用户名: 密码: 验证码:
电阻点焊质量监测智能化及系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以SUS304奥氏体不锈钢(0Cr18Ni9)点焊过程为研究对象,利用先进传感技术和数据采集技术实时采集点焊过程中伴随的电学、力学、热学等物理量的变化,如焊接电流、电极间电压、动态电阻、动态电极压力。建立点焊生产的信息化管理系统,实时显示点焊工艺参数,存储焊点生产相关信息,实现了点焊生产的信息化管理。通过大量工艺试验研究影响点焊质量的各种因素,寻找点焊过程中的各种动态信号与点焊质量之间的关系,提取点焊质量特征值。使用数理统计、神经网络等现代研究方法建立点焊质量预测模型。本文分别采用多元线性回归分析和BP神经网络建立点焊质量预测模型,从整体上看,神经网络模型的预测值与实测值更为接近,其最大预测误差为5.6%,远小于回归模型10.2%的误差。
Resistance spot welding (RSW) is one of the most widely used processes in sheet metal fabrication because of its short operation time, low thermal effect, and suitability for robotic automation. To produce a spot weld, electrodes are applied to overlapping region of two pieces of metal, producing a single-lap joint.
     In order to minimize the number of spot welds and satisfy essential factors such as strength, weld quality must be obtained. Traditionally, to check weld quality, destructive and nondestructive tests were used on randomly sampled workpieces at the production site. As a destructive method, the tensile-shear strength is inspected directly, using samples taken at periodic intervals. As a nondestructive method, spots requiring weld strength are examined visually and by using ultrasonic waves and acoustic emission. However, such conventional methods can only be examined off-line and ensure only the quality of specific random spot samples, having limitation in the widely used assembly line system on which products are continually produced. Weld quality estimation must be done in real time to monitor and repair weld defects as they occur. Over the years many quality estimation systems have been developed by several researchers in order to ensure welds are of high quality.
     In this paper, electrical and mechanical measurands, such as welding current, electrode voltage, dynamic resistance and electrode force, were monitored for weld quality estimation of SUS304 stainless steel (0Cr18Ni9). To estimate weld quality, a regression model formulated through multiple linear regression analyses and a neural network model were built.
     Based on advanced sensing and sampling technologies, a data acquisition system for monitoring the dynamic signals was established. The welding current was measured by a Rogowski toroidal coil attached to the lower electrode, then was integrated by integration circuit. In order to increase the system safety, electrode voltage between two tips was isolated by isolation amplifier. A strain sensor, which produced an electric charge proportional to electrode force, was used to monitor the dynamic electrode force. A charge amplifier was used to convert the charge signal from strain sensor into an output voltage proportional to the mechanical input quality. Welding current, electrode voltage and dynamic electrode force were sampled by A/D card at a sampling rate of 10 kHz. The data acquisition system was reliable and stable, suitable for industrial production.
     An integrated and intelligent on-line welding monitoring system was developed. The system has functions such as on-line monitoring, displaying data and curves, storing and inquiring welding information, which can serve for mechanized and automatic welding production.
     A series of experiments were conducted to research how process conditions affect the weld quality. The process conditions studied in this research are chosen to be the most often observed in production, such as variations of welding parameters, edge weld, small weld spacing, poor fitup and axial misalignment. The results show that welding parameters are most important for weld quality, and these abnormal process conditions generally lead to a less robust process such as weld expulsion.
     The characteristics of welding current, electrode voltage, dynamic resistance and electrode force were researched in this paper. The dynamic resistance for stainless steel decreased rapidly at the beginning and then decreased at a reducing rate. As welding current increased, the rate of resistance decrease in the first two cycles increased. Also, as the current increased, there was a decrease in the resistance level. Lower electrode force induced a general increase in the resistance level. During the weld stage, the actual electrode force was larger than the preset one. The change of dynamic electrode force was caused by thermal expansion and the yielding of the weld area at a high temperature. Several factors were extracted for weld quality estimation based on the dynamic resistance and electrode force pattern. The correlation between these factors and nugget diameter were observed through the regression analysis, and r3, r8, f2, f3 and f6 were used as the weld quality factors.
     Expulsion is the common defect in resistance spot welding, it is therefore important to monitor or predict expulsion so that modifications to welding parameters or other remedial actions can be initiated to reduce the incidence of expulsion. The results show that when an expulsion occurred, the dynamic resistances and electrode voltage signal experienced a sudden drop and dynamic electrode force signal had a vibration signature. Thus monitoring the signals of electrode voltage, dynamic resistance and electrode force can give an indication of whether there is expulsion in the finished weld.
