用户名: 密码: 验证码:
旋流静态混合器内流场瞬态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋流静态混合器作为一种新型化工过程强化设备,广泛适用于石油化工、食品加工、化学工业等精细化工中间体和大宗有机化工原料的单元混合操作。与传统的搅拌槽反应器相比,静态混合器大幅度提高设备的生产能力,降低工业生产成本,提高产品收率和质量,减少废弃物排放,产生显著的经济效益和社会效益。但到目前为止,对其瞬态流动特性的理论探讨以及对工业生产过程的指导远没有达到预期的水平。本文分析了SK型混合器内高粘度流体的运动特性;通过对SK型静态混合器的瞬态流场实验测量,重点研究了混合器内瞬态流场的混沌和分形特性;利用计算流体力学软件考察含有不同混合组件的静态混合器的流动阻力和宏观混合传质特性,用以指导这种混合器的优化和放大。
     基于流体动力学、非线性动力学及Ottino理论,建立了高粘度流体在SK型静态混合器内的流体流动模型。分析双极坐标系下二维Navier-Stokes方程流函数的边值问题,并建立了相应的流体微分运动方程。用Poincare映射方法对静态混合器内蠕动流的动力学行为进行了数值仿真研究。给出了系统响应随管壁转动频率变化的最大Lyapunov指数曲线图、典型的Poincare截面图和相图。初步判定:高粘度流体在SK型静态混合器内轴截面的径向二次流动存在混沌特性。
     为揭示高雷诺数下SK型静态混合器非稳态流动特性,利用激光多普勒测速仪对SK型静态混合器的瞬时速度场进行测量。采用功率谱、最大李雅谱指数、相平面识别混合器内瞬时速度时间序列的混沌特性。基于傅立叶变换对SK型静态混合器速度波动信号进行时域分解,利用自相关函数和互信息函数研究了各个频率段信号的线性相关和非线性相关性。实验研究表明:SK型静态混合器内速度波动时间序列具有混沌特性;功率谱函数随频率的增加呈幂函数衰减;瞬时速度脉动主要能量集中在3.9Hz以下,62.5Hz以上的信号线性无关,75Hz以上的信号不存在非线性和线性相关性。
     利用湍流高阶矩参数平坦因子和偏斜因子分析了静态混合器内脉动速度的概率密度函数分布以及与正态分布的定量差别。实验结果表明:SK型静态混合器湍流主体区的的倾斜因子S在-2.79和3.12之间波动,平坦因子数值主要分布在3~9.5之间并且F>3和F<3的区域呈片状间歇性分布,证明了SK型静态混合器速度分布偏离高斯分布程度大并且存在拟序结构。
     为了探讨静态混合内非线性、非均匀性和混沌特性机理,利用高速数据采集系统对SK型静态混合器管壁处脉动压力进行测量。结合小波变换模极大值理论对采集的不同进口流量下壁压波动时间序列用Daubechies二阶小波提取1~7尺度下的特征信号,并分别对提取的信号进行R/S分析。通过对压力波动信号不同尺度下的细节信号与概貌信号研究发现,在不同的尺度下表现出不同的分形结构,且随着进口流量的增大,分形结构的变化趋势基本一致。此外,该系统不仅存在确定性非周期成分,而且不同尺度的旋涡之间的能量交换,导致混沌的产生。各尺度信号的能量分布表明,压力波动信号主要体现了宏观尺度的漩涡级串的相互作用。
     为了预测旋流静态混合器内非稳态宏观混合特性,利用脉冲示踪法和计算流体力学相结合,基于正交实验原理研究示踪剂在不同雷诺数下、混合元件长径比及监测位置处的停留时间分布特性。分析操作条件对平均停留时间和径向强化系数的影响顺序,比较了MSM、KSM、SSM、RSM四种旋流静态混合器的强化混合效果。结果表明:SK型静态混合器内的液体单相流动的轴向返混系数较小且数量级为10-2,流动状态接近活塞流;极差计算结果表明对停留时间分布影响顺序为:进口流速>混合元件的长径比>监测位置;而监测位置对混合元件的径向强化能力影响最大,KSM的强化能力最大,SSM的强化能力最小。提出强化因子优化混合器的级数,径向强化系数与螺旋叶片级数的负0.638次幂呈线性关系。利用量纲分析和π定理简化了新型静态混合器流动阻力的影响因素之间的关系式,通过数据整理和回归得到了普遍适用的流动阻力摩擦系数关联式,为其工业化应用提供了理论依据。
Static mixers, also known as motionless mixers, have been widely used in the PI fields. They are available in petrochemical plants, food and chemical industries for mixing applications of fine chemical intermediates and large bulk organic chemical raw material. Their use in continuous processes create prominent benefits for the economy and society and is an attractive alternative to conventional agitation since increased production capability, reduced manufacturing costs, higher yield and lessened offal exhaust can be achieved at lower cost. The following works have been done because the relevant theory research and directions for engineering application have not got the expected aims until recently. The flow characteristic of high viscous fluids inside a Kenics static mixer (KSM) was analyzed. The chaotic and fractal characteristic of instantaneous flow field in the KSM were experimental investigated. The flow resistance and mass transfer of tracer in the static mixers with different arrangements twisted-leaves were paid more attention employing the computational fluid dynamics software.
