用户名: 密码: 验证码:
流动沸腾中汽泡行为的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以流动沸腾在能源动力、航空航天以及核能等领域的广泛应用为背景,从流体力学和传热学的基本原理出发,通过搭建流动沸腾实验台,分析了关键因素对流动沸腾中汽泡行为和两相流型的影响,并通过建立汽泡脱离数理模型,来揭示汽泡在各种条件下的脱离特性。
     通过对不同尺寸的通道内,不同实验工况下的流动沸腾进行可视化实验研究,观测汽泡的各种行为,包括汽泡的聚合、胀缩和滑移等,以及整个通道中流型的分布和变化,发现环形通道中过冷流动沸腾的流型不同于常规通道,实验中观测到三种典型流型:泡状流,弥散泡状流和搅拌流,且三种流型所占据的区域长度随热流密度和质量流量的变化而变化。微小通道中的五种典型流型分别为:泡状流,弹状流,搅拌流,细环流和环状流,且通道尺寸对汽泡行为和汽液两相流型影响显著。
     通过对可视化实验数据的分析,得到了汽泡直径和汽泡附壁直径随汽泡生长时间的变化曲线,结果显示,汽泡由惯性力控制生长的初期阶段大约维持在0-0.3ms之间,在此阶段内,各工况下,汽泡生长速率非常接近,受实验工况的影响较小;约在0.3ms之后,汽泡进入由热扩散控制生长的后期阶段,汽泡的生长速率在此阶段随实验工况展示出明显的不同,汽泡的生长速率受加热壁面热流密度的影响较为显著,随热流密度的增大而增大。
     基于对汽泡脱离时汽泡附壁直径与汽泡与脱离直径的关系曲线的分析,总结了汽泡附壁直径和汽泡脱离直径的关系的关联式,根据加热壁面特性和实验工况选取适当的经验参数,该关联式能够较好的反映汽泡临近脱离时,汽泡附壁直径和汽泡脱离直径之间的关系。
     实验观测到同一工况、同一加热壁面、同一沸腾区域(孤立汽泡区)内的不同核化点上,汽泡脱离直径存在差异的现象,对此现象进行了分析,并通过对汽泡的受力分析,结果显示汽泡的附壁直径对汽泡脱离直径影响显著,汽泡附壁直径越大,对应的汽泡脱离直径越大。
     通过对不同实验工况下,汽泡脱离直径变化规律的分析,发现在其他工况一定的情况下,汽泡脱离直径随热流密度的增大而增大,随流体质量流量的增大而减小。通道尺寸的变化对汽泡脱离直径的影响显著,汽泡脱离直径随通道尺寸的减小而减小。
     通过对作用在汽泡上的每个作用力的详细分析,并结合汽泡附壁直径和汽泡脱离直径的关系,基于汽泡受力平衡建立了汽泡脱离直径预测模型,并将模型预测结果与本文实验数据对比,吻合较好,误差在±15%以内,与文献中的实验数据的比较,考虑到统计误差等因素,也取得了较好的一致性,数据对比误差保持在了±30%以内。
Flow boiling heat transfer was widely used in the fields of energy, aerospace and nuclear energy, in this thesis, based on the fundamental principles of fluid mechanics and heat transfer, the influences of key factors on bubble behaviors and two-phase flow patterns in flow boiling were analyzed by building an experimental system, and the departure characteristics of bubble in various conditions were revealed by making the mathematical models on bubble departure.
     The various bubble behaviors including bubble coalescence, bubble expansion-shrink and bubble slippage, and the flow pattern as well as its variation along the channel were observed by high-speed digital camera. It was found that the flow patterns in subcooled flow boiling in annular channel were different from those in conventional channels. Three types of flow patterns, namely the isolated bubbly flow, dispersed bubble flow and churn flow, were observed, and the lengths of areas occupied by these flow patterns changed with the variation of the heat flux and mass flux. There were five types of typical flow patterns in microchannel:bubbly flows, slug flow, churn flow, wispy-annular and annular flow, and they were intensely influenced by the channel size.
