用户名: 密码: 验证码:
结霜与抑霜机理研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结霜现象普遍存在于在自然界以及诸多工程领域,当湿空气流经温度比其露点温度低的表面时,会发生水蒸气在冷表面上凝结的现象,若冷表面的温度低于冰点温度,结霜现象就会发生。霜层的形成以及生长会恶化工程设备运行特性,严重时甚至会影响到设备的正常运转。因此,研究结霜过程,对霜层的形成与生长进行预测,对于指导结霜工况下运行的工程设备的设计有着重要的作用。分析霜层的形成机理,探索抑制其形成异或延缓其生长的方法,从本质上消除霜层存在所造成的危害,对工程应用有着极其重要的意义。本文从观察霜层生长过程的研究出发,分析总结霜层形成机理,建立霜层生长过程的数学模型,预测霜层的非稳态生长过程,用来指导结霜工况下工程设备的设计。寻求抑制霜层生长的方法,并使用数值模拟的方法进行分析与验证。
     从宏观的角度分析整个霜层的生长过程,当冷壁面迅速降温时,霜层的生长过程可以分为三个阶段:冰晶形成与生长期,霜层生长期和霜层充分生长期。霜层生长过程主要与以下三个因素有关:冰核的形成与长大、冰核在结霜表面的粘附作用、冰晶的生长速率。首先,基于结晶学理论,分析了冰核在三种不同工况下(均匀同相成核、壁面成核以及悬浮粒子表面成核)的形成机理,得到了冰核形成的临界半径和半径增长速率对于冰核与结霜壁面之间的粘附力,本文认为主要是分子吸附力的作用结果。
     在分析霜层形成与生长机理的基础上,基于宏观计算流体动力学(CFD)原理和经典成核理论,提出一个描述霜层生长过程的计算模型。模拟了湿空气横掠水平冷壁面时霜层的生长情况,模拟结果与实验数据和使用前人模型的计算数据均拟合良好,说明此计算模型可以定性定量的预测霜层的形成与生长过程。同时,本文给出了霜层物性参数(密度、导热系数)的计算方法,并得到了霜层生长过程中,不同时刻下局部密度和导热系数以及平均密度和导热系数。此外,我们将此霜层生长计算模型扩展到三维模型,模拟了翅片管式换热器在结霜工况下的运行特性,得到了不同时刻下霜层的非稳态生长情况。进行了变参数正交数值试验,考察了翅片管结构参数(翅片间距)和热力参数(湿空气进口流速、湿空气进口含湿量和制冷剂蒸发温度)对翅片管换热器结霜工况下换热特性的影响,模拟结果可用来指导工程设计。
     从相平衡的角度出发,探索抑制霜层形成与生长的方法。在满足工程设计的前提下,增大液体与固体壁面之间的接触角和减小液体与固体壁面之间的接触面积是抑制结霜的有效方法。在超疏水性材料表面布置粗糙元,当粗糙元结构满足一定的条件时,即液滴与壁面之间可以形成“复合接触”的浸润方式时,上述两个条件可以同时满足。使用介观尺度格子Boltzmann方法(LBM),数值研究了液滴撞击水平固壁的动力学行为,通道内气/液两相驱替流动特性和高温液体流经低温通道的换热特性。模拟结果表明,对于超疏水性材料壁面,当表面粗糙元的高度大于液体浸入沟槽内部的深度时,液体与壁面之间形成“复合接触”。之后,改进了基于焓法的格子Boltzmann相变模型,提出了可以用来描述流动液体冻结过程的格子Boltzmann凝固模型,并使用此模型模拟了气体空间内饱和液体在低温固体壁面上的非稳态冻结情况。超疏水性材料表面上,液滴的冻结速度缓慢,形成的冰核接触角较大,冰核与壁面的接触面积较小。此外,增加超疏水性材料壁面的表面粗糙度,可以进一步的延缓液滴的冻结速率。模拟结果定性的说明了使用超疏水性材料粗糙壁面可以抑制霜层的形成和生长。
The phenomenon of frosting widely exists in nature and many engineering fields. When the moist air blows in a surface with the temperature lower than its dew point, the moisture will condense on the surface. In particular, frost will form if the surface temperature is below the freezing point of water. Previous studies show that frost is undesirable in most cases since it will worsen the operating characteristics of equipments and even cause the abnormal running. Therefore, it can benefit the design of engineering equipments running under frost conditions to predict the frost formation and growth. Moreover, it has great implications in engineering fields to study the mechanism of the frost formation in order to alleviate or even prevent the frost formation and eventually eliminate the negative effects of frost. This paper has studied the mechanism of the frost formation, established a new mathematical model for the prediction of the frost formation and numerically simulated the unsteady frost growth with the hope of helping the most reasonable design of engineering equipments. Also, several methods to prevent the frost formation have been proposed, the validity of which has been proved by numerical simulations in this paper.
