用户名: 密码: 验证码:
液滴撞击加热固体平壁变形过程的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自由表面流动问题普遍存在于化工、冶金、航空航天、材料科学等领域中,其过程中自由表面的位置随着液体的运动而变化,而且自由界面的运动对系统的行为具有重要的影响。这些问题所固有的非线性变化加上在加热平壁上撞击过程中发生的相变使得问题处理起来非常困难,因此也成为流体动力学领域非常关注的问题。
     计算流体力学软件FLUENT中有三神通用的多相流计算模型:VOF模型、混合模型和欧拉模型。液滴等温撞击模型涉及液滴和空气两种流体,二者没有发生传质,且要求对液滴自由表面的运动进行重点考查,VOF模型是最合适的计算模型。Hirt和Nichols提出的VOF(volume of Fluid Method)方法,其基本思想是在整个流场中定义一个满足对流方程的流体体积函数。空单元时值为0;满单元时值为1;单元为界面单元时值介于0到1之间。
     对于液滴撞击等温水平壁面的情况,建立了理论模型,把液滴流动变形假设为轴对称,应用FLUENT软件中的VOF模型,对整个撞击后的变形过程进行数值模拟。将模拟结果与实验数据进行比较分析,验证其正确性。通过变换相关参数,分析了液滴在壁面上的流动状态,详细研究了包括计算网格、壁面特性、撞击速度、液滴的粘度、直径以及液滴的表面张力对变形过程的影响。对于液滴撞击加热水平壁面的情况,通过建立物理与数学模型,分析研究了壁面温度、液滴与环境温度、液滴撞击速度及直径大小对换热及蒸发过程的影响。
     结果表明:通过比较液滴撞击等温水平壁面的模拟结果与实验数据,尽管有误差存在,但VOF数值模拟方法,能够表现液滴铺展、回缩和反弹过程中的关键特征。壁面的可湿润性即壁面接触角对液滴的流动状态有很大的影响。在液滴的铺展阶段,壁面接触角越大,液滴的最大铺展直径越小,换热量小,液滴蒸发速率越小;撞击速度越大,液滴的铺展直径越大,铺展速度越快,换热量大,液滴蒸发速率越大;液滴的直径越大,铺展直径越大,变形过程越缓慢,换热量大,但液滴蒸发速率越小。在其他条件不变的情况下,液滴的表面张力系数越大,铺展直径的变化范围越小,铺展和回缩的时间也越短。而壁面温度和液滴及环境温度对液滴与壁面的换热也有不可忽略的影响。壁面温度越高,液滴与壁面换热量越大,液滴蒸发速率越大;液滴与环境温度越高,液滴与壁面换热量越小,液滴蒸发速率越大。
The free surface flow problems are commonly found out in the fields of chemical, metallurgy, aviation and aerospace and material science. In this process, the position of the free surface changes along with the movement of liquid, moreover, the movement of the free surface has a great influence on the system. These problems which are inherent in the nonlinear changes coupled with phase change that may occur in the process of impact make it extremely difficult to be dealt with, so it has become a great concern in the field of fluid dynamics.
     FLUENT which is one of the Computational Fluid Dynamic software has three common calculation multiphase models: VOF model, Mix model and Euler model. Two-phase fluid which including droplet and air that involved when droplet impacting on isothermal flat solid surface. There is no mass transfer, and dynamics of droplet interface need to be examined crucial, so VOF model is the most appropriate one. Volume of Fluid Method that advanced by Hirt and Nichols, the basic idea of which is that a volume fluid function which satisfies convection function, is defined in whole flow flied. When the cell is empty, the function equals 0; when the cell is full, the function equals 1; when the cell contains interface, the function between 0 and 1.
     For the case that droplet impacting on isothermal flat surface, theory model is founded. Flow dynamics of droplet is assumed to be axis-symmetric, VOF model in FLUENT of CFD software is applied, and whole dynamics of droplet after impacted on flat surface is simulated. In order to validated the model, simulated results are compared with experimental data. By altering concerned parameters, dynamics of droplet on flat surface are analyzed. Influence of parameters including mesh size of calculation, feature of surface, impact velocity, viscosity, diameter size and surface tension of droplet on dynamics is studied in detail. For the case that droplet impacting on heated flat surface, by founding physical and mathematical model, influence of parameters such as temperature of surface, droplet and surroundings, impacting velocity, diameter size of droplet on heat transfer and evaporation performance is analyzed.