     The variation regularities of the bubble diameter and the bubble contact diameter with the bubble growth time were obtained by analyzing the experimental data of the visualization. It was found that in0-0.3ms after bubble nucleation the bubble growth is controlled by inertia force, and after then it is controlled by heat transfer. In the inertia controlled period, the bubble growth rate in various working conditions were very closed, however, the bubble growth rate was obviously influenced by the working condition, it increased with the increase of the heat flux and decreased with the increase of the mass flux.
     Based on the analysis of the variation curves between the bubble contact diameter and bubble departure diameter at the bubble departure, the experimental correlation between them was established, which can accurately predict the relationship between the bubble contact diameter and bubble departure diameter by selecting proper empirical parameters for heat wall features and operating conditions.
     In the experiments, the bubble departure diameters differ from each other even in the same heating wall surface and same boiling region (isolated bubble region) under identical operating conditions. This phenomenon was investigated by analyzing the forces acting on the bubble, and eventually it was found that the bubble departure diameter was significantly impacted on by the bubble contact diameter, it increased with the increase of the latter.
     The variation regularities of the bubble departure diameter with the operating conditions were investigated, it was observed that the bubble departure diameter increased with the increase of the heat flux and decreased with the increase of the mass flow rate. On the other hand, the bubble departure diameter was obviously influenced by the channel size, it decreased with the decrease of the channel size.
     Based on the force analysis of bubble, integrating the relationship between bubble contact diameter and bubble departure diameter, the prediction model for the bubble departure diameter was established according to the force balance on the bubble. It was found that the model can effectively predict the experimental data in our experiments with an error of±15%, and get a better consistency by comparing the model to the experimental data from existing literatures, the comparison error was less than±30%.
引文
[1]S. Aoki, A. Inoue, M. Aritomi, Y. Sakamoto., Experimental study on the boiling phenomena within a narrow gap, Int. J. Heat Mass Transfer,1982,25(7):985-990.
    [2]E. M. Sparrow, L. F. A. Azevedo, Vertical-channel natural convection spanning between the fully-developed limit and the single-plate boundary-layer limit, Int. J. Heat Mass Transfer, 1985,28(10):1847-1857.
    [3]过增元,国际传热研究前沿一微尺度传热,力学进展,2000,30(1):16.
    [4]Han Ju Lee, Sang Yong Lee, Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios, Int. J. Multiphase Flow,2001,27:2043-2062.
    [5]Serizawa A, Feng Z P., Two phase Flow in Microchannels, International Conference of Multiphase Flows, Keynote Lecture, New Orleans, Louisiana,2001.
    [6]Cubaud T, Ho C M., Transport of Bubbles in Square Microchannels, Physics of Fluids,2004, 16:4575-4585.
    [7]Xu J, Zhou J, Gan Y, Static and dynamic flow instability of a parallel microchannel heat sink at a high heat fluxes, Energy Conversion and Management,2005,46:313-334.
    [8]Mehendale S S, Jacobi A M, Shah R K, Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design, Appl Mech., Rev,2000,53(7):175-193.
    [9]Kandlikar S G, Fundamental issues related to flow boiling in minichannels and microchannels, Exp.Therm., Fluid Sci.,2001,26:389-407.
    [10]John R. Thome., Review on two-phase flow instabilities in narrow spaces, Int. J. Heat and Fluid Flow,2004,25:128-139.
    [11]Kew P A, Cornwell K., Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng.,1997,17:705-715.
    [12]Qi S L, Zhang P, Wang R Z, et al., Flow boiling of liquid nitrogen in micro-tubes:Part I-The onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop, International Journal of Heat and Mass Transfer,2007,50(25-26):4999-5016.