     From the macroscopic perspective, the frost growth can be categorized into three periods when the temperature is dropped rapidly. They are:the period of the ice crystal formation and growth, the frost growth period and the period of the full frost development. Three factors are mainly associated with the frost growth. They are:ice nucleus'forming, the adhesion of the ice nucleus on the solid surface, and the rate of the ice branch growth. As for the first factor, the crystallization mechanism under three nucleation conditions (i.e. homogeneous nucleation, heterogeneous nucleation and nucleation with nucleation promoters) has been analyzed on the basis of the classical nucleation theory. As a result, the critical radius and the radius growth rate of the nucleus were obtained. With regard to the second factor, the results of this paper show that the adhering force of the ice nucleus on the surface can be attributed to the adsorption between molecules. For the last factor, previous models about the growth of the ice branch have been summarized and analyzed.
     Then, based on the mechanism of the frost formation and growth, a new model is proposed to predict the frost formation and growth with the benefit of the macroscopic CFD (Computational Fluid Dynamics) and the classic nucleation theory. This model was applied to describe the frost formation on the cold surface when the moist air blows in it. The simulation results show a good agreement with the experimental data and previously reported simulation results, which demonstrates the validity of the new model. Furthermore, the calculation methods for frost layer properties, such as density and thermal conductivity, have been provided as well, and the time- and space-dependent frost properties can be predicted for the first time. The new model was expanded into a three dimensional one and applied to investigate the performance of fin-and-tube heat exchanger under frost condition. The transient local frost formation has been obtained. The average frost thickness, heat exchanger coefficient and pressure drop on air-side has been analyzed. The influence factors have also been discussed, such as fin pitch, relative humidity, and air flow rate and evaporating temperature of refrigerant. These simulation results are meaningful for the engineering design.
     Finally, the frost restrain methods have been proposed based on the phase equilibrium theory. In the practical engineering applications, both increasing the contact angle and decreasing the contact area between the liquid and solid surfaces can effectively restrain the frost formation and growth. This paper suggests that rough elements with a "composite contact" arrangement on the super-hydrophobic surface can satisfy the abovementioned purposes. In this paper, the Lattice Boltzmann Method (LBM), an numerical approach on the mesoscopic level, was employed to investigate the kinetics of the clash of the liquid drop against a horizontal solid surface, the flowing characteristics of the gas-liquid displacement and the heat-transfer characteristics of the high temperature fluid flowing in the low temperature channel. The simulation results show that the "composite contact" can be formed if the height of the rough element is greater than the entrapping depth of the droplet into grooves. An improved enthalpy method-based LB model, the solidification model, has been proposed to simulate the freezing process of the flowing fluid. The new model was also used to simulate the unsteady freezing of the saturated liquid on the low temperature solid surface. The results show that the freezing rate is slowly, the contact angle of the ice nucleus is large and the contact area is quite small on the super-hydrophobic surface. Besides, the freezing rate can be reduced further when the smooth super-hydrophobic surface is displaced with the rough super-hydrophobic one. Our results qualitatively verified that the frost restraint effectiveness of the rough super-hydrophobic surface.
引文
[1]Sanders C T. The influence of frost formation and defrosting on the performance of air coolers [J].1974.
    [2]Bragg M B. Effect of under-wing frost on a transport aircraft airfoil at flight Reynolds number [J]. Journal of Aircraft,1994,31(6):1372-1378.
    [3]许旺发.冷面结霜机理及其抑制对策的实验研究:清华大学,2004.
    [4]Adachi K, Saiki K, Sato H. Suppression of frosting on a metal surface using ultrasonic vibrations.1:IEEE,1998:759-762 vol.751.