     A modified model for the high viscosity fluids motion inside the KSM was established based on hydrokinetics, nonlinear dynamics and Ottino theory. The stream function formulation of the two-dimensional Navier-Stokes equations was developed with boundary conditions using the bipolar coordinates. Corresponding differential flow equations of stokes flow were derived and analyzed using Poincare mapping method. The bifurcation diagrams were given about the response changes with the frequency ratio, and the largest lyapunov exponent profiles and Poincare maps at some frequencies were given. The simulation results indicate that the secondary flow characteristic of high viscosity fluids has obvious chaos motion feature in its axial cross-sections.
     In order to evaluate the characteristic of unsteady flow in KSM with 0.04 m in diameter and 1.25 in aspect ratio, the time series of instantaneous velocity were measured with Laser Doppler Anemometry. The power spectrum function, the largest Lyapunov exponent and phase plane were applied to identify the chaotic characteristic of instantaneous velocity time series, respectively. The fluctuation signals of velocity are decomposed into different frequency bands signals based on Fourier transform. The linear and nonlinear correlation characteristics of different frequency bands signals are evaluated with auto-correlation function and mutual information function, respectively. The experimental results indicate that the signals of more than 62.5 Hz in frequency have no linear correlation, and the signals of more than 75 Hz in frequency should be considered as noise for linear or nonlinear correlation. The frequency for main energy of fluctuations is below 3.9 Hz, and the velocity fluctuation has power-law attenuation between power amplitude and frequency.
     The deviations between the probability density functions of the Cartesian velocity fluctuations in KSM and the corresponding normal distribution described by turbulent higher order items, skewness and flatness factors, were analyzed quantitatively. The experimental results indicate that the value of skewness fluctuates from -2.79 to 3.12, which means that the distribution of velocity field is not a normal distribution, and the existence of coherent structure is indicated by the distribution of flatness of pulsant velocity in a range of 3~9.5, and the zones of F<3 and F>3 are concurrence with intermittence which will alter according to diversification the axial position of cross-sections. Furthermore, the variations of the probability density functions with Reynolds number were examined.
     In order to understand the intrinsic formalism of heterogeneity, non-linearity and chaotic behavior of fluid system in KSM, the signals of tube-pressure fluctuation dynamics with different flow rates were collected with high speed collector. Tube-pressure signals at different flow rates denoised using the wavelet transform modulus maxima method were firstly decomposed to 1~7 scale detail signals and scale approximation and then evaluated using multi-scale and R/S analysis method based on Daubechies second order wavelet. By analyzing profile of different scale signals, different fractal structure at different scales were found, and there was the similar trend with the flow rate rising. Besides, it showed that there were some non-periodic components in the system, and the similar energy exchange among vortexes caused the diffusion of the turbulence, which was a characteristic of an opening system. The vortex with different scale would cause the chaos. By analyzing energy profile of different scale signals, the pressure fluctuations mainly reflect macro-scale interaction between the vortex and the liquid phase was found.
     The unsteady mixing processes in the static mixers with different axial arrangements were examined by solving the transport equation of the tracer based on pulse tracer input technique and computational fluid dynamics commerical software-Fluent. The characteristics of residence time distribution (RTD) monitored at different cross-sections with different Reynolds numbers and aspect ratios were evaluated and analyzed based on orthogonal experiment, and the crucial orders of factors were ranked by the range analysis of mean value and square deviation. The results showed that the order of axial back mixing coefficient is 10-2, and the flowing state of the fluid in the KSM approaches plug flows. It is revealed that Reynolds number plays a more important role compared with aspect ratio for back mixing which is reverse for RTD. The mixing-strengthen capability were compared among the MSM, KSM, SSM and RSM mixers based on the concentration response characteristics. By analyzing the CFD results, the ratios Z of pressure drop were found in good agreement with the experimental as well as the results reported in the literature about KSM. Among the different arrangement, KSM has the best strengthen-mixing performance but SSM has the least strengthen capability. Strengthened factor H was proposed to optimize the element number, a linear relationship between radial strengthened factor and negative power of helical element number was concluded. The relationship between all factors influencing flow resistance in the new type static mixers was simplified, and general relationship among them was gained by using the dimensional analysis andπtheorem which offers the theoretical base for the industry application.