    [13]Qi S L, Zhang P, Wang R Z, et al., Flow boiling of liquid nitrogen in micro-tubes:Part Ⅱ-Heat transfer characteristics and critical heat flux, International Journal of Heat and Mass Transfer,2007,50(25-26):5017-5030.
    [14]N. Brauner, D. Moalem-Maron, Identification of the range of small diameter conduits, regarding two-phase flow pattern transitions, Int. Commun. Heat Mass Transfer,1992,19: 29-39.
    [15]Chen L, Tian Y S, Karayiannis T G., The effect of tube diameter on vertical two-phase flow regimes in small tubes, International Journal of Heat and Mass Transfer,2006,49(21-22): 4220-4230.
    [16]Gunther F C, Photographic study of surface boiling heat transfer to water with forced convection, Trans. ASME,1951,73:115-124.
    [17]Frost, W., Kippenhan, C.J., Bubble growth and heat transfer mechanisms in the forced convection water containing a surface active agent, Int. J. Heat Mass Transfer 1967,10, 931-949.
    [18]Abdelmessih, A.H., Hooper, F.C., Nangia, S., Flow effect on bubble growth and collapse in surface boiling, Int. J. Heat Mass Transfer,1972,15:115-125.
    [19]Akiyama, M., Tachihana, F., Motion of vapor bubbles in subcooled heated channel, Bull. J.S.M.E.1974,17:241-247.
    [20]Del Valle, V.H., Kenning, D.B.R., Subcooled flow boiling at high heat flux, Int. J. Heat Mass Transfer.1985,28:1907-1920.
    [21]M.G. Cooper, K. Mori, C.R. Stone., Behavior of vapor bubbles growing at a wall with forced flow, Int. J. Heat Mass Transfer,1983,26(10):1489-1507.
    [22]Tolubinsky V.I., Kostanchuk D.M., Vapor bubbles growth rate and heat transfer intensity at subcooled water boiling. In:4th International Heat Transfer Conference,1970,5, paper B2.8.
    [23]Koumoutsos, N., Moissis, R., Spyridonos, A., A study of bubble departure in forced convection boiling, Trans. ASME, J. Heat Transfer,1968,90:223-230.
    [24]A. Manera, H. M. Prasser, D. Lucas, T. H. J. J. van der Hagen., Three-dimensional flow pattern visualization and bubble size distributions in stationary and transient upward flashing flow, International Journal of Multiphase Flow,2006,32:996-1016.
    [25]Kandlikar S.G., Stumm B. J., A control volume approach for investigating forces on a departing bubble under subcooled flow boiling,1995,117(4):990-997.
    [26]Zeitoun, O., Shoukri, M., Bubble behavior and mean diameter in subcooled flow boiling, Trans. ASME, J. Heat Transfer 1996,118,110-116.
    [27]Chih-Ping Yin, Yi-Yie Yan, Tsing-Fa Lin, Bing-Chwen Yang., Subcooled flow boiling heat transfer of R-134a and bubble characteristics in a horizontal annular duct, Int. J. Heat Mass Transfer,2000,43:1885-1896.
    [28]Rong Situ, Ye Mi, Mamoru Ishii., Photographic study of bubble behaviors in forced convection subcooled boiling, Int. J. Heat Mass Transfer,2004,47:3659-3667.
    [29]Yue Ma, J.N. Chung., A study of bubble dynamics in reduced gravity forced-convection boiling, Int. J. Heat and Mass Transfer,2001,44:399-415.
    [30]R. Maurus, V. Ilchenko, T. Sattelmayer., Study of the bubble characteristics and the local void fraction in subcooled flow boiling using digital imaging and analysing techniques, Experimental Thermal and Fluid Science,2002,26:147-155.
    [31]V. Prodanvic, D. Fraser, M. Salcudean., Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressures and Low Flow Rates, Int. J. Multiphase Flow,2002,28:1-19.
    [32]沈秀中,宫崎庆次,徐济望,在垂直环形窄缝流道中得沸腾传热特性研究,核科学与工程,2001,21(3):244-251.