    [5]Eckman R L. Heat pump defrost controls:a review of past, present, and future technology [J]. ASHRAE transactions,1987,93:1152-1156.
    [6]Llewelyn D S. A significant advance in defrost control [J]. International journal of refrigeration,1984,7(5):334-335.
    [7]Hewitt N, Huang M J. Defrost cycle performance for a circular shape evaporator air source heat pump [J]. International Journal of Refrigeration,2008,31(3):444-452.
    [8]Piening. W. Der warmuebergang an rohren bei freier stromung unter beruchsichtigung der bildung vonschwitzwasser und reif [J]. Gesundheits-ingenieur,1933,56(21):493-501.
    [9]G. J.Trammell D C L. A study of frost formed on a plat heldat sub-freezing temperatures [J]. ASHRAE,1968.
    [10]Jones B W, Parker J D. Frost formation with varying environmental parameters [J]. Journal of Heat Transfer,1975,97:255.
    [11]Hobbs P V, Rangno A L. Ice particle concentrations in clouds [J]. Journal of the atmospheric sciences,1985,42 (23):2523-2549.
    [12]侯普秀,蔡亮,虞维平.霜层生长初期冰晶体结构实验研究及分形分析[J].应用科学学报,2007,25(2).
    [13]吴晓敏,李瑞霞,王维城.表面特性对冷面结霜的影响[J].中国工程热物理学会第十一届学术会议.
    [14]吴晓敏,单小丰,王维城.冷表面结霜的微细观可视化研究[J].清华大学学报:自然科学版,2003,43(010):1437-1440.
    [15]Wu X M, Webb R L. Investigation of the possibility of frost release from a cold surface [J]. Experimental thermal and fluid science,2001,24(3-4):151-156.
    [16]许旺发,吴晓敏,王维城.水平冷面上霜晶生长规律的实验研究[J].低温工程,2003,6.
    [17]吴晓敏,许旺发,王维城.冷面上过冷水珠冻结的实验研究[J].工程热物理学报,2005,26(001):104-106.
    [18]Biguria G, Wenzel L A. Measurement and correlation of water frost thermal conductivity and density [J]. Industrial & Engineering Chemistry Fundamentals,1970,9(1):129-138.
    [19]顾祥红,孔维秀.凝华结霜物理模型研究进展[J].大连大学学报,1999,20(6):34-38.
    [20]Dietenberger M A. Generalized correlation of the water frost thermal conductivity [J]. International Journal of Heat and Mass Transfer,1983,26(4):607-619.
    [21]Brailsford A D, Major K G. The thermal conductivity of aggregates of several phases, including porous materials [J]. British journal of applied physics,1964,15:313.
    [22]Yonko J D. An investigation of the thermal conductivity of frost while forming on a flat horizontal plate:Ohio State University,1965.
    [23]林勇二朗,青木和夫.霜层の成长て融解[J].冷冻,1980,55:632.
    [24]Dietenberger M, Kumar P, Luers J. Frost formation on an airfoil:a mathematical model I [M]:National Aeronautics and Space Administration, Scientific and Technical Information Office,1979.
    [25]孟繁炯.霜层的孔隙率和弯曲率[J].大连海事大学学报,1986,3.
    [26]孟繁炯.理想化多孔介质霜层模型及霜层的孔隙率和弯曲率[J].工程热物理学报,1987,8(1):64-68.
    [27]顾祥红,孟繁炯.凝结结霜霜层导热系数理论分析[J].工程热物理学报,2000,21(003):354-357.
    [28]顾祥红,李晓颖,李宏.凝华结霜导热系数数值计算分析[J].大连大学学报,2006,27(006):53-55.
    [29]Yu B, Cheng P. A fractal permeability model for bi-dispersed porous media [J]. International Journal of Heat and Mass Transfer,2002,45(14):2983-2993.
    [30]郁伯铭.多孔介质输运性质的分形分析研究进展[J].力学进展,2003,33(003):333-346.
    [31]蔡亮,侯普秀,李舒宏.不同孔隙率下霜层导热系数的理论模型[J].建筑热能通风空调,2005,24(002):62-64.
