Three-component elastic wave band-gap material. Phys Rev B, 2002, 65:165116
    [74] Kushwaha M S. Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders[J]. Appl.Phys.Lett,1996, 69(1):31-33
    [75] Jingfeng Wang. Solid State Physics[M]. Shan Dong University Press,2004
    [76] Liu Z Y, et al. Elastic wave scattering by periodic structure of spherical objects: Theory and experiment. Phys Rev B, 2000, 62: 2446
    [77] Kushwaha M S, et al. Acoustic band structure of periodic elastic composites. Phys Rev Lett,1993,71:2022
    [78] V asseur J O, et al.asseur J O, et al. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys Rev Lett,2000,86:3012
    [79] Garcia-Pablos D, et al. Theory and experimental on elastic band gaps. Phys Rev Lett, 2000,84:4349
    [80] Vasseur J O, et al. Complete acoustic band gaps in periodic fibre reinforced composite and some metallic systems. J Phys, 1994, 80; 1208
    [81] Montero F R, et al. Ultrasonic band gaps in a periodic two-dimensional composite. Phys Rev Lett, 1997, 80:1208
    [82] Vasseur J O, et al. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J Phys, 1998,10:6051
    [83] Sanchez-Perez J V, et al. Sound scattering by a two-dimensional array of rigid cylinders. Phys Rev Lett, 1998, 80: 5325
    [84] Vasseur J O, et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range; a theoretical andexperimental study. Phy Rev E,2002, 65(5): 6608~6613
    [85] Modinos A, et al. On wave propagation in inhomogeneous systems. Physica B, 2001, 296: 167~173
    [86] Kafesaki M, Penciu R S, Economou E N. Air bubbles in water: a strongly multiple scattering medium for acoustic waves. Phy Rev Lett, 2000, 84(260:6050~6053
    [87] Kafesaki M, Economou E N. Multiple-scattering theory for three_dimensional periodic acoustic composites. Phy Rev B, 1999,60(17): 11993~12001
    [88] Kushwaha M S. Stop-bands for periodic metallic rods: Sculpture that can filter the noise. Appl Phys Lett,1997,70(24): 3218~3220
    [89] Kushwaha M S, Halevi P. Band-gap engineering in periodic elastic composites. Appl Phys Lett,1994, 64(9): 1085~1087
    [90] Kushwaha M S, Halevi P, et al. Theory of acoustic band-structure of periodic elastic composites. Phys Rev B, 1994,49(4): 2313~2322
    [91] 董良国.弹性波数值模拟中的吸收边界条件. 石油地球物理勘探,1999,34(1):45~56
    [92] 冯祖伟. 时域有限差分方法在天线和微波技术中的应用. 现代雷达,1997,19(1):41~53
    [93] 温激鸿 王 刚 刘耀宗 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10):3384~3388
    [94] 温激鸿,刘耀宗,郁殿龙,王 刚,赵宏刚. 基于散射单元的声子晶体振动带隙研究. 人工晶体学报, 2004, 33(3): 358~362
    [95] 赵宏刚,韩小云,温激鸿,王 刚. 空气中周期管阵列的声波禁带研究. 材料 科学与工程学报,2004, 22(1): 68~51
    [96] 温激鸿,王 刚,刘耀宗,赵宏刚. 周期弹簧振子结构振动带隙理论与实验研究. 机械科学与技术, 2004, 23(11): 1338~1342
    [97] 黄小益,雷大军,曾晓华. 弹性波在声子晶体中的带结构. 郴州师范高等专科学校学报, 2003, 24(5): 45~48
    [98] 赵宏刚,刘耀宗,温激鸿,韩小云. 单元结构尺寸对不锈钢/空气二维声子晶体声波禁带的影响. 功能材料, 2004, 6(35): 793~795
    [99] 颜琳,赵鹤平,王小云,彭秀艳. 二维正方点阵固态声子晶体带隙研究. 吉首大学学报(自然科学版)2005, 26(1): 76~79
    [100] 赵宏刚,刘耀宗,韩小云,温激鸿,王 刚,郁殿龙. 空气中正方形排列的大声阻抗柱体阵列的声波禁带.国防科技大学学报, 2004, 26(4): 77~81
    [101] 黄小益,彭景翠,张高明,翦之渐. 声子晶体中弹性波带隙与散射. 功能材料, 2005, 36(2): 244~246
    [102] 王 刚,温激鸿,刘耀宗,郁殿龙,温熙森. 大弹性常数差二维声子晶体带隙计算中的集中质量法. 物理学报, 2005, 54(3): 1247~1251
    [103] 刘 奉 岭 . 立 方 面 心 C 晶 体 晶 格 振 动 的 研 究 . 化 学 物 理 学 报 , 2003, 16(2) :103~106
    [104] 刘泽金,陆启生等. InSb 晶体的杂质原子局域振动状态的密度分布函数计算. 国防科技大学学报, 1996, 18(2): 152~155
    [105] 张舒,程建春等. 二维三元周期复合结构的声带隙特性. 自然科学进展, 2003, 13(10):1095~1098
    [106] 徐永安 ,徐永祥 . 黄昆方程及应用 . 信息工程学院学报 , 1994, 13(1): 35~40
    [107] 杨秋波,张向东等. 金属氢的自发磁化与电-声子相互作用. 河北师范大学学报, 1995, 19:90~94
    [108] 王 刚,温激等. 一维粘弹性材料周期结构的振动带隙研究. 机械工程学报, 2004, 40(7): 47~51
    [109] 华佳,张舒,程建春. 中间包层对声子晶体禁带结构的影响. 南京大学学报, 2002, 12(4): 78~81
    [110] 于尚慈,许静等. 亚微米微球三维有序阵列的组装技术研究. 微纳电子技,2003, 7:129~131
    [111] 张学进,宣晓峰等.压电体超晶格中的新型极化激元. 研究快讯,2003,
    [111] 11: 745~747
    [112] Xia Y N, Gates B,Yin Y D, et al. Monodispersed colloidal spheres: Old materials, 2000,12(10):693
    [113] Fukuda K, Sun H B, et al. Self-organizing three-dimensional colloidal photonic crystal structure with augmented dielectric contrast[J]. Jpn J Appl Phys, 1998,37:508
    [114] HOLGADO M,et al. Electrophoretic deposition to control artificial opal growth[J]. langmuir, 1999,15: 4701
    [115] Judith E G. Wijnhoven J, et al. Preparation of photonic crystals made of air spheres in titania [J]. Science, 1998,201:802
    [116] Velev O D,Tessier P M, et al. A class of porous metallic nanostructures [J]. Nature,1999,402:603
    [117] Stober W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range[J].J Colloid Interface Sci,1968,26:62
    [118] 李吕辉等.物理化学,北京高等教育出版社,1983
    [119] 杜功焕等.南京大学出版社, 2001,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700