    [33]H. Y. Li, F. G. Tseng, Chin Pan., Bubble dynamics in microchannels. Part Ⅱ:two parallel microchannels, Int. J. Heat and Mass Transfer,2004,47:5591-5601.
    [34]Ishibashi E., Nishikawa K., Saturated boiling heat transfer in narrow spaces, Int. J. of Heat Mass Transfer,1969,12:863-894.
    [35]Stephan K., Abdelsalam M., Transfer Correlations for Natural Convection Boiling, Int. J. Heat Mass Transfer,1980,23:73-78.
    [36]P. C. Lee, F. G. Tseng, Chin Pan., Bubble dynamics in microchannels. Part Ⅰ:single microchannel, Int. J. Heat and Mass Transfer,2004,47:5575-5589.
    [37]S. Siedel, S. Cioulachtjian, J. Bonjour., Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites, Experimental Thermal and Fluid Science,2008,32:1504-1511.
    [38]张鹏,付鑫,王如竹,微通道流动沸腾的研究进展,制冷学报,2009,30(2):1-7.
    [39]Kandlikar S G., and Balasubramanian P., An Extension of the Flow Boiling Correlation to Transition, Laminar, and Deep Laminar Flows in Microchannels and Minichannels, Heat Transfer Engineering,2004,25:86-93.
    [40]Sumith B., Kaminaga F., Matsumura K., Saturated flow boiling of water in a vertical small diameter tube, Exp. Thermal Fluid Sci.,2003,27:789-801.
    [41]彭晓峰,胡杭英,王补宣,微通道内液体核沸腾时汽泡形成的条件,中国科学,1998,28(3):220-224.
    [42]付鑫,齐守良,张鹏,王如竹,小通道内液氮流动沸腾的可视化研究,工程热物理学报,2008,29(6):1305-1308.
    [43]Kandlikar S G., Steinke M E., Tian M E, et al., High-speed photographic observation of flow boiling of water in parallel mini-channels, In:Proc.2001, National Heat Transfer Conference, Anaheim. CA, June 10-12.
    [44]Yang CY., Shieh CC., Flow pattern of air-water and two-phase R134a in small circular tubes, International Journal of Multiphase Flow,2001,27(7):1163-1177.
    [45]Serizawa A., Feng Z P., Two-phase Flow in Microchannels, International Conference of Multiphase Flows, Keynote Lecture, New Orleans, Louisiana,2001.
    [46]Chen T., Garimella S.V., Measurements and high-speed visualization of flow boiling of a dielectric fluid in a silicon microchannel heat sink, Int. J. Multiphase Flow,2006,32: 957-971.
    [47]彭晓峰,王补宣,液体内部汽化的汽化空间与拟沸腾,中国科学基金,1994,第1期,7-12.
    [48]Lin L., Udell K.S., Pisano A.P., Phase change phenomena on a heated polysilicon micro heater in confined and unconfined microchannels, Thermal Sci. Eng.,1994,2:52-59.
    [49]Huo X., Chen L., Tian Y.S., Karayiannis T.G., Flowing boiling and flow regimes in small diameter tubes, Appl. Thermal. Eng.,2004,24:1225-1239.
    [50]Saitoh S., Daiguji H., Hihara E., Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes, Int. J. Heat and Mass Transfer,2005,48:4973-4984.
    [51]Revellin R., Dupont V., Ursenbacher T., Thome J.R., Zun I., Characterization of diabetic two-phase flows in microchannels:flow parameter results for R-134a in a 0.5 mm channel, Int. J. Multiphase Flow,2006,32:755-774.
    [52]Kandlikar S., Heat transfer mechanisms during flow boiling in microchannels, Heat Transfer, 2004,126:8-16.
    [53]Wang, G., Cheng, P., Bergles, A.E., Effects of inlet/outlet configuration on flow boiling instability in parallel mircochannels, Int. J. Heat Mass Transfer,2008,51:2267-2281.