    [32]Kennedy L A, Goodman J. Free convection heat and mass transfer under conditions of frost deposition [J]. International Journal of Heat and Mass Transfer,1974, 17(4):477-484.
    [33]Hosoda T, Uzuhashi H. Effects of frost on the heat transfer coefficient [J]. Hitachi Review,1967,16(6):254-259.
    [34]Jian C, Jin-kang W A N, Guangrong C. Investigation of testing for overall coefficient of heat-transfer concerning forced circulation air coolers during frost condition [J]. Journal of Refrigeration,2001,2:40-44.
    [35]Hayashi Y, Aoki K, Yuhara H. Study of frost formation based on a theoretical model of the frost layer [J]. Heat Transfer-Japanese Research,1977,6(3):79-94.
    [36]Tokura I, Saito H, Kishinami K. Prediction of growth rate and density of frost layer developing under forced convection [J]. Heat and Mass Transfer,1988,22(5):285-290.
    [37]童钧耕,杨志斌.管内强制流动结霜研究[J].上海交通大学学报,1997,31(002):76-80.
    [38]Brian P L T, Reid R C, Shah Y T. Frost deposition on cold surfaces [J]. Industrial & Engineering Chemistry Fundamentals,1970,9(3):375-380.
    [39]Marinyuk B T. Heat and mass transfer, under frosting conditions [J]. International Journal of Refrigeration,1980,3(6):366-368.
    [40]Park Y T. Defrost control method for refrigerator. Google Patents,1993.
    [41]Holmes J S, Daum W, Queen J J. Deterministic refrigerator defrost method and apparatus. Google Patents,2001.
    [42]Bair R H, Weng C. Freezer defrost method and apparatus. Google Patents,2001.
    [43]Kondepudi S, Murali K, Lorsch H, et al. Voiding heat pump evaporator frost through the use of desiccants.29:New York, oartl,1995.
    [44]Kinsara A A, Elsayed M M, Al-Rabghi 0 M. Proposed energy-efficient air-conditioning system using liquid desiccant [J]. Applied thermal engineering,1996,16(10):791-806.
    [45]孙玉清,任美英.抑制换热器湿空气侧结霜的研究[J].工程热物理学报,1997,18(001):95-98.
    [46]Lee H, Shin J, Ha S, et al. Frost formation on a plate with different surface hydrophilicity [J]. International journal of heat and mass transfer,2004, 47(22):4881-4893.
    [47]刘清江,刘中良,王洪燕.自然对流条件下疏水表面与普通金属表面霜生长的对比研究[J].制冷与空调,2004,4(3).
    [48]Highgate D, Knight C, Probert S D. Anomalous Freezing'of water in hydrophilic polymeric structures [J]. applied energy,1989,34(4):243-259.
    [49]Liu Z, Huang L, Gou Y, et al. Experimental investigations of frost release by hydrophilic surfaces [J]. Frontiers of Energy and Power Engineering in China, 2010:1-13.
    [50]李山平,文超,马贞俊.空调器用换热器的表面处理——亲水膜处理[J].FLUID MACHINERY,2003,31(z1).
    [51]Babakin B C, A E M. Frost formation on the surface of refrigeration apparatus underelectric fields [J]. Journal of Refrigeration,1985,2:33-37.
    [52]Gerber A G, Mousavi A. Application of quadrature method of moments to the polydispersed droplet spectrum in transonic steam flows with primary and secondary nucleation [J]. Applied mathematical modelling,2007,31(8):1518-1533.
    [53]Kermani M J, Gerber A G. A general formula for the evaluation of thermodynamic and aerodynamic losses in nucleating steam flow [J]. International journal of heat and mass transfer,2003,46(17):3265-3278.
    [54]Brown D P, Kauppinen E I, Jokiniemi J K, et al. A method of moments based CFD model for polydisperse aerosol flows with strong interphase mass and heat transfer [J]. Computers & fluids,2006,35(7):762-780.
    [55]闵乃本.晶体生长的物理基础[J].上海:上海科技出版社(Min N B Physical Basis of Crystal Growth Shanghai:Shanghai Scientific and Technical Publishers),1(982):339.
    [56]Vali G. Quantitative Evaluation of Experimental Results an the Heterogeneous Freezing Nucleation of Supercooled Liquids [J]. Journal of Atmospheric Sciences,1971, 28:402-409.