引文
[1]闵恩泽,吴巍等,绿色化学与化工,北京:化学工业出版社,2001,118~121
    [2]骆培成,程易,汪展文等,液一液快速混合设备研究进展,化工进展,2005,24(12):1319~1326
    [3]肖林久,静态混合反应技术及其在硝化反应等化工生产中的应用,精细化工原料及中间体,2005,10:8~11
    [4] Thakur R. K., Vial Ch., Nigam K. D. P., et al., Static mixers in the process industries—A review, Trans IChemE, 2003, 81(7): 787~826
    [5]陈志平,章序文,林兴华,搅拌与混合设备设计选用手册,北京:化学工业出版社,2004,434~440
    [6] Cybulski A and Werner K. Static mixers-criteria for applications and selection, International Chemical Engineering, 1986, 26(1): 171~180
    [7] John R. Bourne, Eros Crivelli and Paul Rys., Chemical selectivity disguised by mass diffusion V: Mixing-disguised azo coupling reactions, Helvetica Chimica Acta, 1977, 60(8): 2944-2957.
    [8] M?rten Regner, Karin ?stergren and Christian Tr?g?rdh, Effects of geometry and flow rate on secondary flow and the mixing process in static mixers-A numerical study, Chemical Engineering Science, 2006, 61(18): 6133~6141
    [9] M?rten Regner, Karin ?stergren and Christian Tr?g?rdh, Influence of Viscosity Ratio on the Mixing Process in a Static Mixer: Numerical Study, Ind. Eng. Chem. Res., 2008, 47(9): 3030~3036
    [10]张鸿雁,陈晓春,王元,内置翼片管式静态混合器混合效果的大涡模拟,西安交通大学学报,2005,39(7):673~676
    [11]朱永全,戴干策,路慧玲,网格球型静态混合器,中国实用新型专利,ZL90213267.9,1991-06-26
    [12]倪新宇,低阻力静态混合器,中国实用新型专利,ZL95239034.5,1995-11-08
    [13]施景云,刘兆彦,新型静态混合器,中国发明专利,ZL00109872.1,2001-01-03
    [14]徐立群,列管式静态混合器,中国实用新型专利,ZL02210355.4,2003-03-19
    [15]胡妹华,袁茂全,操作压力可调节的静态混合器,中国实用新型专利,ZL02217016.2,2003-04-22
    [16]吴剑华,环氧丙烷生产用单管多旋静态混合管式丙烯氯醇化反应生产装置及生产方法,中国发明专利,ZL200510045606.8,2005-10-12
    [17]吴剑华,单管多旋流体混合装置,中国实用新型专利,ZL200420055315.8,2006-03-29
    [18]孟辉波,吴剑华,禹言芳等,新型静态混合器流动阻力特性数值研究,石油化工高等学校学报,2007,20(4):59~62
    [19]刘春江,刘辉,陆寒冰等,管道静态混合器的双锥面多流道混合单元体,中国发明专利,ZL 200610130489.X,2007-07-25
    [20]傅新,刘素芬,阮晓东,基于拉格朗日跟踪法的微混合器内混沌混合特性,机械工程学报,2008,44(11): 64~68
    [21]王瑞金,林建忠,郑友取,一种新型螺旋式微混合器及其流场的数值研究,中国机械工程,2006,l7(l3):1417~1420
    [22]王瑞金,林建忠,李志华,影响微槽道流动扩散特性因素的研究,中国机械工程,2005,16(4):345~349
    [23] Arimond J. and Erwin L., Modeling of continuous mixers in polymer processing, Journal of engineering for industry, 1985, 107(1): 70~76
    [24] Arimond J. and Erwin L., A simulation of a motionless mixer, Chemical engineering communications, 1985, 37(1):105~126
    [25] Dackson K. and Nauman E. B., Fully developed flow in twisted tapes: a model for motionless mixing, Chemical engineering communications, 1987, 39(2): 381~395
    [26] Bakker A. and LaRoche R., Flow and mixing with Kenics static mixer, Cray Channels, 1993, 15(3): 25~28
    [27] Hobbs D. M. and Muzzio F. J., The Kenics static mixer: a three-dimensional chaotic flow, Chemical Engineering Journal, 1997, 67(3): 153~166
    [28] Hobbs D.M. and Muzzio F.J., Reynolds number effects on laminar mixing in the Kenics static mixer, Chemical Engineering Journal, 1998, 70(2): 93~104