    [54]Zhang, L., Wang, E.N., Goodson, K.E., Kenny, T.W., Phase change phenomena in silicon mircochannels, Int. J. Heat Mass Transfer,2005,48:1572-1582.
    [55]Jiang, L., Wong, M., Zohar, Y., Forced convection boiling in a microchannel heat sink, J. Microelectromech,2001, Syst.10,80-87.
    [56]Hetsroni, G., Mosyak, A., Segal, Z., Pogrebnyak, E., Two-phase flow patterns in parallel microchannels, Int. J. Multiphase Flow,2003,29:341-360.
    [57]Wu, H.Y., Cheng, P., Visualization and measurements of periodic boiling in silicon microchannels, Int. J. Heat and Mass Transfer,2003,46:2603-2614.
    [58]Wu, H.Y., Cheng, P., Boiling instability in parallel silicon microchannels at different heat fluxes, Int. J. Heat and Mass Transfer,2004,47:3631-3641.
    [59]P. Savic, Discussion on bubble growth rates in boiling, J. Heat Transfer 1958,80:5162.
    [60]P. Griffith, Bubble growth rates in boiling, J. Heat Transfer 1958,80:721.
    [61]Van Stralen, S. D. J., Sohal, M. S., Cole, R., Sluyter, W. M., Bubble growth rates in pure and binary systems:Combined effect of relaxation and evaporation microlayers, Int. J. Heat and Mass Transfer,1975,18:453-467.
    [62]Van Stralen, S. D. J., The growth rate of vapor bubbles in superheated pure liquid and binary mixtures, Int. J. Heat and Mass Transfer,1968,11:1467-1489.
    [63]Bosnjakovic, F., Verdamfung und Flussigkeitsuberhitzung, Tech. Mech. Thermodyn. Bevl., 1930,1:358-362.
    [64]M. S. Plesset, S. A. Zwick., Growth of vapor bubbles in superheated liquid, J. Appl. Phys., 1954,25:493-500.
    [65]H. K. Forster, N. Zuber., Growth of vapor bubbles in superheated liquid, J. Appl. Phys.,1954, 25:474-478.
    [66]Fritz, W., Ende,W., The vaporization process according to a cinematographic picture of vapor bubbles, Phys. Z.,1936,37:391-401.
    [67]Dergarabedian, P., Observations on bubble growth in various superheated liquids, Fluid Mech., 1960,9:38-48.
    [68]Brikhoff, G., Margulies, R. S., Horning, W. A., Spherical bubble growth, Physics Fluids,1958, 1:201-204.
    [69]L. E. Scriven., On the dynamics of phase growth, Chem. Eng. Sci.,1959,10:1-13.
    [70]N. Zuber., The dynamics of vapor bubbles in nonuniform temperature fields, Int. J. Heat and Mass Transfer,1961,2:83-98.
    [71]Mikic, B. B., Rohsenov, W. M., Griffith, P., On bubble growth rates, Int. J. Heat Mass Transfer,1970,13:657-665.
    [72]R. Cole, W. M., Rohsenow, Correlation of bubble departure diameter for boiling of saturated liquids, Chem. Eng. Progress Symp.,1969, Ser. 65(92):211-213.
    [73]R. H. S. Winterton, Flow boiling:prediction of bubble departure, Int. J. Heat Mass Transfer, 1984,27:1422-1424
    [74]刁彦华,赵耀华,王秋良,制冷工质R11池沸腾换热气泡行为的可视化研究,自然科学进展,2006,16(4):449-456.
    [75]E. L. Bibeau, M. Salcudean, A study of bubble ebullition in forced-convective subcooled nucleate boiling at low pressure, Int. J. Heat and Mass Transfer,1994,37:2245-2259.
    [76]R. Cole, Bubble frequencies and departure volumes at sub-atmospheric pressures, A.I.Ch.E J, 1967,13 (4):779-783.