    [57]潘晴,孔庆安.制冷蒸发器壁面加有机物涂层对着霜强度以及除霜效果的力学分析[J].制冷,1996,2.
    [58]oNeal D L, Tree D R. Measurement of frost growth and density in a parallel plate geometry [J]. ASHRAE transactions,1984,90 (2):278-290.
    [59]Padki M M, Sherif S A, Nelson R M. A simple method for modeling the frost formation phenomenon in different geometries [J]. Ashrae Transactions,1989,95(2):1127-1137.
    [60]Sami S M, Duong T. Mass and heat transfer during frost growth [J]. ASHRAE transactions, 1989,95:158-165.
    [61]姚杨,姜益强,马最良.翅片管换热器结霜时霜密度和厚度的变化[J].工程热物理学报,2003,24(006):1040-1042.
    [62]Holman J P, Jenkins P E, Sullivan F G. Experiments on individual droplet heat transfer rates [J]. International Journal of Heat and Mass Transfer,1972,15(8):1489-1495.
    [63]ANSYS. Fluent 6.3 user's guide [J].2010.
    [64]Leu J S, Wu Y H, Jang J Y. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators [J]. International journal of heat and mass transfer,2004,47(19-20):4327-4338.
    [65]McDonald J E. Homogeneous nucleation of vapor condensation. Ⅰ. Thermodynamic aspects [J]. American Journal of Physics,1962,30:870.
    [66]McDonald J E. Homogeneous nucleation of vapor condensation. Ⅱ. Kinetic aspects [J]. American Journal of Physics,1963,31:31.
    [67]Angell C A, Goldstein M. Dynamic aspects of structural change in liquids and glasses [M]:New York Academy of Sciences,1986.
    [68]Gerber A G, Kermani M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow [J]. International Journal of Heat and Mass Transfer,2004,47(10-11):2217-2231.
    [69]Gyarmathy G. Condensation in flowing steam, in:M. J. Moore, C. H. Sieverding(Eds.), A von Karman Institute Book on Two-Phase Steam Flow in Turbines and Separators, Hemisphere, London,1976, pp.127-189 [J].
    [70]Lenic K, Trp A, Frankovic B. Transient two-dimensional model of frost formation on a fin-and-tube heat exchanger [J]. International Journal of Heat and Mass Transfer, 2009,52(1-2):22-32.
    [71]Yan W M, Li H Y, Wu Y J, et al. Performance of finned tube heat exchangers operating under frosting conditions [J]. International journal of heat and mass transfer,2003, 46(5):871-877.
    [72]Stoecker W F. How frost formation on coils affects refrigeration systems [J]. Refrigerating Engineering,1957,65(2):42-46.
    [73]Gate R. R., G. D. H, C. F a S. Heat transfer and pressure loss in extended surface heat exchangers operating under frost conditions-part [J]. ASHRAE Transactions,1967,73.
    [74]Niederer D H. Frosting and defrosting effects on coil heat transfer [J]. ASHRAE Trans, 1976,82(1):467-473.
    [75]Gatchilov T S, Ivanova V S. Characteristics of the frost formed on the surface of finned air coolers.2,1979:997-1003.
    [76]Barrow H. A note on frosting of heat pump evaporator surfaces [J]. Journal of Heat Recovery Systems,1985,5(3):195-201.
    [77]Kondepudi S N, 0'Neal D L. Effect of frost growth on the performance of louvered finned tube heat exchangers [J]. International journal of refrigeration,1989, 12(3):151-158.
    [78]陈坚,赵薇华.结霜工况冷风机传热系数实验研究[J].制冷,2001,20(002):16-19.
    [79]陈楠,申江,徐烈.管翅式表冷器数值模拟与性能分析[J].低温与超导,2003,31(002):60-64.
    [80]刘凤珍,陈焕新,屈高林.结霜翅片管换热器热质传递分析[J].低温工程,2004,(001):52-55.
    [81]Senshu T, Yasuda H, Oguni K, et al. Heat Pump Performance under Frosting Conditions: Part I-Heat and Mass Transfer on Cross-finned Tube Heat Exchangers under Frosting Conditions [J]. ASHRAE Trans,1990,96(1):324-329.