     The results has shown that despite of error in simulated results, by compared with experimental data, VOF method could capture the key feature of droplet dynamics when spreading and recoiling. The flow state is seriously influenced by the wettability of surface, namely contact angle at the wall. In the spreading phase, the bigger contact angle is, the smaller spreading diameter of droplet and heat transfer are, and the slower evaporation speed is. The bigger impact velocity is, the bigger spreading diameter of droplet and heat transfer are, and the faster evaporation speed is. The bigger diameter size is, the bigger spreading diameter of droplet and heat transfer are, and the slower dynamics of droplet is and the evaporation speed are. The bigger surface tension coefficient is, the smaller spreading diameter range is, and the time to spread and recoil is decreased. The influence of the surface temperature, droplet and surroundings initial temperature on the heat transfer is significant. The higher surface temperature is, the more heat transfer between droplet and surface, the faster evaporation speed is. The higher droplet and surrounding temperature are, the less heat transfer between droplet and surface, the faster evaporation speed is.
引文
[1]何安定,鹿院卫,李斌等.两相流动中自由界面的数值模拟.油气储运,2000,19(10):15-18.
    [2]陈大宏,李炜等.自由表面流动数值模拟方法的探讨.水动力学研究与进展,2001,16(2):216-224.
    [3]陶文铨.数值传热学.西安:西安交通大学出版社,2001.
    [4]田立平.含有相变问题的数字化处理.工业加热,1996.
    [5]杨世铭,陶文铨.传热学.北京:高等教育出版社,1998.
    [6]王补宣.工程传质传热学(上).北京:科学出版社,2002.
    [7]王补宣.工程传质传热学(下).北京:科学出版社,2002.
    [8]Chandra S,Averdisian C T.On the collision of a droplet with a solid surface.Proc.Roy.Soc.London A,1991,432:13-14.
    [9]Pasandideh-Fard,M,Qiao,Y.M.,Chandra,S.and Mostaghimi,J,Capillary effects during droplet impact on a solid surface,Phys.Fluids,1996,8(3).
    [10]贾力,方肇洪,钱兴华.高等传热学.高等教育出版社,2003.
    [11]张寅平等.固一液相变强化传热物理机制及影响因素分析.中国科学(E辑),2002,32(4).
    [12]奥齐西克·M·N.热传导.北京:高等教育出版社,1983.
    [13]WorthinGton A.On the forms assumed by drops of liquids falling vertically on a horizontal plate.Proc R Soc London 25:261-271.
    [14]WorthinGton A.A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate.Proc R Soc London 25:498-503.
    [15]Engel O.A water drop collision with solid surfaces.PJ Res Nat Bur Stand 54:281-298.
    [16]Levin Z,Hobbs PV.Splashing of water drops on solid and wetted surfaces:hydrodynamics and change separation.Phil R Soc London A 269:555-585.
    [17]Ford R.E.and C.G.L.Furmidge.Impact and spreading of spray drops on foliar surfaces,in Wetting(Soc.Chem.Industry,Monograph,No.25:417-432.
    [18]Lesser.M.B.Analytic solutions of liquid-drop impact problem,Proc.R.Soc.London,1981,VOL 377:289-308.
    [19]Mao T,Kuhn DCS,Tran H.Spread and rebound of liquid droplets upon impact on flat surfaces.AIChE J 43:2169-2179.
    [20]Zhang X,Basaran OA Dynamic surface tension effects in impact of a drop with a solid surface.J Colloid Interface Sci 187:166-178.
    [21]Chaidron,G.,Soucemarianadin,A.and Attane,P.,Study of the impact of drops onto solid surfaces,In proceedings of IS&T 15 international conference on digital printing technologies,1999:70-73.
    [22]施明恒.单个液滴碰击表面时的流体动力学特性.力学学报.1985(05):419-425.
    [23]毛靖儒,施红辉,俞茂铮等.液滴撞击固体表面时的流体动力特性实验研究.力学与实践,1995,17(3):52-54.
    [24]Harlow F H,Welch J E,Shannon J P,et al.The MAC method,a computing technique for solving viscous,incompressible,transient fluid problems involving free surface.Report LA-3425,Los Alamos Scientific Laboratory,1965.
    [25]Harlow F H,Welch J E.Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface.Physcis of Fluids,1965,8:2182-2186.
    [26]Hirt C W and Nichols B D.Volume of fluid(VOF) method for the dynamics of free boundaries.J.Comp.Physics,1981,39:201-225.
    [27]Toorey M D and Hirt C W.NASA-VOF2D:a computer program for incompressible flows with free surface.LA-10621-MS,1985.