    [29] Hobbs D. M. and Muzzio F. J., Effects of injection location, flow ratio and geometry on Kenics mixer Performance, AI.ChE Journal, 1997, 43(12): 3121~3132
    [30] Hobbs D. M., Swanson P. D. and Muzzio F. J., Numerical characterization of low Reynolds number flow in the Kenics static mixer,Chemical Engineering Science, 1998, 53(8): 1565~1584
    [31] Hobbs D.M. and Muzzio F.J., Optimization of a static mixer using dynamical systems techniques, Chemical Engineering science, 1998, 53(18): 3199~3213
    [32] Byrde O. and Sawley M.L., Optimization of a Kenics static mixer for non-creeping flow conditions, Chemical Engineering Journal, 1999, 72(2): 163~169
    [33] Meleshko V. V., Galaktionov O. S., Peters G. W. M., et al., Three-dimensional mixing in Stokes flow: the partitioned pipe mixer problem revisited, European Journal of Mechanics - B/Fluids, 1999, 18(5): 783~792
    [34] Fang J. Z. and Lee D. J., Micromixing efficiency in static mixer, Chemical Engineering Science, 2001, 56(12): 3797~3802
    [35] Fourcade E., Wadley R., Hoefsloot H.C., et al., CFD calculation of laminar striation thinning in static mixer reactors, Chemical Engineering Science, 2001, 56(23): 6729~6741
    [36]刘仁昇,程铎,静态混合器的设计和应用,化学反应工程与工艺,1986,3(2):79-92
    [37]费维扬,许异辉,胡忭强等,Kenics静态混合器的流体力学性能,化学工程,1992,20(5):10~16
    [38]翟俊霞,陈嘉南,涂善东,含静态混合元件管内流体速度测量与实验系统,石油机械,2003,31(12):1-3
    [39]翟俊霞,涂善东,李大骥,含静态混合器元件乙烯裂解炉管内流场的数值模拟,兰州理工大学学报,2004,30(5):55~58
    [40]李洪亮,马晓建,方书起,Kenics型静态混合器流动阻力的实验研究,郑州工学院学报,1995,16(4):62-65
    [41]张春梅,吴剑华,龚斌,SK型静态混合器湍流阻力的研究,化学工程,2006,34(10):27~30
    [42] Grace C.D., Static mixing and heat transfer, Chemical processing and Engineering, 1971, 52 (7): 57~59
    [43] Lecjaks Z., Machac I. and Sir J., Pressure loss in ?uids ?owing in pipes equipped with helical screws. International Chemical Engineering, 1987, 27(2): 205~209
    [44] Sir J. and Lecjaks Z., Pressure drop and homogenization efficiency of a motionless mixer, Chemical Engineering Communication, 1982, 16: 325~334
    [45] Joshi P., Nigam K. D. P. and Nauman E. B., The Kenics static mixer: new data and proposed correlations, The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 265~271
    [46] Hyun-Seob Song and Sang Phil Han, A general correlation for pressure drop in a Kenics static mixer, Chemical Engineering Science, 2005, 60(21): 5696~5704
    [47]袁向前,谢声礼,王家莲,氯醇化管道反应新工艺的压降和传质的研究,化学反应工程与工艺,1996,12(4):384~389
    [48]王钢,沈士德,静态混合器气液两相流压降的研究,化学工程,1993,21(6):47~52
    [49]江灿星,静态混合器在沥青调和上的应用,石油化工设备,1986,7:44~46
    [50]朱慎林,螺旋型静态混合器的试验及应用,石油化工设备,1986,7:12-15
    [51]陈寿林,戈勇,静态混合器在?-氧化铝担体配料工艺中的应用,日用化学工业,1997,3:20-23
    [52]何浩淼,黄雄斌,肖世新等,油田三次采油中静态混合器的优选,北京化工大学学报,2004,31(4):23~27
    [53]陈再良,王传洋,静态混合器对PP/MMT纳米复合材料微观形态的影响,塑料工业,2004,32(11):31-32,42
    [54]乔聪震,李成岳,陈标华等,离子液体催化苯与1-十二烯烷基化的循环反应-分离实验装置,化工学报,2004,55(12):2038~2042