    [77]赵耀华,姬朝明,过冷沸腾气泡行为的实验研究,工程热物理学报,2004,25(1):109-111.
    [78]G Kocamustafaogullari, Pressure dependence of bubble departure diameters for water, Int.Comn.Heat Mass Transfer,1983,10,501-509.
    [79]W. M. Rohsenow, Boiling, Annu. Rev. Fluid Mech.,1971,3:211-236.
    [80]Brian K. Mori, W., Douglas Baines. Bubble departure from cavities, Int. J. Heat and Mass Transfer,2001,44:771-783.
    [81]Tomio Okawa, Hayato Kubota, et al., Simultaneous measurement of void fraction and fundamental bubble parameters in subcooled flow boiling, Nuclear Engineering and Design, 2007,237:1016-1024.
    [82]Kolev N., The influence of mutual bubble interaction of the bubble departure diameter, Experimental Thermal and Fluid Science,1994,8:167-174.
    [83]Gabor Hazi, Attila Markus., On the bubble departure diameter and release frequency based on numerical simulation results, Int. J. Heat and Mass Transfer,2009,52:1472-1480.
    [84]陈嘉宾,蔡振业,林纪方,人工汽化中心表面核状沸腾传热的研究一(I)汽化中心的大小和密度对沸腾过程中汽泡脱离直径和频率的影响,化工学报,1986,3:269-278
    [85]Abhijit Mukherjee, Satish G Kandlikar., Dynamics of contact angle during growth and detachment of a vapor bubble at a single nucleation site, Int. J. Heat and Mass Transfer,2007, 50:127-138.
    [86]Yun-Je Cho, Soo-Been Yum, Jeong-Hun Lee, Goon-Cherl Park, Development of bubble departure and lift-off diameter models in low heat flux and low flow velocity conditions, Int. J. Heat and Mass Transfer,2011,54:3234-3244.
    [87]P. Winterton, P. Orby, Bubble size in bubbly flow in ducts and bubble columns, in: Proceedings of the 10th International Heat Transfer Conference,1994,6:295-299.
    [88]A. M. Fsadni, Y. T. Ge, A.G. Lamers, Measurement of bubble detachment diameters from the surface of the boiler heat exchanger in a domestic central heating system, Applied Thermal Engineering,2011,31:2808-2818.
    [89]潘良明,陈德奇,袁德文,何英青,季洪春,竖直加热壁面上汽泡脱离及浮升点汽泡直径预测模型,化工学报,2007,58(2):347-352.
    [90]G H. Yeoh, J. Y. Tu, A unified model considering force balances for departing vapor bubbles and population balance in subcooled boiling flow, Nuclear Engineering and Design,2005,23 (5):1251-1265.
    [91]Kandlikar S G, Mizo V R, Cartwright M D. Investigation of bubble departure mechanism in subcooled flow boiling of water using high-speed photography. In:Chen JC, editor. Convective flow boiling, Washington D.C., Taylor and Francis,1996,161-166.
    [92]Yan Y, Kenning D. B. R, Cornwell K., Sliding and sticking vapour bubbles under inclined plane and curved surfaces, Eurotherm 48. Pool Boiling Conf., Paderbornl996
    [93]Van der Geld C. W., van Helden W. G., Boot P. G., On the effect of the temperature boundary condition on single bubble detachment in flow boiling. In:Chen JC, editor. Convective flow boiling, Washington D.C., Taylor and Francis,1996,149-202.
    [94]R. Situ, T. Hibiki, X. Sun, Y. Mi, M. Ishii, Flow structure of subcooled boiling flow in an internally heated annulus, Int. J. Heat Mass Transfer,2004,47:5351-5364.
    [95]X. Fu, P. Zhang, C. J. Huang, R. Z. Wang, Bubble growth, departure and the following flow pattern evolution during flow boiling in a mini-tube, Int. J. Heat Mass Transfer,2010.