    [82]S. P 0, Krakow K. L L S. Evaporator model for operation with dry, wet and frosted finned surfaces, Part 1:heat transfer amd fluid flow theory. [J]. ASHRAE Transfer,1990, 96(1):373-380.
    [83]Ameen F R. Study of frosting of heat pump evaporators.1993:61-71.
    [84]丁兵,阙雄丁.翅片管式蒸发器结霜特性模拟[J].流体机械,1995,23(004):52-56.
    [85]张信安.蒸发器的动态特性仿真:大连海事大学,2001.
    [86]刘志强,汤广发,张国强.空气源热泵蒸发器结霜过程仿真研究[J]. HEATING VENTILATING & AIR CONDITIONING,2004,34(9).
    [87]Chen H, Thomas L, Besant R W. Modeling frost characteristics on heat exchanger fins: Part Ⅰ. Numerical model [J]. ASHRAE Transactions,2000,106(2):357-367.
    [88]Chen H, Thomas L, Besant R W. Modeling frost characteristics on heat exchanger fins: Part Ⅱ, Model validation and limitations [J]. Ashrae Transactions,2000,106(pt 2):368-376.
    [89]刘希女,杨永安,邹同华.叉排椭圆管强迫对流换热的数值模拟[J].制冷与空调(四川),2004,(001):16-19.
    [90]刘小川.结霜工况下翅片管换热器传热传质的数值模拟:上海交通大学,2007.
    [91]Tong J S, Li J. Calculation of thermophysical properties of fluid [J]. Tsinghua University Press, Beijing,1982.
    [92]Zhang Z. Principles and equipment of refrigeration Machine Press, Beijing [J].1986.
    [93]Cheng Y T, Rodak D E. Is the lotus leaf superhydrophobic? [J]. Applied physics letters, 2005,86:144101.
    [94]Nijhout H F. The development and evolution of butterfly wing patterns [J]. Smithsonian series in comparative evolutionary biology (USA),1991.
    [95]Young T. An essay on the cohesion of fluids [J]. Philosophical Transactions of the Royal Society of London,1805,95:65-87.
    [96]Cassie A B D, Baxter S. Wettability of porous surfaces [J]. Trans Faraday Soc,1944, 40:546-551.
    [97]Qian Y H, d'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation [J]. EPL (Europhysics Letters),1992,17:479.
    [98]Chen H, Chen S, Matthaeus W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method [J]. Physical Review A,1992,45(8):5339-5342.
    [99]郭亚丽.纳米流体固着液滴蒸发等流动与传热问题的LBM分析:大连理工大学,2009.
    [100]Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954,94(3):511.
    [101]Luo L S. Some recent results on discrete velocity models and ramifications for lattice Boltzmann equation [J]. Computer physics communications,2000,129 (1):63-74.
    [102]Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equation [J]. Physical review letters,1986,56(14):1505-1508.
    [103]Chopard B, Droz M. Cellular automata modeling of physical systems [M]:Cambridge University Press Cambridge, UK,1998.
    [104]郭照立.流体动力学的格子Boltzmann方法[M]:湖北科学技术出版社,2002.
    [105]何雅玲,王勇,李庆.格子Boltzmann方法的理论及应用[M]:科学出版社,2009.
    [106]Gunstensen A K, Rothman D H, Zaleski S, et al. Lattice Boltzmann model of immiscible fluids [J]. Physical Review A,1991,43(8):4320.
    [107]Shan X. Simulation of Rayleigh-Benard convection using a lattice Boltzmann method [J]. Physical Review E,1997,55(3):2780.
    [108]Swift M R, Osborn W R, Yeomans J M. Lattice Boltzmann simulation of nonideal fluids [J]. Physical Review Letters,1995,75(5):830-833.
    [109]Swift M R, Orlandini E, Osborn W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems [J]. Physical Review E,1996,54(5):5041.
    [110]He X, Chen S, Zhang R. A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability* 1 [J]. Journal of Computational Physics,1999,152(2):642-663.
    [111]Raiskinm ki P, Shakib-Manesh A, J sberg A, et al. Lattice-Boltzmann simulation of capillary rise dynamics [J]. Journal of statistical physics,2002,107(1):143-158.