     To estimate weld quality for resistance spot welding, multiple linear regression analyses was used. In the quality estimation model, weld quality estimation was influenced by welding current I, welding time T, the endpoint value of resistance curve r3 and electrode force increase f3. The regression model error is high when there is no nugget, and the maximum error was only 10.2% for these weld spots with nuggets.
     A BP neural network was built to estimate weld quality, which showing accurate results in nugget diameter estimation. The neural network had fine fault tolerance and the maximum error was only 5.6%, higher than the linear regression model. According to the results described in this paper, the real-time quality estimation is made possible.
引文
[1]王亚荣,张忠典,冯吉才.电阻点焊过程中动态电阻的变化规律[J].电焊机, 2006,36(2).
    [2]赵熹华.压力焊[M].北京:机械工业出版社, 1990.
    [3]尹孝辉,张忠典.点焊质量监控技术的发展与现状[J].焊接, 2002, (2): 19-23.
    [4] ZHANG H Y, HU S J, SENKARA J, CHENG S W. A Statistical analysis of expulsion limits in resistance spot welding [J]. Journal of manufacturing science and engineering transactions of the ASME, 2000, 122(3): 501-510.
    [5]潘存海.铝合金电阻点焊多传感器信息融合与质量评定[D].天津:天津大学材料科学与工程学院,2004.
    [6]彭振国,刘昌雄.汽车制造中焊接技术现状及发展趋势[J].汽车工艺与材料, 2007, (2): 13-17.
    [7]王敏.国外电阻焊技术的最新进展[C].第十一次全国焊接会议论文集.上海:中国焊接学会, 2005: 379-383.
    [8] ARCHER G R. Calculation for temperature response in spot welds[J]. Welding Journal, 1960, 39(8): 327s-330s.
    [9] GREENWOOD J A. Temperatures in spot welding[J]. British Welding Journal, 1961, 8(6): 316-322.
    [10] RICE W, FUNK E J. An analytical investigation of the temperature distributions during resistance welding[J].Welding Journal, 1967, 46(4): 175s-186s.
    [11] ARCHER G R. Calculation for temperature response in spot welds[J]. Welding Journal, 1960(8): 327-330.
    [12] GREENWOOD J A, Temperature in spot welding[J], British Welding Journal, 1961(9): 316-322.
    [13] HAN Z, INDACOCHEA J E, OROZCO J, CHEN C H. Resistance spot welding: A heat transfer study[J]. Welding Journal, 1989(9): 363-371.
    [14] VOGLER M, SHEPPARD S. Electrical contact resistance under high loads andelevated temperatures[J].Welding Journal, 1993, 72(6): 231-238.
    [15] BOWER R J, SORENSEN C D, EAGER T W. Electrod geometry in resistance spot welding[J]. Welding Journal, 1990(2): 45-50.
    [16] HOUCHENS A F, PAGE R E, YOUNG W H. Numerical Modeling of Resistance Spot welding[C]. Numerical Modeling Society of Mechanical Engineering, Atlanta, USA: The Georgia Insititue of Technology, 1977: 117-129.
    [17] NIED H A. The finite element modeling of the resistance spot welding process[J]. Welding Journal, 1984, 63(4): 123s-132s.
    [18] CHO H S, CHO Y J. A study of the thermal behavior in resistance spot welds[J]. Welding Journal, 1989, (6): 236s-244s.
    [19] TSAI C L, DAI W L, DICKINSON D W, PAPRITAN J C. Analysis and development of a real-time control methodology in resistance spot welding[J]. Welding Journal, 1991, 70(12): 339s-351s.
    [20] BROWN D J, CHANDLER H W, EVANS J T, WEN J. Computer simulation of resistance spot welding in aluminum: Part I [J]. Welding Journal, 1995, 74(10): 339s-344s.
    [21] BROWN D J, CHANDLER H W, EVANS J T, Wen J. Computer simulation of resistance spot welding in aluminum: PartⅡ[J]. Welding Journal, 1995, 74(12): 417s-422s.
    [22] MURAKAWA H, KIMURA H, UEDA Y. Weldability analysis of spot welding on aluminum using FEM[J]. Japanese Welding Research Institute, 1995, 24 (1):101-111.