    [28]Toorey M D and Stein L R.NASA-VOF2D:a three-dimensional computer programfor incompressible flows with free surface.LA-11009-MS,1987.
    [29]Pasandideh-Fard M,Chandra S,Mostaghimi J.A Three-Dimensional Model of Droplet Impact and Solidification.Int.J.Heat and Mass Transfer,2002,45:2229-2242.
    [30]Prashant R.Gunjal,Vivek V.Ranade,Raghunath V.Chaudhari.Dynamics of Drop Impact on Solid Surface:Experiments and VOF Simulations.AIChE J 51:59-78.
    [31]Hitoshi Fujimoto,Yu Shiotani,Albert Y.Tong et al.Three-dimensional numerical analysis of the deformation behavior of droplets impinging onto a solid substrate.International Journal of Multiphase Flow,2007,33:317-332.
    [32]李然,李宏,李嘉.气液两相流理论在明渠水气界面计算中的应用.水动力学研究与进展,2002,17(1):77-83.
    [33]姚朝辉,叶宏开,王学芳.空泡溃灭水锤的VOF计算方法.原子能科学技术,1995,29(1):20-26
    [34]张健,方杰,范波芹.VOF方法理论与应用综合.水利水电科技进展,2005,25(2):67-70.
    [35]任泽霈,罗锐.水平平板上蒸发液滴内部流动的数值研究.清华大学学报,1987,27(5):95-105
    [36]施明恒.液滴碰击加热壁面时的传热分析.工程热物理学报,1985,6(4):366-369.
    [37]丁继贤,孙凤贤,姜任秋.对流条件下环境压力对液滴蒸发的影响研究.哈尔滨工程大学学报,2007,28(10):1104-1108.
    [38]刘乃玲,张旭.液滴蒸发过程理论分析及非稳态过程数值求解.制冷,2007,26(3):45-48.
    [39]George Strotos,Manolis Gavaises,Andreas Theodorakakos et al.Numerical investigation of the cooling effectiveness of a droplet impinging on a heated surface.International Journal of Heat and Mass Transfer.51(2008):4728-4742.
    [40]John D.Benrnardin,Clinton J.Stebbins,Issam Mudawar.Mapping of impact and heat transfer regimes of water drops impining on a polished surface.International Journal of Heat and Mass Transfer.1997,40(2):247-267.
    [41]G.E.Cossali,M.Marengo,M.Santini.Thermally induced secondary drop atomisation by single drop impact onto heated surface.International Journal of Heat and Mass Transfer.29(2008):167-177.
    [42]M.Pasandideh-Fard,S.D.Aziz,S.Chandra,J.Mostaghimi.Cooling effectiveness of a water drop impinging on a hot surface.International Journal of Heat and Fliud Flow.22(2001):201-210.
    [43]N.Nikolopoulos,A.Theodorakakos,G.Bergeles.A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate.International Journal of Heat and Mass Transfer.50(2007):303-319.
    [44]George Strotos,Manolis Gavaises,Andreas Theodorakakos,George Berge]es.Numerical investigation on the evaporation of droplets depositing on heated surfaces at low Weber numbers.International Journal of Heat and Mass Transfer.45(2007):213-216.
    [45]Fukai,J.,Shiliba,Y.,Yanmaoto et al.Wetting effects on the spreading of a liquid droplet colliding with a surface:experiment and modeling.Phys.Fluids 1995,7(2):236-247.
    [46]D.C.D.Roux a,b,J.J.Cooper-White.Dynamics of water spreading on a glass surface.Colloid and interface science.2004:424-436.
    [47]莫里森(S.R.Morrison).表面化学物理。赵璧英等译.北京:北京大学出版社.1984.
    [48]王晓东,彭晓峰,闵敬春.接触角滞后现象的理论分析.工程热物理学报,2002,(01).
    [49]Youngs,D.L.Time-Dependent Multi-Material Flow with Large Fluid Distortion.Numerical Methods for Dynamics,K.W.Morton and M.J.Baines,eds.1982.
    [50]Brackbill,J.U.,D.B.Kothe,C.Zemach.A Continuum Method for Modeling Surface Tension.J.Comput.Phys.,1992,100:355-365.
    [51]Siddhartha F.Lunkad,Vivek V.Buwa,K.D.P.Nigam.Numerical simulation of drop impact and spreading on horizontal and inclined surfaces.Chemical Engineering Science,2007,62:7214-7224.
    [52]S.Sikalo,C.Tropea,E.N.Ganic.Dynamic wetting angle of a spreading droplet.Experimental Thermal and Fluid Science,2005,29:795-802.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700