    [112]Hyv luoma J, Raiskinm ki P, J sberg A, et al. Evaluation of a lattice-Boltzmann method for mercury intrusion porosimetry simulations [J]. Future Generation Computer Systems, 2004,20(6):1003-1011.
    [113]Martys N S, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method [J]. Physical Review E,1996,53(1):743.
    [114]Alexander F J, Chen S, Sterling J D. Lattice boltzmann thermohydrodynamics [J]. Physical Review E,1993,47(4):2249-2252.
    [115]Chen Y, Ohashi H, Akiyama M. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations [J]. Physical Review E,1994, 50(4):2776.
    [116]Bartoloni A, Battista C, Gabasino S, et al. LBE simulations of Rayleigh-Benard convection on the APE100 parallel processor [J]. International Journal of Modern Physics C,1993,4:993-993.
    [117]Mezrhab A. Hybrid lattice-Boltzmann finite-difference simulation of convective flows [J]. Computers & fluids,2004,33(4):623-641.
    [118]Noble D R, Georgiadis J G, Buckius R 0. Direct assessment of lattice Boltzmann hydrodynamics and boundary conditions for recirculating flows [J]. Journal of statistical physics,1995,81(1):17-33.
    [119]Noble D R, Georgiadis J G, Buckius R 0. Comparison of accuracy and performance for lattice Boltzmann and finite difference simulations of steady viscous flow [J]. International journal for numerical methods in fluids,1996,23(1):1-18.
    [120]Zhao-Li G, Chu-Guang Z, Bao-Chang S. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method [J]. Chinese Physics,2002,11:366.
    [121]Cornubert R, d'Humieres D, Levermore D. A Knudsen layer theory for lattice gases [J]. Physica D:Nonlinear Phenomena,1991,47(1-2):241-259.
    [122]Ziegler D P. Boundary conditions for lattice Boltzmann simulations [J]. Journal of Statistical Physics,1993,71 (5):1171-1177.
    [123]Zou Q, He X. On pressure and velocity flow boundary conditions and bounceback for the lattice Boltzmann BGK model [J]. Arxiv preprint comp-gas/9611001,1996.
    [124]Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations [J]. International journal for numerical methods in fluids,2002,39(4):325-342.
    [125]Chen S, Martinez D, Mei R. On boundary conditions in lattice Boltzmann methods [J]. Physics of Fluids,1996,8:2527.
    [126]Batchelor G K. An introduction to fluid dynamics [M]:Cambridge Univ Pr,2000.
    [127]Fromm J E. numerical solutions of the nonlinear equations for a heated fluid layer [J]. Physics of Fluids,1965,8 (10):927-944.
    [128]Kono K, Ishizuka T, Tsuda H. Application of lattice Boltzmann model to multiphase flows with phase transition [J]. Computer physics communications,2000, 129(1-3):110-120.
    [129]Zeng J B, Li L J, Liao Q, et al. Simulation of phase transition process using lattice Boltzmann method [J]. Chinese science bulletin,2009,54(24):4596-4603.
    [130]赵凯,李强,宣益民.相变过程的格子Boltzmann方法模拟[J].计算物理,2008,25(002):151-156.
    [131]Jiaung W S, Ho J R, Kuo C P. Lattice Boltzmann method for the heat conduction problem with phase change [J]. Numerical Heat Transfer, Part B:Fundamentals,2001, 39(2):167-187.
    [132]Shyy W. Computational fluid dynamics with moving boundaries [M]:Hemisphere Pub,1996.
    [133]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries* 1 [J]. Journal of computational physics,1981,39(1):201-225.
    [134]Gunstensen A K, Rothman D H. Lattice-Boltzmann studies of immiscible two-phase flow through porous media [J]. Journal of geophysical research,1993,98(B4):6431-6441.
    [135]Semma E, El Ganaoui M, Bennacer R, et al. Investigation of flows in solidification by using the lattice Boltzmann method [J]. International Journal of Thermal Sciences, 2008,47(3):201-208.
    [136]Liu Z, Gou Y, Wang J, et al. Frost formation on a super-hydrophobic surface under natural convection conditions [J]. International Journal of Heat and Mass Transfer, 2008,51(25-26):5975-5982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700