    [96]C.J. Kuo, A. Kosar, Y. Peles, et al., Bubble dynamics during boiling in enhanced surface microchannels, J. Microelectromech. Syst.,2006,15:1514-1527.
    [97]J. F. Klausner, R. Mei, D. M. Bernhard, L. Z. Zeng, Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Transfer,1993,36:651-662.
    [98]Thorncroft, G. E., Klausner, J. F., Mei, R., An experimental investigation of bubble growth and detachment in vertical upflow and downflow boiling, Int. J. Heat Mass Transfer,1998,41: 3857-3871.
    [99]R. Situ a, M. Ishii, T. Hibiki, J. Y. Tu, G. H. Yeoh, M. Mori, Bubble departure frequency in forced convective subcooled boiling flow, Int. J. Heat Mass Transfer,2008,51:6268-6282.
    [100]Karine Loubiere, Vincent Castaignede et al., Bubble formation at a flexible orifice with liquid cross-flow, Chemical Engineering and Processing,2004,43:717-725.
    [101]Fritz, W., Maximum volume of vapor bubbles, Physik Zeitschr,1935,36:379-384.
    [102]G. B.Wallis, One Dimensional Two-phase Flow, New York:McGraw-Hill,1969.
    [103]Staniszewski, B. E., Nucleate boiling bubble growth and departure, MIT Tech. Rep. No.16, Division of Sponsored Research, Cambridge, MA,1959.
    [104]Cole, R., Shulman, H. L., Bubble departure diameters at subatmospheric pressures, Chemical Engineering Progress, Symposium Series,1996,62(64):6-16.
    [105]Han Choon Lee, Jeongbae Kim, et al., Single bubble growth in saturated pool boiling of binary mixtures, Int. J. Multiphase Flow,2004,30:697-710.
    [106]Renwei Mei, J. F. Klausner, Unsteady force on a spherical bubble at finite Reynolds number with small fluctuations in the free-stream velocity, Phys. Fluids,1992,4(1):63-67.
    [107]Renwei Mei, J. F. Klausner, Shear lift force on spherical bubbles. Int. J. Heat Fluid Flow, 1994,15(1):62-65.
    [108]W. G. J. Van Helden, C. W. M. Van der Geld, P. G. M. Boot., Forces on bubbles growing and detaching in flow along a vertical wall, Int. J. Heat Mass Transfer,1995,38(11):2075-2088.
    [109]L. Z. Zeng, J. F. Klausner, D. M. Bernhard, R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems-I:Pool Boiling, Int. J. Heat Mass Transfer, 1993,36(9):2261-2270.
    [110]L. Z. Zeng, J. F. Klausner, D. M. Bernhard, R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems-Ⅱ:Flow Boiling, Int. J. Heat Mass Transfer, 1993,36(9):2271-279.
    [111]Rong Situ, Takashi Hibiki, Mamoru Ishii, Michitsugu Mori, Bubble lift-off size in forced convective subcooled boiling flow, Int. J. Heat Mass Transfer,2005,48:5536-5548.
    [112]Deqi Chen, Liang-ming Pan, Song Ren, Prediction of bubble detachment diameter in flow boiling based on force analysis, Nuclear Engineering and Design,2012,243:263-271.
    [113]Taylor, J. R., An introduction to error analysis,2ndEd., University Science Books.
    [114]施明恒,甘永平,马重芳,沸腾与凝结,北京:高等教育出版社,1996.
    [115]Tsung-Chang G, Bankoff S G., On the mechanism of force-convection subcooled nucleate boiling, Journal of Heat Transfer,1990,112:212-218.
    [116]Yusen Qi, J. F. Klausner, Renwei Mei, Role of surface in heterogeneous nucleation, Int. J. Heat Mass Transfer,2004,47:3097-3107.
    [117]Yuming Chen, Rainer Mertz, Rudi Kulenovic., Numerical simulation of bubble formation on orifice plates with a moving contact line, Int. J. Multiphase Flow,2009,35:66-77.