    [55]叶楚宝,施龙生,蔡志清,SK型静态混合器用于高黏度介质的强化传热,石化技术与应用,2006,24(2):118~120
    [56]禹言芳,吴剑华,孟辉波,静态混合器的微观研究与工业化应用进展,机械设计与制造,2007,5:211-212
    [57]金仁村,郑平,王向东等,改进型气升式内环流硝化反应器氧传递特性的研究,高校化学工程学报,2006,20(1):40~45
    [58] Douroumis D. and Fahr A., Enhanced dissolution of Oxcarbazepine microcrystals using a static mixer process, Colloids and Surfaces B: Biointerfaces, 2007, 59(2): 208~214
    [59]刘宗华,混沌动力学基础及其应用,北京:高等教育出版社,2006,1~4
    [60]张琪昌,王洪礼,竺致文等,分叉与混沌理论及应用,天津:天津大学出版社,2005,169~180
    [61] Grassberger P. and Procaccia I., Estimation of the Kolmogorov entropy from a chaotic signal, Physical Review A, 1983, 28(4): 2591~2593
    [62] Grassberger P. and Procaccia I., Characterization of strange attractors, Physical Review Letters, 1983, 50(5): 346~349
    [63]陈国,刘代俊,梁斌等,湍流状况下的管式反应器中的速度时间序列关联维数分析,高校化学工程学报,2003,17(2):221~225
    [64]刘代俊,分形理论在化学工程中的应用,北京:化学工业出版社,2006,127~150
    [65]赵贵兵,阳永荣,流化床压力波动多尺度多分形特征,高校化学工程学报,2003,17(6):648~654
    [66] Packard N. H., Crutchfield J. R., Farmer J. D., et al., Geometry from a time series, Physical Review Letters, 1980, 45(9): 712~716
    [67] Takens F., Determing strang attractors in turbulence, Lecture notes in Math, 1981, 898: 361~381
    [68]吕金虎,陆君安,陈士华,混沌时间序列分析及其应用,武汉:武汉大学出版社,2002
    [69] Wolf A., Swift J. B., Swinney H. L., et al., Determining Lyapunov exponents from a time series, Physica D, 1985, 16(3): 285~317
    [70] Barana G. and Tsuda I., A new method for computing Lyapunov exponents, Phys. Lett. A, 1993, 175: 421~427
    [71]金哲山,李志鹏,高正明,应用功率谱密度与小波分析组合法研究搅拌槽内宏观不稳定性,过程工程学报,2004,7(2):241~245
    [72] Sun Huaiyu, Wu Yuan, Xu Chenghai, Pressure Fluctuation in the Submerged Circulative Impinging Stream Reactor, Chinese Journal of Chemical Engineering, 2006, 14(4): 428~434
    [73] Shannon C.E., A Mathematical Theory of Communication, Bell System, 1948, 27: 623~656
    [74] Renyi A., Probability theory: Appendix, North-Holland: Amsterdam, 1970, 321~327
    [75]张建伟,玄书鹏,撞击流反应器压力波动信号的Hilbert-Huang变换分析,石油化工高等学校学报,2007,20(2):92~96
    [76]张建伟,焦丽,基于撞击流混合器压力波动信号的小波多重分形奇异谱,过程工程学报,2006,6(4):627~632
    [77]张建伟,焦丽,撞击流反应器压力波动的多尺度多分形特征分析,化工学报,2006,57(7):1553~1559
    [78]龚斌,吴剑华,王宗勇等,SK型静态混合器流体湍流时传热性能的研究,高校化学工程学报,2008, 22(3): 384~388
    [79]吴剑华,张春梅,金丹等,SK型静态混合器湍流性能的实验研究,过程工程学报,2008,8(4):714-718
    [80]龚斌,张静,张春梅等,扭旋叶片组合对静态混合器流场特性影响,北京化工大学学报,2008,35(3):84-88
    [81]李静海,浅谈21世纪的化学工程,化工学报,2008,59(8):1879~1883
    [82]郭慕孙,李静海,三传一反多尺度,自然科学进展,2000,10(12):1078~1082
    [83]赵贵兵,石炎福,余华瑞,流化床压力波动混沌预测研究,化工学报,2000,51(5):660~665
    [84]赵贵兵,石炎福,气-固流化床压力波动功率谱指数衰减与阵发性混沌行为探讨,过程工程学报,2002,2(2):101~106
    [85]赵贵兵,陈纪忠,阳永荣,流化床压力波动混沌性质探讨,化工学报,2002,53(6):655~659
    [86]张建伟,焦丽,王婷,撞击流反应器内压力波动信号的间歇性分析,石油化工高等学校学报,2006,19(2):84~88
    [87]张建伟,汪洋,汤慧华等,浸没循环撞击流反应器撞击区压力波动的混沌分析,化工学报,2005,56(12):2309~2315