    [23] MURAKAWA H, ZHANG J X. FEM Simulation of spot welding process (Report I)-Effect of initial gap on nugget formation[J]. Japanese Welding Research Institute, 1998, 27(1): 75-82.
    [24] ZHANG J X, MURAKAWA H. FEM Simulation of spot welding process (Report II)-Effect of initial gap and electrode-type on nugget formation and expulsion[J]. Japanese Welding Research Institute, 1998, 27(2):73-79.
    [25] MURAKAWA H, ZHANG J X, MINAMI H. FEM Simulation of spot welding process (Report III)-Controlling of welding current using electrode displacement forformation of large enough nugget without expulsion[J]. Japanese Welding Research Institute, 1999, 28 (1):41-46.
    [26] MURAKAWA H, ZHANG J X, FUJII K. FEM Simulation of spot welding process (Report IV)-Characteristics of electrode displacement and nugget formation[J]. Japanese Welding Research Institute, 2000, 29(1):73 -80.
    [27] SENKARA J, ZHANG H. Cracking in spot welding aluminum alloy AA5754[J]. Welding Journal, 2000, 79(7): 194s-201s.
    [28]曹彪.点焊熔核形核过程的有限元模拟及热膨胀法实时控制[D].哈尔滨:哈尔滨工业大学材料科学与工程学院, 1991.
    [29]王春生,赵熹华,张得红,汤勇平,黄柏初.点焊熔核形成过程数值模拟计算方法的研究[J].汽车工艺与材料,1999,2: 3-4.
    [30]王春生,赵熹华.异质材料点焊过程电热耦合数值分析[J].吉林工业大学自然科学学报,1999, 29(4): 29-33.
    [31]龙昕,汪建华.电阻点焊温度场分布的数值模拟[J].上海交通大学学报, 2001, 35(3):416-419.
    [32]雷鸣,王敏,殷美庆.镀锌钢板点焊过程的有限元模拟[J].上海交通大学学报, 2005, 39(7): 1033-1037.
    [33]罗爱辉,张延松,陈关龙,朱文峰.基于有限元法的电阻点焊电极热输入机理[J].焊接学报, 2008, 29(5): 41-44.
    [34]王敏,张海涛,潘华,雷鸣. DP590双相钢电阻点焊熔核形成过程的数值模拟[J].上海交通大学学报, 2009, 43(1): 56-60.
    [35] KARAGOULIS M J. A nuts and bolts approach to the control of resistance spot welding[J]. Welding Journal, 1994, 73(7): 27-31.
    [36]罗震.铝合金电阻点焊过程质量检测及控制方法的研究[D].天津:天津大学材料科学与工程学院, 2002.
    [37] GEDEON S A, SORENSEN C D, ULRICH K T, EAGAR T W, Measurement of dynamic electrical and mechanical properties of resistance spot welds[J]. Welding Journal, 1987, 66(12): 378s- 385s.
    [38] SAVAGE W F, NIPPES E F, WASSELL F A. Dynamic contact resistance of seriesspot welds[J]. Welding Journal, 1978, 57(2): 43s-50s.
    [39] SAVAGE W F, NIPPES E F, WASSELL F A. Static contact resistance o f series spot welds[J]. Welding Journal, 1977, 56 (11):365s-370s.
    [40] SHRIVER J, PENG H. Control of resistance spot welding[C]. Proceedings of the American Control Conference. San Diego, USA: American Control Conference, 1999: 187- 191.
    [41] ANDREWS D R, BROOMHEAD J H W. Quality assurance for resistance spot welding[J].Welding Journal, 1975(49): 460-466.
    [42] BROOMHEAD J H W. Resistance spot welding quality assurance[J]. Welding and Metal Fabrication, 1990, 58(6): 309-314.
    [43] SHARKE P. Rapid transit to manufacturing[J]. Mechanical Engineering, 2001, (3):23-25.
    [44] DICKINSON D W, FRANKLIN J E, STANYA A. Characterization of spot welding behavior by dynamic electrical parameter monitoring[J]. Welding Journal, 1980, 59(6): 170s-176s.
    [45] LIVSHITS A G. Universal quality assurance method for resistance spot welding based on dynamic resistance[J]. Welding Journal, 1997, 76(9): 383s-390s.