    [118]De-qi Chen, Liang-ming Pan., Prediction Model for Bubble Contact Circle Diameter on Heating Wall,2010, May,17-21, Xi'an, China, ICONE18:Proceeding of the 18th International Conference on Nuclear Engineering-2010. ICONE18-30084.
    [119]Moghaddam, S., Kiger, K., Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-I:Experimental investigation, Int. J. Heat and Mass Transfer,2009,52:1284-1294.
    [120]T. A. Kowalewski, J. Pakleza, R. Trzciski, et al., Experimental analysis of vapor bubble growing on a heated surface, Archives of thermodynamics,2004,25(3):1-12.
    [121]S. V. Gnyloskurenko, A.V. Byakova, O.L. Raychenko, T. Nakamura., Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size, Colloids and Surfaces A:Physicochem. Eng. Aspects,2003,218:73-87.
    [122]G. E. Thorncroft, J. F. Klausner, R. Mei, Bubble forces and detachment models, Multiphase Sci. Technol.13 (3&4) (2001) 35-76.
    [123]G. K. Batchelor, An introduction to fluid dynamics. Cambridge University Press,2000
    [124]Al-Hayes R. A. M., Winterton, R. H. S., Bubble diameter on detachment in flowing liquids, Int. J. Heat Transfer,1981,24:233-230.
    [125]Moore D. W., The boundary layer on a spherical gas bubble, J. Fluid Mech.,1963,16: 161-176.
    [126]Clift R., Grace J. R., Weber M. E., Bubble Drops and Particles, New York:Academic Press, 1987.
    [127]Saffman, P. G., The lift on a small sphere in a slow shear flow, J. Fluid Mech.,1965.22, 385-400
    [128]Saffman, P. G., Corrigendum to "The Lift on a Small Sphere in a Slow Shear Flow." J. Fluid Mech.,1968,31,624.
    [129]Auton, T. R., The lift force on a spherical body in a rotational flow, J. Fluid Mech.,1987,183, 190-218.
    [130]Legendre, D., Magnaudet, J., The lift force on a spherical bubble in a viscous linear shear flow, J. Fluid Mechanics,1998,368:81-126.
    [131]Auton, T. R., The dynamics of bubbles, drops and particles in motion in liquid, University of Cambridge,1983.
    [132]Ruckenstein, E., A physical model for nucleate boiling heat transfer form a horizontal surface, Bul. Institutului politech, Bucaresti,1961,33(3):rEV.6055.
    [133]Roll, J. B., Myers, J. E., The effect of surface tension on factors in boiling heat transfer, A.I. Ch.J,1964,10:530-534.
    [134]Stewart, J. K., Cole, R., Bubble growth rates during nucleate boiling at high jakob numbers, Int. J. Heat Mass Transfer,1972,15:655-663.
    [135]J. O. Hinze, Turbulence, McGraw-Hill, New York,1975.
    [136]Petukhov, B. S., Heat transfer and friction in Turbulent pipe flow with variable Properties, in Advances in Heat Transfer (Eds. J.P. Hartnett and T.F. Irvine), Academic Press, New York, 1970,503-564.
    [137]Li, D., Neumann, A. W., Thermodynamic status of contact angles, A. W. Neumann, J. K. Spelt (Eds.) Applied Surface Thermodynamics, Marcel Dekker, New York,1996,109-168.
    [138]Johnson Jr. R. E., Dettre R. H., Wettability and contact angles, E. Matijevic (Ed.), Surface and Colloid Science, New York:Wiley,1969,85-151.
    [139]Geisler, K. J. L., Bar-Cohen, A., Confinement effects on nucleate boiling and critical heat flux in buoyancy-driven microchannels, Int. J. Heat Mass Transfer,2009,52(11-12):2427-2436.
    [140]Sandipan Maity, Effect of velocity and gravity on bubble dynamics, [Dissertation], University of California Los Angeles,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700