    [88] Suryaprakash Ganti and Bharat Bhushan, Generalized fractal analysis and its applications to engineering surfaces, Wear, 1995, 180(1): 17~34
    [89] Zhao G B, Chen J Z and Yang Y R, Predictive model and deterministic mechanism in a bubbling fluidized bed, AIChE Journal, 2001, 47(7): 1524~1532
    [90] Finn J. M., Goettee J. D., Toroczkai Z., et al., Estimation of entropies and dimensions by nonlinear symbolic time series analysis, Chaos, 2003, 13(2): 444~456
    [91]朱兰瑾,林诚,气固喷动床压力波动的Hurst分析,福州大学学报(自然科学版),2003,31(2):247~252
    [92] Chhabra A. B., Meneveau C., Jensen R. V., et al., Direct determination of the f(?) singularityspectrum and its application to fully developed turbulence, Physical Review A, 1989, 40(9): 5284~5294
    [93] Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, et al., Fractal measures and their singularities: The characterization of strange sets, Nuclear Physics B - Proceedings Supplements, 1987, 2: 501~511
    [94] Arneodo A., Bacry E.and Muzy J. F., The thermodynamics of fractals revisited with wavelets, Physica A: Statistical and Theoretical Physics, 1995, 213(1-2): 232~275.
    [95]焦海亮,包雨云,黄雄斌等,高黏度流体混合研究进展,化工进展,2007,26(11):1574~1582
    [96]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004,5~8
    [97]王林翔,卢著敏,陈鹰等,流体混沌混合过程的可视化方法研究,应用力学学报,2002,19(3):1~4
    [98]李万平,计算流体力学,武汉:华中科技大学出版社,2004,161 ~162
    [99] Kusch H.A.and Ottino J.M., Experiments on mixing in continuous chaotic ?ows, Journal of Fluid Mechanics, 1992, 236(1): 319~348
    [100]王建军,金有海,旋风管内气相的湍流运动特性,过程工程学报,2004,4(3):198~203
    [101]刘春江,李莹珂,黄莹等,规整填料单元内流场的三维LDV测量,化工学报,2006,57(7):1543~1547
    [102]王建军,王连泽,刘成文,带有减阻杆的旋风分离器内气体流动分析,化工学报,2005,56(6):989~994
    [103]郭莹,袁希钢,曾爱武等,基于浓度/速度场测量的吸收过程液相传质系数,化工学报,2006,57(6):1277~1283
    [104]朱东华,张晓晖,基于激光多普勒效应的舰船尾流探测研究,激光技术,2006,30(3):298~300
    [105]黄德康,李彩荣,朱茂华,激光多普勒测速中散射粒子的大小对信噪比的影响,光学技术,2003,29(2):164~165
    [106]舒玮,湍流中散射粒子的跟随性,第二届全国流体力学会议论文集,北京:科学出版社,1983
    [107] Mei R., Velocity fidelity of flow tracer particles, Eexpriments in Fluids, 1996, 22(1): 1~13
    [108]周水洪,邓先和,何兆红等,旋流片强化传热的数值模拟和场协同分析,化工学报,2007,58(10):2437~2443
    [109]张琳,钱红卫,宣益民等,自转螺旋扭带管内三维流动与传热数值模拟,化工学报,2005,56(9):1633~1638
    [110]孔松涛,董其伍,刘敏珊,热量运输机理及在管内螺带强化传热的应用,机械工程学报,2007,43(4):83~87
    [111]王杨君,邓先和,李志武等,旋流片支撑管束的传热与流阻性能,化工学报,2007,58(1):21~26
    [112]王秋旺,罗来勤,曾敏等,交错螺旋折流板管壳式换热器壳侧传热与阻力性能,化工学报,2005,56(4):598~601
    [113]薛年喜,Matlab在数字信号处理中的应用,北京:清华大学出版社,2003,95~97
    [114]赵贵兵,陈纪忠,阳永荣,流化床压力脉动信号时间延迟相关性,化工学报,2002,53(12):1281~1286
    [115] Andrew M. Fraser and Harry L., Swinney Independent Coordinates for Strange Attractors from Mutual Information, Physical review A, 1986, 33(2): 1134~1140
    [116]冀海峰,黄志尧,基于小波变换的气固流化床压力流动信号的分析,高校化学工程学报,2000,14(6):553~557
    [117]赵贵兵,陈纪忠,阳永荣,Daubechies小波对流化床压力波动的分解研究,高校化学工程学报,2003,17(3):272~278
    [118]赵贵兵,李天铎,阳永荣等,气固两相流压力波动信号分析,中国粉体技术,2001,7(3):6~10