    [46]李桂中,徐国成.低碳钢点焊动态过程的模型化控制[J].焊接学报, 1995, 16(2): 75-80.
    [47]万晓慧,杨思乾,马铁军,李京龙.不锈钢点焊动态电阻曲线与熔核直径的关系[J].电焊机, 2005, 35(2): 23-25.
    [48]万晓慧,杨思乾.高温合金点焊动态电阻曲线与熔核直径的关系[J].航空制造技术, 2005(5): 74-80.
    [49]文静,王春生,徐国成,程国利.不锈钢电阻点焊过程中的动态电阻变化规律分析[J].焊接学报, 2008, 29(11): 69-72.
    [50] WEN J, WANG C S, XU G C, ZHANG X Q. Real time monitoring weld quality of resistance spot welding for stainless steel[J]. ISIJ International, 2009, 49(4): 553-556.
    [51]马铁军,杨思乾,李京龙.不锈钢点焊动态电阻曲线频谱与熔核的关系[J].焊接技术, 2006,35(1): 7-9.
    [52]张际先.神经元网络及其在工程中的应用[M].北京:机械工业出版社, 1996.
    [53] CHO Y, RHEE S. New technology for measuring dynamic resistance and estimating strength in resistance spot welding[J]. Measurement Science and Technology, 2000, (11): 1173-1178.
    [54] CHO Y, RHEE S. Primary circuit dynamic resistance monitoring and its application to quality estimation during resistance spot welding[J]. Welding Journal, 2002, 81(6): 104s-111s.
    [55] CHO Y, RHEE S. Quality estimation of resistance spot welding by using pattern recognition with neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 330-334.
    [56]张鹏贤,张宏杰,马跃洲,陈剑虹.基于信号特征提取的电阻点焊质量在线评判[J].焊接学报, 2005, 26(9): 52-57.
    [57]黄德智,王治富,闰丽红等.利用点焊过程中的动态电阻检测车身焊点质量[J].焊接,2003, (3): 9-13.
    [58]方平,张勇,谭义明.人工神经网络电阻点焊质量监测模型的研究[J].机械科学与技术, 2000, 19(1): 130-132.
    [59]张忠典,李严.人工神经元网络法估测点焊接头力学性能[J].焊接学报, 1997, 18(1):1-5.
    [60]张忠典,尹孝辉,王群.焊点质量稳定性的高功效统计检验[J].焊接, 2001, (4): 18-20.
    [61]张忠典,李冬青,尹孝辉.基于回归分析理论的点焊质量监测模型[J].焊接学报, 2001, 22(4): 31-34.
    [62] BHATTACHARYA S, ANDREWS D R , Significance of dynamic resistance curves in theory and practice of spot welding[J]. Welding and Metal Fabrication, 1974, 42(2): 296-299.
    [63] WALLER D N. Head movement as a means of resistance welding quality control[J]. British Welding Journal, 1964, 11(3): 118-122.
    [64] HAO M, THORNTON M, BOOMER D R. Development of a robust model for theprediction of weld size under simulated production conditions[J]. SAE Spec Pub, 1998: 1-7.
    [65] STANWAY J D. Technological advances in resistance welding control[J]. Welding and Metal Fabrication, 1992, 60 (4): 159-164.
    [66]胡德安,罗贤星,冀殿英.点焊过程电极压力的测试与分析[J].焊接研究与生产, 1995, 4(1): 22-25.
    [67]胡德安,郑如忠,罗贤星,冀殿英.点焊质量控制方法的研究[J].航空学报, 1996, 17(4): 421-425.
    [68] HIRSCH R B. Tip force control equals spot weld quality[J]. Welding Journal, 1993, 72 (3):57-60.
    [69] HOLDREN R L. What are the causes of and solutions to weld quality control[J]. Welding Journal, 1993, 72(8).
    [70] HESS J, KERM T, KRIEGL W, SCHWEIZER M. Visualization of the Resistance spot welding process in the production line[J]. Welding Journal, 1998, 77 (12): 495s-502s.
    [71] KUANG J H, LIU A H. A study of the stress concentration factor on spot welds[J]. Welding Journal, 1990, 69 (12): 468s-474s.
    [72] TANG H, HOU W, HU S J, ZHANG H. Force characteristics of resistance spot welding of steels[J]. Welding Journal, 2000, 79(7): 175s-183s
    [73] CHIEN C S, KANNATEY-ASIBU JR E. Investigation of monitoring systems for resistance spot welding[J]. Welding Journal, 2002, 81 (9): 195s-199s.