    [119]孙怀宇,徐成海,伍沅,浸没循环撞击流反应器压力波动信号的小波分析,东北大学学报(自然科学版),2006,27(11):1259~1262
    [120]李力,屈梁生,Haar小波变换在变速器齿轮故障诊断中的应用,汽车工程,2003,25(5):510~513
    [121]赵丹培,王延杰,李桂菊,基于平稳小波变换的有噪弱目标检测方法的研究,光学技术,2005,31(3):380~383,387
    [122]管德清,蒋欣,基于小波分析的Timoshenko梁裂缝识别研究,振动与冲击,2007,26(5):67~70
    [123]张兆顺,崔桂香,许春晓,湍流理论与模拟,北京:清华大学出版社,2005,80~81
    [124]周云龙,王强,杨志行等,基于子波能量特征的气液两相流流型辨识方法,化工学报,2007,58(8):1948~1954
    [125]姜建东,陈进,屈梁生,自仿射信号分维数估计算法的改进,信号处理,1999,15(1):54~59
    [126] Kumar V., Vaibhav Shirke and Nigam K. D. P., Performance of Kenics static mixer over a wide range of Reynolds number, Chemical Engineering Journal, 2008, 139(2): 284~295
    [127]戴干策,陈敏恒,化工流体力学(第二版),北京:化学工业出版社,2005,125~129
    [128]樊建华,饶麒,王运东等,搅拌槽内流场脉动的频谱分析研究,高校化学工程学报,2004,18(3):287~292
    [129]赵贵兵,顾丽莉,石炎福等,散式流态化到聚式流态化的混沌识别,化工学报,2002,51(04):468~474
    [130]梁在朝,工程湍流,武汉:华中理工大学出版社,1999,222~224
    [131]董连科,分形动力学,辽宁:辽宁科学技术出版社,1994
    [132] Hurst H. E., Long-term storage capacity of reservoirs, Trans Am Soc Civil Engrs, 1951, 116: 770~808
    [133] Mandelbrot B. B.and Wallis J. R., Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence, Water Resources Res., 1969, 5(5): 967~988
    [134] Mandelbrot B. B., The Fractal Geometry of Nature, New York, Freeman, 1982
    [135] Chhabra A. B., Meneveau C. and Jensen R. V., Direct determination of the f(?) singularityspectrum and its application to fully developed turbulence, Physical review A, 1989, 40(9): 5284~5294
    [136] Halsey D. C., Jensen M. H., Kadanoff L. P., et al., Fractal measures and their singularities: The characterization of strange sets, Physical review A, 1986, 33(2): 1141~1151
    [137] Arneodo A., Bacry E. and Muzy J. F., The thermodynamics of fractals revisited with wavelets, Physical A, 1995, 213: 232~275
    [138]段虞荣,颜新祥,郑继明,运用多重分形和小波变换预测油气储量及确定勘探井位,高校应用数学学报,1997,12(1):99~106
    [139]苏菲,谢维信,董进,分形几何在雷达杂波分析中的应用,信号处理,1998,14(1):82~85
    [140] Ma Liping, Huang Weixing, Shi Yanfu, et al., Multifractal analysis of particle-fluid system in a circulating fluidized bed, China Particuology, 2005, 3(1-2): 80~83
    [141] Renyi A., Probability Theory, North Holland: Amsterdan, 1970: 15~17
    [142] Meyer Y., Wavelet and Applications, France, 1992: 24~29
    [143]刘式达,刘式适,分形和分维引论,北京:气象出版社,1993
    [144] QINGDAO LAN, ZHU Jing-Xu, BASSI Amarjeet S., et al., Continuous protein recovery using a liquid-solid circulating fluidized bed ion exchange system: Modelling and experimental studies, Canadian Journal of Chemical Engineering, 2000,78(5): 858~866
    [145] Brereton C. M. H., Grace J. R., Microstructural aspects of the behaviour of circulating fluidized beds, Chemical Engineering Science, 1993, 48(14): 2565~2572
    [146] Johnsson F., Zijerveld R. C., Schouten C., et al., Characterization of fluidization regimes by time-series analysis of pressure fluctuations, International Journal of Multiphase Flow, 2000, 26(4): 663~715