    [74] JI C T, ZHOU Y. Dynamic electrode force and displacement in resistance spot welding of Aluminum[J]. Journal of Manufacturing Science and Engineering, 2004, 126(8): 605-610.
    [75] WALLER D N, KNOWLSON P M. Electrode separation applied to quality control in resistance welding[J]. Welding Journal, 1965, 44(12): 168s-174s.
    [76]曾鸿志,单平.电阻点焊过程及质量控制方法的研究进展[J].焊接技术,2000, 29(5): 1-3.
    [77] TSAI C L, DAI W L, DICKINSON D W. Analysis and development of a real-timecontrol methodology in resistance spot welding [J]. Welding Journal, 1991, 70(12): 339s-351s.
    [78] TSAI C L, JAMMAL O A, PAPRITAN J C, DICKINSON D W. Modeling of resistance spot weld nugget growth[J]. Welding Journal, 1992, 71 (2): 47s- 54s.
    [79] MESSLER R W, JOU JR M, LI C J. An intelligent control system for resistance spot welding using a neural network and fuzzy logic[C]. Conference record of the 1995 IEEE Industry Applications Conference,1995, 2: 1757-1763.
    [80] CULLISON A. Resistance weld controller delivers the heat where it's needed[J]. Welding Journal, 1993, 72 (6): 47-49.
    [81] WEBER G, BURMEISTER J. Online process monitoring by fuzzy classification during A.C. resistance spot welding[J]. Welding in the World, 2001, 45(5/6): 9- 14.
    [82] KHAN J A, XU L, CHAO Y J. Prediction of nugget development during resistance spot welding using coupled thermal-electrical-mechanical model[J]. Science and Technology of Welding and Joining, 1999, 4(4): 201-207.
    [83] HAEFNER K, CAREY B, BERNSTEIN B, OVERTON K. Real time adaptive spot welding control[J]. Transactions of ASME, 1991, 5: 104-113.
    [84] TSAI C L, DAI W L, DICKINSON D W. Analysis and development of a real-time control methodology in resistance spot welding. Welding Journal, 1991, 70(12): 339s-351s.
    [85] CHANG H S, CHO H S. A study on the shunt effect in resistance spot welding[J]. Welding Journal, 1990, 69 (8): 308s-317s.
    [86] SIVA DHANDAPANI, MICHAEL BRIDGES, ELIJAH KANNATEY-ASIBU, JR. Nonlinear electrical modeling for the resistance spot welding process[C]. Proceedings of the American Control Conference. San Diego, USA: American Control Conference, 1999: 182- 186.
    [87]刘效方,张信忠,霍晓.点焊质量电极位移法控制的模型设计[J].电焊机, 1987, (3):11-14.
    [88]姜以宏,高洪明,叶广郁.铝合金点焊热膨胀电极位移法质量实时控制的研究[J].焊接, 1995, (3): 7-11.
    [89]胡德安,郑如忠,冀殿英.电阻点焊热膨胀电极位移微机检测系统[J].电子与自动化, 1997, (1): 10-13.
    [90]常云龙,黄石生,余文松,张军红.热膨胀电极位移法用于机器人点焊过程的研究[J].机器人, 1999, 21(2): 134-137.
    [91]中国机械工程学会焊接学会电阻焊(III)专业委员会.电阻焊理论与实践[M].北京:机械工业出版社, 1994.
    [92]雷红林,卢本,王文平.带台阶功能的点焊机恒流控制器的软件设计[J].电焊机,2002, 32(3): 18-21.
    [93] DICDINSON D W, FRANKLIN J E A. Standard characterization of spot welding behavior by dynamic electrical parameter monitoring[J]. Welding Journal, 1980, 59(6): 170-176.
    [94] WOOD R T, BAUER J F, BERNSTEIN J. A closed-loop control system for three-phase resistance spot welding[J]. Welding Journal, 1985, 64(12): 26-30.
    [95] SLEE V, MORE G R. A new approach to quality assurance in resistance welding[J]. Welding and Metal Fabrication, 1973, 41(6): 204-206.
    [96]罗贤星,冀春涛,张晨曙,冀殿英.三相次级整流点焊质量监控的可视化[J].焊接学报, 2001, 22(1): 59-61.