    [147]文志英,分形几何的数学基础,上海:上海科技教育出版社,2000,25
    [148] Davis A., Marshak A, Wiscombe W, et al., Multifractal characterization of nonstationarity and intermittency in geophysical fields simulated, Journal of Geophysical Research-Atmospheres, 1994, 99(D4): 8055~8072
    [149]雷继尧,何世德,王嘉琛,工程信号处理技术,重庆:重庆大学出版社,1990
    [150]王俊,陈逢时,张守宏,一种利用子波变换多尺度分辨特性的信号消噪技术,信号处理,1996,12(2):104~109
    [151]吴浩江,蔡正敏,周芳德,利用小波变换消除多相流流型信号中的噪声,西安交通大学学报,1999,33(11):105~107
    [152] Meng Huibo, Yu Yanfang and Wu Jianhua, High order items of turbulent velocity fluctuations in the Kenics static mixer, Fourth International Symposium on Precision Mechanical Measurements, Bellingham WA: SPIE, 2008: 71304Z1~71304Z7
    [153]赵松年,熊小芸,子波变换与子波分析,北京:电子工业出版社,1997,23~24
    [154] Benzi R., Ciliberto S. and Tripiccione R., et al., Extended self-similarity in turbulent flows, Physical Review E, 1993, 48(1): R29~R32
    [155] She Zhensu and Leveque E., Universal scaling laws in fully developed turbulence, Physical Review Letters, 1994, 72(3): 336~339
    [156]李绍芬,反应工程,北京:化学工业出版社,2000,128~136
    [157]赵秋月,张延安,曹晓畅,带搅拌装置的管式反应器停留时间分布曲线,东北大学学报(自然科学版),2006,27(2):206~208
    [158]刘春江,黄莹,李莹珂等,规整填料特征单元内混合过程的计算流体力学,天津大学学报,2006,39(10):1162~1168
    [159]张庆华,毛在砂,杨超,一种计算搅拌槽混合时间的新方法,化工学报,2007,58(8):1891~1896
    [160] Nere N. K., Patwardhan A. W. and Joshi J. B., Liquid-phase mixing in stirred vessels: turbulent flow regime, Ind. Eng. Chem. Res., 2003, 42(12): 2661~2698
    [161] Jones S. C., Sotiropoulos F and Amirtharajah A, Numerical Modeling of Helical Static Mixers for Water Treatment, Journal of Environmental Engineering, 2002, 128(5): 431~440
    [162] Khmani Ramin, Avasoufi Anahita and Keith Theo G., Numerical Simulation and Mixing Study of Pseudoplastic Fluids in an Industrial Helical Static Mixer, Journal of Fluids Engineering (Transactions of the ASME), 2006, 128(3): 467~480
    [163]肖世新,高正明,黄雄斌,改进型Ross静态混合器牛顿流体流动实验与数值模拟,过程工程学报,2006,6(1):6~10
    [164]赵建华,黄次浩,SMV静态混合器的数值模拟,海军工程大学学报,2002,14(6):59~63
    [165] Castelain C. and Legentilhomme P., Residence time distribution of a purely viscous non-Newtonian fluid in helically coiled or spatially chaotic flows, Chemical Engineering Journal, 2006, 120(3): 181~191
    [166]陈亚平,梅娜,施明恒,螺旋折流片强化壳侧传热的四管模型数值模拟,工程热物理学报,2007,28(1):119~121
    [167]吴小林,熊至宜,姬忠礼,旋风分离器旋进涡核的数值模拟,化工学报,2007,58(12):383~390
    [168]杜彩虹,宋健斐,魏耀东等,180°矩形弯管流场的实验测量和数值模拟,化工学报,2007,58(12):3033~3035
    [169]周国忠,王英琛,施力田,用CFD研究搅拌槽内的混合过程,化工学报,2003,54(7):886~890
    [170]姚玉英,黄凤廉,陈常贵等,化工原理(新版),天津:天津大学出版社,2001,39~52
    [171] Lunden M., Stenberg O. and Andersson B., Evaluation of a method of measuring mixing time using numerical simulation and experimental data, Chemical Engineering Communications, 1995, 139: 115~136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700