    [97]赵欣,钱昌明,陈关龙,张延松.车身点焊接头虚焊缺陷的超声波快速识别[J].焊接学报,2006, 27(11): 17-20.
    [98]陈振华,史耀武,赵海燕.薄镀锌钢板点焊超声成像分析[J].机械工程学报, 2009, 45(12): 274-278.
    [99]陈振华,史耀武,焦标强,赵海燕.薄镀锌钢板点焊超声谐振检测[J].焊接学报, 2008, 29(4): 101-104.
    [100] WASCHKIES E. Process-integrated resistance spot-welding testing using ultrasonic techniques[J]. Welding in the world, 1997, 39(6): 345-350.
    [101]六二一所焊接声发射监控题目组. LY12铝合金点焊裂纹的声发射特性探讨[J].航空材料,2:25-29.
    [102] VAHAVIOLOS S J. Adaptive spot weld feedback control loop via acoustic emission[J]. Material Evaluation, 1981, 10 : 1057-1080.
    [103] DICKERSON P B, IRVING B. Welding aluminum: It's not as difficult as it sounds[J]. Welding Journal, 1992, 71(4): 44-50.
    [104] SNEE R K, TAYLOR J L. Infra-red monitoring of resistance spot welding[J]. Metal Construction and British Welding Journal, 1972, (4): 142-147.
    [105] BHATTACHARY S, ANDREWS D R. Resistance weld quality monitoring[J]. Sheet Metal Industries, 1972, (7): 460-466.
    [106]曹彪,黄增好,曾敏.逆变电阻点焊电源焊接电流与电压的测量技术[J].华南理工大学学报(自然科学版), 2005, 33(7): 56-60.
    [107]曹彪.点焊动态参数计算机测试的研究[J].华南理工大学学报(自然科学版),1995, 23(2): 43-46.
    [108]王晓东,曹彪,刘凤生,张书浩.逆变电阻点焊动态参数测试系统的研究[J].电焊机, 2009(2): 70-73.
    [109]李唐柏,方平.霍尔元件点焊焊接电流传感器的研究[J].电焊机,1994(6): 16-19.
    [110]翟小社,王颖,林莘.基于Rogowski线圈电流传感器的研制[J].高压电器, 2002, 38(3):19-26.
    [111]王福生.空芯线圈传感器在阻焊大电流测试中的探讨[J].电焊机,1992(1): 10-13.
    [112]马跃洲,金丽华,陈剑虹. Rogowski电流传感器及其在电阻焊数据采集中的应用[J].兰州理工大学学报, 2004(2): 1-4.
    [113]邹积岩.罗哥夫斯基线圈测量电流的仿真计算及实验研究[J].电工技术学报, 2001, 16(1): 81-84.
    [114]樊宽军.微秒级电脉冲的测量[J].核技术, 1999, 22(8): 469-473.
    [115]刘桂梅,韩靖玉,韩宝生,武佩.电阻点焊动态电极力的测试[J],焊接, 2006(3): 48-50.
    [116]王化祥,张淑英.传感器原理及应用[M].天津:天津大学出版社, 1999.
    [117]张如一,沈观林,李朝弟.应变电测与传感器[M].北京:清华大学出社, 1999.
    [118]刘笃仁,韩保君.传感器原理及应用技术[M].西安:西安电子科技大学出版社, 2003.
    [119]沈兰荪.数据采集技术[M].合肥:中国科学技术大学出版社, 1990.
    [120]郑城荣,段来盛. Microsoft Access 2.0开发指南[M].北京:人民邮电出版社, 1997.
    [121]吕丹阳. Visual C++.NET数据库开发指南[M].北京:清华大学出版社, 2002.
    [122]求是科技. Visual C++ 6.0数据库开发技术与工程实践[M],北京:人民邮电出版社, 2004.
    [123]高惠璇.应用多元统计分析[M].北京:北京大学出版社, 2005.
    [124]卢纹岱. SPSS for Windows统计分析[M].北京:电子工业出版社, 2006.
    [125]黄润龙.数据统计与分析技术-SPSS软件实用教程[M].北京:高等教育出版社, 2004.
    [126]袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社, 1999.
    [127] PODRZAJ P, POLAJNAR I, DIACI J. Expulsion detection system for resistance spot welding based on a neural network[J]. Measurement Science and Technology, 2004, 15(3): 592-598.
    [128]丛爽.面向Matlab工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社, 1998.
    [129]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700